
Raffaele Tripiccione

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6470835/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spin-glass dynamics in the presence of a magnetic field: exploration of microscopic properties. Journal of Statistical Mechanics: Theory and Experiment, 2021, 2021, 033301. A Lattice Boltzmann Method for relativistic rarefied flows in <mml:math< td=""><td>2.3</td><td>10</td></mml:math<>	2.3	10
2	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e672" altimg="si1.svg"> <mml:mrow><mml:mo>(</mml:mo><mml:mn>2</mml:mn><mml:mo) 0="" etqq0="" ove<="" rgbt="" td="" tj=""><td>rlock 10 T</td><td>f 50 702 Td (l</td></mml:mo)></mml:mrow>	rlock 10 T	f 50 702 Td (l
3	dimensions. Journal of Computational Science, 2021, 51, 101320. Temperature chaos is present in off-equilibrium spin-glass dynamics. Communications Physics, 2021, 4, .	5.3	13
4	Probing bulk viscosity in relativistic flows. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190409.	3.4	3
5	Scaling Law Describes the Spin-Glass Response in Theory, Experiments, and Simulations. Physical Review Letters, 2020, 125, 237202.	7.8	12
6	Quantum computation of thermal averages in the presence of a sign problem. Physical Review D, 2020, 101, .	4.7	12
7	ThunderX2 Performance and Energy-Efficiency for HPC Workloads. Computation, 2020, 8, 20.	2.0	11
8	Dissipative hydrodynamics of relativistic shock waves in a quark gluon plasma: Comparing and benchmarking alternate numerical methods. Physical Review C, 2020, 101, .	2.9	6

9	Relativistic lattice Boltzmann methods: Theory and applications. Physics Reports, 2020, 863, 1-63.	25.6	24
10	Energy-Efficiency Tuning of a Lattice Boltzmann Simulation Using MERIC. Lecture Notes in Computer Science, 2020, , 169-180.	1.3	3

11	Early Performance Assessment of the ThunderX2 Processor for Lattice Based Simulations. Lecture Notes in Computer Science, 2020, , 187-198.	1.3	2
12	The Mpemba effect in spin glasses is a persistent memory effect. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15350-15355.	7.1	59
13	Hybrid Monte Carlo algorithm for sampling rare events in space-time histories of stochastic fields. Physical Review E, 2019, 99, 053303.	2.1	8
14	Relativistic dissipation obeys Chapman-Enskog asymptotics: Analytical and numerical evidence as a basis for accurate kinetic simulations. Physical Review E, 2019, 99, 052126.	2.1	9
	Poherge Weiss endpoint and chiral symmetry restoration in zmml math		

15	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:msub><mml:mrow><mml:mi>N</mml:mi></mml:mrow><mml:mrow><mml OCD. Physical Review D. 2019. 99</mml </mml:mrow></mml:msub></mml:mrow>	:mi>f <th>ו:18 </th>	ו:18
16	Optimization of lattice Boltzmann simulations on heterogeneous computers. International Journal of High Performance Computing Applications, 2019, 33, 124-139.	3.7	25
17	Portable multi-node LQCD Monte Carlo simulations using OpenACC. International Journal of Modern Physics C, 2018, 29, 1850010.	1.7	14

¹⁸Numerical evidence of electron hydrodynamic whirlpools in graphene samples. Computers and Fluids,
2018, 172, 644-650.2.58

