List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6468974/publications.pdf Version: 2024-02-01

34105 56724 14,790 88 52 83 citations h-index g-index papers 96 96 96 12351 docs citations times ranked citing authors all docs

ΙΠΟΡΙΑΛΝ ΤΟΝ

#	Article	IF	CITATIONS
1	Epigenetics: a catalyst of plant immunity against pathogens. New Phytologist, 2022, 233, 66-83.	7.3	44
2	Defence against <i>Bremia lactucae</i> conferred by the resistance gene <i>Dm7</i> in lettuce is broken by treatment with dichloroisonicotinic acid. Plant Pathology, 2022, 71, 611-620.	2.4	0
3	Transcriptomic changes during the establishment of longâ€ŧerm methyl jasmonateâ€induced resistance in Norway spruce. Plant, Cell and Environment, 2022, 45, 1891-1913.	5.7	8
4	Long-Lasting Defence Priming by Î ² -Aminobutyric Acid in Tomato Is Marked by Genome-Wide Changes in DNA Methylation. Frontiers in Plant Science, 2022, 13, 836326.	3.6	13
5	Immune priming in plants: from the onset to transgenerational maintenance. Essays in Biochemistry, 2022, 66, 635-646.	4.7	17
6	Costs and Benefits of Transgenerational Induced Resistance in Arabidopsis. Frontiers in Plant Science, 2021, 12, 644999.	3.6	25
7	The rise, fall and resurrection of chemicalâ€induced resistance agents. Pest Management Science, 2021, 77, 3900-3909.	3.4	28
8	The Induced Resistance Lexicon: Do's and Don'ts. Trends in Plant Science, 2021, 26, 685-691.	8.8	84
9	The genetic and epigenetic landscape of the <i>Arabidopsis</i> centromeres. Science, 2021, 374, eabi7489.	12.6	188
10	A rapid and non-destructive method for spatial–temporal quantification of colonization by Pseudomonas syringae pv. tomato DC3000 in Arabidopsis and tomato. Plant Methods, 2021, 17, 126.	4.3	4
11	Methylation moulds microbiomes. Nature Plants, 2020, 6, 910-911.	9.3	3
12	The IB11 Receptor of β-Aminobutyric Acid Interacts with VOZ Transcription Factors to Regulate Abscisic Acid Signaling and Callose-Associated Defense. Molecular Plant, 2020, 13, 1455-1469.	8.3	35
13	Spodoptera frugiperda Caterpillars Suppress Herbivore-Induced Volatile Emissions in Maize. Journal of Chemical Ecology, 2020, 46, 344-360.	1.8	57
14	Surviving in a Hostile World: Plant Strategies to Resist Pests and Diseases. Annual Review of Phytopathology, 2019, 57, 505-529.	7.8	123
15	Bacterial infection systemically suppresses stomatal density. Plant, Cell and Environment, 2019, 42, 2411-2421.	5.7	37
16	Metabolic regulation of the maize rhizobiome by benzoxazinoids. ISME Journal, 2019, 13, 1647-1658.	9.8	210
17	Crying out for help with root exudates: adaptive mechanisms by which stressed plants assemble health-promoting soil microbiomes. Current Opinion in Microbiology, 2019, 49, 73-82.	5.1	231
18	Identification and characterisation of hypomethylated DNA loci controlling quantitative resistance in Arabidopsis. ELife, 2019, 8, .	6.0	73

#	Article	IF	CITATIONS
19	An Adjustable Protocol to Analyze Chemical Profiles of Non-sterile Rhizosphere Soil. Bio-protocol, 2019, 9, e3245.	0.4	0
20	Chemical priming of immunity without costs to plant growth. New Phytologist, 2018, 218, 1205-1216.	7.3	67
21	Farming with crops and rocks to address global climate, food and soil security. Nature Plants, 2018, 4, 138-147.	9.3	226
22	Mechanisms of glacialâ€ŧoâ€future atmospheric <scp>CO</scp> ₂ effects on plant immunity. New Phytologist, 2018, 218, 752-761.	7.3	38
23	The relationship between transgenerational acquired resistance and global DNA methylation in Arabidopsis. Scientific Reports, 2018, 8, 14761.	3.3	55
24	Impacts of Atmospheric CO2 and Soil Nutritional Value on Plant Responses to Rhizosphere Colonization by Soil Bacteria. Frontiers in Plant Science, 2018, 9, 1493.	3.6	21
25	Why rational argument fails the genetic modification (GM) debate. Food Security, 2018, 10, 1145-1161.	5.3	15
26	An agenda for integrated system-wide interdisciplinary agri-food research. Food Security, 2017, 9, 195-210.	5.3	63
27	Metabolite profiling of nonâ€sterile rhizosphere soil. Plant Journal, 2017, 92, 147-162.	5.7	141
28	The interactive effects of arbuscular mycorrhiza and plant growth-promoting rhizobacteria synergistically enhance host plant defences against pathogens. Scientific Reports, 2017, 7, 16409.	3.3	115
29	Prospects for plant defence activators and biocontrol in IPM – Concepts and lessons learnt so far. Crop Protection, 2017, 97, 128-134.	2.1	42
30	The role of DNA (de)methylation in immune responsiveness of Arabidopsis. Plant Journal, 2016, 88, 361-374.	5.7	196
31	Optimizing Chemically Induced Resistance in Tomato Against Botrytis cinerea. Plant Disease, 2016, 100, 704-710.	1.4	51
32	Recognizing Plant Defense Priming. Trends in Plant Science, 2016, 21, 818-822.	8.8	549
33	NAD Acts as an Integral Regulator of Multiple Defense Layers. Plant Physiology, 2016, 172, 1465-1479.	4.8	85
34	Spore Density Determines Infection Strategy by the Plant Pathogenic Fungus <i>Plectosphaerella cucumerina</i> . Plant Physiology, 2016, 170, 2325-2339.	4.8	56
35	Indole is an essential herbivore-induced volatile priming signal in maize. Nature Communications, 2015, 6, 6273.	12.8	349
36	Role of NPR1 and KYP in long-lasting induced resistance by β-aminobutyric acid. Frontiers in Plant Science, 2014, 5, 184.	3.6	62

#	Article	IF	CITATIONS
37	The discovery of the BABA receptor: scientific implications and application potential. Frontiers in Plant Science, 2014, 5, 304.	3.6	12
38	Volatiles produced by soilâ€borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions. Plant, Cell and Environment, 2014, 37, 813-826.	5.7	214
39	Plant perception of β-aminobutyric acid is mediated by an aspartyl-tRNA synthetase. Nature Chemical Biology, 2014, 10, 450-456.	8.0	128
40	Mycorrhiza-induced resistance: more than the sum of its parts?. Trends in Plant Science, 2013, 18, 539-545.	8.8	396
41	Primed plants do not forget. Environmental and Experimental Botany, 2013, 94, 46-56.	4.2	301
42	Systemic defense priming by <i><i>Pseudomonas putida</i></i> KT2440 in maize depends on benzoxazinoid exudation from the roots. Plant Signaling and Behavior, 2013, 8, e22655.	2.4	47
43	Phloem: the integrative avenue for resource distribution, signaling, and defense. Frontiers in Plant Science, 2013, 4, 471.	3.6	18
44	Fine Tuning of Reactive Oxygen Species Homeostasis Regulates Primed Immune Responses in <i>Arabidopsis</i> . Molecular Plant-Microbe Interactions, 2013, 26, 1334-1344.	2.6	93
45	The epigenetic machinery controlling transgenerational systemic acquired resistance. Plant Signaling and Behavior, 2012, 7, 615-618.	2.4	126
46	Next-Generation Systemic Acquired Resistance Â. Plant Physiology, 2012, 158, 844-853.	4.8	577
47	Benzoxazinoids in Root Exudates of Maize Attract Pseudomonas putida to the Rhizosphere. PLoS ONE, 2012, 7, e35498.	2.5	397
48	Callose Deposition: A Multifaceted Plant Defense Response. Molecular Plant-Microbe Interactions, 2011, 24, 183-193.	2.6	613
49	Genetic dissection of basal defence responsiveness in accessions of <i>Arabidopsis thaliana</i> . Plant, Cell and Environment, 2011, 34, 1191-1206.	5.7	46
50	Behavioral Responses of the Leafhopper, Cicadulina storeyi China, a Major Vector of Maize Streak Virus, to Volatile Cues from Intact and Leafhopper-Damaged Maize. Journal of Chemical Ecology, 2011, 37, 40-48.	1.8	43
51	Benzoxazinoid Metabolites Regulate Innate Immunity against Aphids and Fungi in Maize Â. Plant Physiology, 2011, 157, 317-327.	4.8	295
52	The transcriptome of cis-jasmone-induced resistance in Arabidopsis thaliana and its role in indirect defence. Planta, 2010, 232, 1163-1180.	3.2	90
53	Natural variation in priming of basal resistance: from evolutionary origin to agricultural exploitation. Molecular Plant Pathology, 2010, 11, 817-827.	4.2	79
54	Constitutive salicylic acid defences do not compromise seed yield, drought tolerance and water productivity in the <i>Arabidopsis</i> accession C24. Plant, Cell and Environment, 2010, 33, 1959-1973.	5.7	67