#	Article	IF	CITATIONS
19	Early Experience on Using Knights Landing Processors for Lattice Boltzmann Applications. Lecture Notes in Computer Science, 2018, , 519-530.	1.3	4
20	Portable LQCD Monte Carlo code using OpenACC. EPJ Web of Conferences, 2018, 175, 09008.	0.3	0
21	Software and DVFS Tuning for Performance and Energy-Efficiency on Intel KNL Processors. Journal of Low Power Electronics and Applications, 2018, 8, 18.	2.0	11
22	Aging Rate of Spin Glasses from Simulations Matches Experiments. Physical Review Letters, 2018, 120, 267203.	7.8	29
23	Early Experience on Running OpenStaPLE on DAVIDE. Lecture Notes in Computer Science, 2018, , 387-401.	1.3	3
24	Design and Optimizations of Lattice Boltzmann Methods for Massively Parallel GPU-Based Clusters. Advances in Computer and Electrical Engineering Book Series, 2018, , 54-114.	0.3	0
25	A statics-dynamics equivalence through the fluctuation–dissipation ratio provides a window into the spin-glass phase from nonequilibrium measurements. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1838-1843.	7.1	23
26	Design and optimization of a portable LQCD Monte Carlo code using OpenACC. International Journal of Modern Physics C, 2017, 28, 1750063.	1.7	19
27	Evaluation of DVFS techniques on modern HPC processors and accelerators for energyâ€aware applications. Concurrency Computation Practice and Experience, 2017, 29, e4143.	2.2	29
28	Towards a unified lattice kinetic scheme for relativistic hydrodynamics. Physical Review E, 2017, 95, 053304.	2.1	17
29	Kinetic approach to relativistic dissipation. Physical Review E, 2017, 96, 023305.	2.1	17
30	Matching Microscopic and Macroscopic Responses in Glasses. Physical Review Letters, 2017, 118, 157202.	7.8	31
31	Massively parallel lattice–Boltzmann codes on large GPU clusters. Parallel Computing, 2016, 58, 1-24.	2.1	59
32	Performance and portability of accelerated lattice Boltzmann applications with OpenACC. Concurrency Computation Practice and Experience, 2016, 28, 3485-3502.	2.2	32
33	Experience on Vectorizing Lattice Boltzmann Kernels for Multi- and Many-Core Architectures. Lecture Notes in Computer Science, 2016, , 53-62.	1.3	10
34	Energy-Performance Tradeoffs for HPC Applications on Low Power Processors. Lecture Notes in Computer Science, 2015, , 737-748.	1.3	19
35	Accelerating Lattice Boltzmann Applications with OpenACC. Lecture Notes in Computer Science, 2015, , 613-624.	1.3	5
36	Development of Scientific Software for HPC Architectures Using Open ACC: The Case of LQCD. , 2015, , .		11

#	Article	IF	CITATIONS
37	Optimizing communications in multi-GPU Lattice Boltzmann simulations. , 2015, , .		6
38	The three-dimensional Ising spin glass in an external magnetic field: the role of the silent majority. Journal of Statistical Mechanics: Theory and Experiment, 2014, 2014, P05014.	2.3	38
39	Computing on Knights and Kepler Architectures. Journal of Physics: Conference Series, 2014, 513, 052032.	0.4	2
40	Evolution of a double-front Rayleigh-Taylor system using a graphics-processing-unit-based high-resolution thermal lattice-Boltzmann model. Physical Review E, 2014, 89, 043022.	2.1	9
41	Dynamical transition in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>D</mml:mi><mml:mo>=spin glass in an external magnetic field. Physical Review E, 2014, 89, 032140.</mml:mo></mml:mrow></mml:math 	> 2m ml:mi	່າໝະ/mml:m
42	On Portability, Performance and Scalability of an MPI OpenCL Lattice Boltzmann Code. Lecture Notes in Computer Science, 2014, , 438-449.	1.3	12
43	Janus II: A new generation application-driven computer for spin-system simulations. Computer Physics Communications, 2014, 185, 550-559.	7.5	40
44	A Portable OpenCL Lattice Boltzmann Code for Multi- and Many-core Processor Architectures. Procedia Computer Science, 2014, 29, 40-49.	2.0	13
45	An Optimized Lattice Boltzmann Code for BlueGene/Q. Lecture Notes in Computer Science, 2014, , 385-394.	1.3	5
46	Performance issues on many-core processors: A D2Q37 Lattice Boltzmann scheme as a test-case. Computers and Fluids, 2013, 88, 743-752.	2.5	21
47	Benchmarking MIC architectures with Monte Carlo simulations of spin glass systems. , 2013, , .		3
48	Benchmarking GPUs with a Parallel Lattice-Boltzmann Code. , 2013, , .		19
49	Critical parameters of the three-dimensional Ising spin glass. Physical Review B, 2013, 88, .	3.2	82
50	A fast hardware tracker for the ATLAS trigger system. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 718, 258-259.	1.6	0
51	Early Experience on Porting and Running a Lattice Boltzmann Code on the Xeon-phi Co-Processor. Procedia Computer Science, 2013, 18, 551-560.	2.0	45
52	An optimized D2Q37 Lattice Boltzmann code on GP-GPUs. Computers and Fluids, 2013, 80, 55-62.	2.5	23
53	The Janus project: boosting spin-glass simulations using FPGAs. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 227-232.	0.4	5
54	Exploiting parallelism in many-core architectures: Lattice Boltzmann models as a test case. Journal of Physics: Conference Series, 2013, 454, 012015.	0.4	6

#	Article	IF	CITATIONS
55	An FPGA-Based Supercomputer for Statistical Physics: The Weird Case of Janus. , 2013, , 481-506.		3
56	Spin Glass Simulations on the Janus Architecture: A Desperate Quest for Strong Scaling. Lecture Notes in Computer Science, 2013, , 528-537.	1.3	1
57	FTK: a Fast Track Trigger for ATLAS. Journal of Instrumentation, 2012, 7, C10002-C10002.	1.2	5
58	Thermodynamic glass transition in a spin glass without time-reversal symmetry. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6452-6456.	7.1	54
59	Reconfigurable computing for Monte Carlo simulations: Results and prospects of the Janus project. European Physical Journal: Special Topics, 2012, 210, 33-51.	2.6	21
60	Implementation and optimization of a thermal Lattice Boltzmann algorithm on a multi-GPU cluster. , 2012, , .		4
61	A Multi-GPU Implementation of a D2Q37 Lattice Boltzmann Code. Lecture Notes in Computer Science, 2012, , 640-650.	1.3	12
62	Efficient assignment of the temperature set for Parallel Tempering. Journal of Computational Physics, 2012, 231, 1524-1532.	3.8	5
63	The FastTracker Real Time Processor and Its Impact on Muon Isolation, Tau and b-Jet Online Selections at ATLAS. IEEE Transactions on Nuclear Science, 2012, 59, 348-357.	2.0	35
64	Monte Carlo Simulations of Spin Systems on Multi-core Processors. Lecture Notes in Computer Science, 2012, , 220-230.	1.3	5
65	The hArtes Platform. , 2012, , 111-123.		Ο
66	A new variable-resolution Associative Memory for high energy physics. , 2011, , .		11
67	Front propagation in Rayleigh-Taylor systems with reaction. Journal of Physics: Conference Series, 2011, 318, 092024.	0.4	Ο
68	Second order closure for stratified convection: bulk region and overshooting. Journal of Physics: Conference Series, 2011, 318, 042018.	0.4	0
69	Numerical simulations of Rayleigh–Taylor front evolution in turbulent stratified fluids. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 2448-2455.	3.4	2
70	Optimization of Multi-Phase Compressible Lattice Boltzmann Codes on Massively Parallel Multi-Core Systems. Procedia Computer Science, 2011, 4, 994-1003.	2.0	17
71	Second-order closure in stratified turbulence: Simulations and modeling of bulk and entrainment regions. Physical Review E, 2011, 84, 016305.	2.1	29
72	Sample-to-sample fluctuations of the overlap distributions in the three-dimensional Edwards-Anderson spin glass. Physical Review B, 2011, 84, .	3.2	17

1

#	Article	IF	CITATIONS
73	Associative memory design for the fast track processor (FTK) at ATLAS. , 2011, , .		14
74	Reactive Rayleigh-Taylor systems: Front propagation and non-stationarity. Europhysics Letters, 2011, 94, 54004.	2.0	35
75	Enhancement of the ATLAS trigger system with a hardware tracker finder FTK. Journal of Instrumentation, 2010, 5, C12037-C12037.	1.2	1
76	QPACE: power-efficient parallel architecture based on IBM PowerXCell 8i. Computer Science - Research and Development, 2010, 25, 149-154.	2.7	15
77	Lattice Boltzmann fluid-dynamics on the QPACE supercomputer. Procedia Computer Science, 2010, 1, 1075-1082.	2.0	15
78	The Fast Track real time processor and its impact on muon isolation, tau and b-jet online selections at ATLAS. , 2010, , .		4
79	Associative memory design for the FastTrack processor (FTK) at ATLAS. , 2010, , .		3
80	To implement the LBGK model on parallel system. , 2010, , .		0
81	High resolution numerical study of Rayleigh–Taylor turbulence using a thermal lattice Boltzmann scheme. Physics of Fluids, 2010, 22, 115112.	4.0	35
82	Nature of the spin-glass phase at experimental length scales. Journal of Statistical Mechanics: Theory and Experiment, 2010, 2010, P06026.	2.3	70
83	Critical behavior of three-dimensional disordered Potts models with many states. Journal of Statistical Mechanics: Theory and Experiment, 2010, 2010, P05002.	2.3	8
84	Static versus Dynamic Heterogeneities in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>D</mml:mi><mml:mo>=</mml:mo><mml:mn>3</mml:mn>Edwards-And- Spin Glass. Physical Review Letters, 2010, 105, 177202.</mml:math 	erson-Ising	g ³⁷
85	Monte Carlo Simulations of Spin Glass Systems on the Cell Broadband Engine. Lecture Notes in Computer Science, 2010, , 467-476.	1.3	4
86	Spin glass phase in the four-state three-dimensional Potts model. Physical Review B, 2009, 79, .	3.2	14
87	Associative memory design for fast tracker at LHC. , 2009, , .		0
88	Janus: An FPGA-Based System for High-Performance Scientific Computing. Computing in Science and Engineering, 2009, 11, 48-58.	1.2	75
89	An In-Depth View of the Microscopic Dynamics of Ising Spin Glasses at Fixed Temperature. Journal of Statistical Physics, 2009, 135, 1121-1158.	1.2	83

90 Nonequilibrium spin glass dynamics with Janus. , 2009, , .

#	Article	IF	CITATIONS
91	Simulating spin systems on IANUS, an FPGA-based computer. Computer Physics Communications, 2008, 178, 208-216.	7.5	57
92	QPACE: Quantum Chromodynamics Parallel Computing on the Cell Broadband Engine. Computing in Science and Engineering, 2008, 10, 46-54.	1.2	29
93	The hardware application platform of the hartes project. , 2008, , .		3
94	JANUS., 2008,,.		0
95	Nonequilibrium Spin-Glass Dynamics from Picoseconds to a Tenth of a Second. Physical Review Letters, 2008, 101, 157201.	7.8	77
96	On-line tracking processors at hadron colliders: The SVT experience at CDF II and beyond. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 581, 473-475.	1.6	8
97	The Silicon Vertex Trigger upgrade at CDF. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 572, 361-364.	1.6	41
98	The beam and detector for the NA48 neutral kaon CP violation experiment at CERN. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 574, 433-471.	1.6	174
99	Computing for LQCD: apeNEXT. Computing in Science and Engineering, 2006, 8, 18-29.	1.2	20
100	The AM++ board for the silicon vertex tracker upgrade at CDF. IEEE Transactions on Nuclear Science, 2006, 53, 1726-1731.	2.0	8
101	The apeNEXT project. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 559, 90-94.	1.6	1
102	Real time secondary vertexing at CDF. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 569, 111-114.	1.6	6
103	A VLSI Processor for Fast Track Finding Based on Content Addressable Memories. IEEE Transactions on Nuclear Science, 2006, 53, 2428-2433.	2.0	47
104	The apeNEXT project. Nuclear Physics, Section B, Proceedings Supplements, 2005, 140, 176-182.	0.4	6
105	Strategies for dedicated computing for lattice gauge theories. Computer Physics Communications, 2005, 169, 442-448.	7.5	5
106	Rayleigh and Prandtl number scaling in the bulk of Rayleigh–Bénard turbulence. Physics of Fluids, 2005, 17, 055107.	4.0	79
107	The Potential of On-Chip Multiprocessing for QCD Machines. Lecture Notes in Computer Science, 2005, , 386-397.	1.3	22
108	Universality of anisotropic turbulence. Physica A: Statistical Mechanics and Its Applications, 2004, 338, 194-200.	2.6	7

#	Article	IF	CITATIONS
109	apeNEXT: A Multi-TFlops computer for elementary particle physics. Advances in Parallel Computing, 2004, 13, 355-362.	0.3	0
110	Matched filters for coalescing binaries detection onÂmassivelyÂparallelÂcomputers. Computer Physics Communications, 2003, 152, 295-306.	7.5	2
111	Status of the apeNEXT project. Nuclear Physics, Section B, Proceedings Supplements, 2003, 119, 1038-1040.	0.4	6
112	Universality of anisotropic fluctuations from numerical simulations of turbulent flows. Europhysics Letters, 2003, 64, 461-467.	2.0	29
113	Evidences of Bolgiano-Obhukhov scaling in three-dimensional Rayleigh-Bénard convection. Physical Review E, 2002, 66, 016304.	2.1	61
114	Self-diagnostic tools of the APEmille parallel machine. IEE Proceedings: Computers and Digital Techniques, 2002, 149, 273.	1.6	2
115	The apeNEXT project. Nuclear Physics, Section B, Proceedings Supplements, 2002, 106-107, 173-176.	0.4	10
116	Panel discussion on the cost of dynamical quark simulations. Nuclear Physics, Section B, Proceedings Supplements, 2002, 106-107, 199-205.	0.4	30
117	Status of APEmille. Nuclear Physics, Section B, Proceedings Supplements, 2002, 106-107, 1043-1045.	0.4	8
118	The trigger for K0→Ĩ€0Ĩ€0 decays of the NA48 experiment at CERN. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 485, 676-697.	1.6	11
119	APE computers—past, present and future. Computer Physics Communications, 2002, 147, 402-409.	7.5	4
120	Low-noise front-end amplifier and channel encoder for a 2-D X-ray digital imaging system with single photon counting capability. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 460, 213-220.	1.6	3
121	LGT simulations on APE machines. Computer Physics Communications, 2001, 139, 55-63.	7.5	4
122	Status of APE projects. Nuclear Physics, Section B, Proceedings Supplements, 2001, 94, 846-853.	0.4	3
123	Three Generations of APE Projects: Lessons and Perspective. Astrophysics and Space Science Library, 2001, , 201-209.	2.7	0
124	APEmille. Parallel Computing, 1999, 25, 1297-1309.	2.1	8
125	A VLSI front-end circuit for microstrip silicon detectors for medical imaging applications. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 436, 401-414.	1.6	1
126	On the Heat Transfer in Rayleigh–Bénard Systems. Journal of Statistical Physics, 1998, 93, 901-918.	1.2	35

#	Article	IF	CITATIONS
127	A 40 MHz-pipelined trigger for K0→2ï€0 decays for the CERN NA48 experiment. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1998, 419, 695-700.	1.6	4
128	Microstrip silicon detectors for digital radiography. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1998, 409, 534-536.	1.6	6
129	A 40 MHz pipelined trigger for K/sup 0//spl rarr/2/spl pi//sup 0/ decays for the CERN NA48 experiment. IEEE Transactions on Nuclear Science, 1998, 45, 1771-1775.	2.0	7
130	Self-scaling properties of velocity circulation in shear flows. Physical Review E, 1997, 55, 3739-3742.	2.1	10
131	An overview of the APEmille parallel computer. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1997, 389, 56-58.	1.6	7
132	A high-rate X-Y coincidence VLSI system for 2-D imaging detectors. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1997, 394, 191-198.	1.6	6
133	The PeakSum Processing System for the NA48 experiment: a VLSI based processor. IEEE Transactions on Nuclear Science, 1996, 43, 1789-1794.	2.0	6
134	Generalized scaling in fully developed turbulence. Physica D: Nonlinear Phenomena, 1996, 96, 162-181.	2.8	139
135	Autoradiography with silicon strip detectors. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1996, 381, 527-530.	1.6	17
136	Extended self-similarity in numerical simulations of three-dimensional anisotropic turbulence. Physical Review E, 1996, 53, R5565-R5568.	2.1	44
137	Scaling property of turbulent flows. Physical Review E, 1996, 53, R3025-R3027.	2.1	17
138	Polyakov loops and finite-size effects of hadron masses in full lattice QCD. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1995, 345, 49-54.	4.1	1
139	The new wave of the APE project: APEmille. Nuclear Physics, Section B, Proceedings Supplements, 1995, 42, 17-20.	0.4	5
140	Reply to â€~â€~Comment on â€~Extended self-similarity in turbulent flows' ''. Physical Review E, 1995, 2672-2673.	51 2.1	1
141	On the Intermittent Energy Transfer at Viscous Scales in Turbulent Flows. Europhysics Letters, 1995, 32, 709-713.	2.0	40
142	Extended Self Similarity and Convective Turbulence. Fluid Mechanics and Its Applications, 1995, , 26-30.	0.2	0
143	Scaling Behaviour of the Velocity and Temperature Correlation Functions in 3D Convective Turbulence. Europhysics Letters, 1994, 28, 231-236.	2.0	14
144	On the Scaling of the Velocity and Temperature Structure Functions in Rayleigh-Bénard Convection. Europhysics Letters, 1994, 25, 341-346.	2.0	53

#	Article	IF	CITATIONS
145	Scaling, asymptotic scaling, and Symanzik improvement: Deconfinement temperature in SU(2) pure gauge theory. Physical Review D, 1994, 49, 511-527.	4.7	11
146	The SU (2) deconfinement phase transition with zymanzik action. Nuclear Physics, Section B, Proceedings Supplements, 1994, 34, 283-285.	0.4	0
147	Status of APE100 and full QCD simulations. Nuclear Physics, Section B, Proceedings Supplements, 1994, 34, 826-829.	0.4	0
148	A high statistics lattice calculation of Æ'B in the static limit on APE. Nuclear Physics B, 1994, 413, 461-480.	2.5	29
149	A high performance single chip processing unit for parallel processing and data acquisition systems. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1993, 324, 543-550.	1.6	1
150	Preliminary results from APE-100. Nuclear Physics, Section B, Proceedings Supplements, 1993, 30, 469-472.	0.4	3
151	THE APE-100 COMPUTER: (I) THE ARCHITECTURE. International Journal of High Speed Computing, 1993, 05, 637-656.	0.2	54
152	LBE SIMULATIONS OF RAYLEIGH-BÉNARD CONVECTION ON THE APE100 PARALLEL PROCESSOR. International Journal of Modern Physics C, 1993, 04, 993-1006.	1.7	65
153	A HARDWARE IMPLEMENTATION OF THE APE100 ARCHITECTURE. International Journal of Modern Physics C, 1993, 04, 969-976.	1.7	36
154	Extended Self-Similarity in the Dissipation Range of Fully Developed Turbulence. Europhysics Letters, 1993, 24, 275-279.	2.0	155
155	THE SOFTWARE OF THE APE100 PROCESSOR. International Journal of Modern Physics C, 1993, 04, 955-967.	1.7	32
156	Extended self-similarity in turbulent flows. Physical Review E, 1993, 48, R29-R32.	2.1	846
157	β=6.0 quenched Wilson fermions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1991, 258, 195-201.	4.1	61
158	β=6.0 staggered quenched fermions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1991, 258, 202-206.	4.1	21
159	APE quenched spectrum. Nuclear Physics, Section B, Proceedings Supplements, 1991, 20, 399-405.	0.4	6
160	The topological susceptibility of the pure SU(3) Yang-Mills vacuum on the lattice. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1990, 252, 436-442.	4.1	25
161	Dedicated computers for LGT. Nuclear Physics, Section B, Proceedings Supplements, 1990, 17, 137-145.	0.4	2
162	The ape with a small jump. Nuclear Physics, Section B, Proceedings Supplements, 1990, 17, 218-222.	0.4	7

#	Article	IF	CITATIONS
163	The Ape with a small mass. Nuclear Physics, Section B, Proceedings Supplements, 1990, 17, 431-435.	0.4	7
164	Status of quenched QCD on ape computers. Nuclear Physics, Section B, Proceedings Supplements, 1990, 16, 554-556.	0.4	0
165	Staggered fermions at \hat{I}^2 = 5.7: Smeared operators on large lattices. Nuclear Physics B, 1990, 343, 228-240.	2.5	34
166	The deconfining phase transition and the glueball channels in pure gauge QCD. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1989, 220, 607-610.	4.1	14
167	A new computation of the correlation length near the deconfining transition in SU(3). Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1989, 224, 333-338.	4.1	14
168	On the order of the deconfining phase transition in SU(3) LGT. Nuclear Physics, Section B, Proceedings Supplements, 1989, 9, 315-319.	0.4	0
169	From APE to APE-100: From 1 to 100 gflops in lattice gauge theory simulations. Computer Physics Communications, 1989, 57, 285-289.	7.5	12
170	The hadronic mass spectrum in quenched lattice QCD: β=5.7. Nuclear Physics B, 1989, 317, 509-525.	2.5	55
171	The deconfining phase transition in lattice gauge SU(3). Nuclear Physics B, 1989, 318, 553-578.	2.5	31
172	The hadronic mass spectrum in quenched lattice QCD: Results at β = 5.7 and β = 6.0. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1988, 214, 115-119.	4.1	57
173	Scaling in lattice QCD: Glueball masses and string tension. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1988, 205, 535-539.	4.1	25
174	Order of the Deconfining Phase Transition in Pure-Gauge QCD. Physical Review Letters, 1988, 61, 1545-1548.	7.8	111
175	The APE computer: An array processor optimized for lattice gauge theory simulations. Computer Physics Communications, 1987, 45, 345-353.	7.5	43
176	Glueball masses and the loop-loop correlation functions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1987, 197, 400-402.	4.1	48
177	Glueball masses and string tension in lattice QCD. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1987, 192, 163-169.	4.1	618
178	Contribution of hard QCD interactions to the ppÌ,,-pp total inelastic cross-section difference at the CERN ISR energies. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1985, 153, 322-326.	4.1	1
179	Scaling behaviour of the deconfinement temperature for SU(2) pure gauge theory at finite temperature. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1985, 151, 145-150.	4.1	31
180	Vacuum fluctuations and impulse approximation in QCD. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1984, 140, 408-412.	4.1	0

#	Article	IF	CITATIONS
181	Scaling behaviour of SU(3) gauge theory. Nuclear Physics B, 1984, 240, 588-604.	2.5	1
182	Perturbative background to Monte Carlo calculations in lattice gauge theories. Nuclear Physics B, 1984, 240, 91-112.	2.5	16
183	On the energy loss of very-slowly-moving magnetic monopoles. Nuclear Physics B, 1984, 238, 167-180.	2.5	6
184	On models of weak interaction symmetry breaking by colour forces. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1983, 132, 347-350.	4.1	6
185	Is weak interaction symmetry broken by ordinary colour forces?. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1983, 121, 403-409.	4.1	16
186	Bounds on long-range hadronic interactions. Nuclear Physics B, 1983, 217, 215-247.	2.5	9
187	Hâ^'stripping in collisions with low-energypÂ ⁻ andHâ^'. Physical Review A, 1983, 27, 737-739.	2.5	10
188	PD/sup 3/, a low-noise precise timing analog front-end integrated circuit. , 0, , .		2
189	First Steps in the Silicon Vertex Trigger upgrade at CDF. , 0, , .		9
190	The AM++ Board for the Silicon Vertex Tracker Upgrade at CDF. , 0, , .		3
191	A VLSI Processor for Fast Track Finding Based on Content Addressable Memories. , 0, , .		3