#	Article	IF	CITATIONS
55	Systemic Resistance Induction by Vascular and Airborne Signaling. Progress in Botany Fortschritte Der Botanik, 2010, , 279-306.	0.3	3
56	Plant Defense Signaling from the Underground Primes Aboveground Defenses to Confer Enhanced Resistance in a Cost-Efficient Manner. Signaling and Communication in Plants, 2010, , 43-60.	0.7	9
57	Belowground ABA boosts aboveground production of DIMBOA and primes induction of chlorogenic acid in maize. Plant Signaling and Behavior, 2009, 4, 639-641.	2.4	37
58	Insect-induced gene expression at the core of volatile terpene release in <i>Medicago truncatula</i> . Plant Signaling and Behavior, 2009, 4, 636-638.	2.4	26
59	Signal signature of abovegroundâ€induced resistance upon belowground herbivory in maize. Plant Journal, 2009, 59, 292-302.	5.7	244
60	Priming of plant innate immunity by rhizobacteria and βâ€aminobutyric acid: differences and similarities in regulation. New Phytologist, 2009, 183, 419-431.	7.3	192
61	The multifaceted role of ABA in disease resistance. Trends in Plant Science, 2009, 14, 310-317.	8.8	782
62	Interplay between JA, SA and ABA signalling during basal and induced resistance against <i>Pseudomonas syringae</i> and <i>Alternaria brassicicola</i> . Plant Journal, 2008, 54, 81-92.	5.7	262
63	Long-distance signalling in plant defence. Trends in Plant Science, 2008, 13, 264-272.	8.8	543
64	<i>MYB72</i> Is Required in Early Signaling Steps of Rhizobacteria-Induced Systemic Resistance in Arabidopsis Â. Plant Physiology, 2008, 146, 1293-1304.	4.8	255
65	Interactions between Arthropod-Induced Aboveground and Belowground Defenses in Plants. Plant Physiology, 2008, 146, 867-874.	4.8	152
66	Priming: Getting Ready for Battle. Molecular Plant-Microbe Interactions, 2006, 19, 1062-1071.	2.6	1,241
67	Priming by airborne signals boosts direct and indirect resistance in maize. Plant Journal, 2006, 49, 16-26.	5.7	404
68	Fungal Infection Reduces Herbivore-Induced Plant Volatiles of Maize but does not Affect NaÃ⁻ve Parasitoids. Journal of Chemical Ecology, 2006, 32, 1897-1909.	1.8	89
69	Exploiting scents of distress: the prospect of manipulating herbivore-induced plant odours to enhance the control of agricultural pests. Current Opinion in Plant Biology, 2006, 9, 421-427.	7.1	225
70	Costs and benefits of priming for defense in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5602-5607.	7.1	727
71	The Relationship Between Basal and Induced Resistance in Arabidopsis. , 2006, , 197-224.		15
72	Abscisic Acid and Callose: Team Players in Defence Against Pathogens?. Journal of Phytopathology, 2005, 153, 377-383.	1.0	117

#	Article	IF	CITATIONS
73	Enhancing Arabidopsis Salt and Drought Stress Tolerance by Chemical Priming for Its Abscisic Acid Responses. Plant Physiology, 2005, 139, 267-274.	4.8	387
74	Dissecting the β-Aminobutyric Acid–Induced Priming Phenomenon in Arabidopsis. Plant Cell, 2005, 17, 987-999.	6.6	356
75	β-amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose. Plant Journal, 2004, 38, 119-130.	5.7	581
76	Differential Effectiveness of Salicylate-Dependent and Jasmonate/Ethylene-Dependent Induced Resistance in Arabidopsis. Molecular Plant-Microbe Interactions, 2002, 15, 27-34.	2.6	330
77	Characterization of Arabidopsisenhanced disease susceptibility mutants that are affected in systemically induced resistance. Plant Journal, 2002, 29, 11-21.	5.7	98
78	The Arabidopsis ISR1 Locus is Required for Rhizobacteria-Mediated Induced Systemic Resistance Against Different Pathogens. Plant Biology, 2002, 4, 224-227.	3.8	17
79	Signalling in Rhizobacteria-Induced Systemic Resistance inArabidopsis thaliana. Plant Biology, 2002, 4, 535-544.	3.8	189
80	Title is missing!. European Journal of Plant Pathology, 2001, 107, 63-68.	1.7	13
81	Rhizobacteria-mediated Induced Systemic Resistance: Triggering, Signalling and Expression. European Journal of Plant Pathology, 2001, 107, 51-61.	1.7	181
82	The Arabidopsis ISR1 Locus Controlling Rhizobacteria-Mediated Induced Systemic Resistance Is Involved in Ethylene Signaling. Plant Physiology, 2001, 125, 652-661.	4.8	98
83	Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis requires sensitivity to jasmonate and ethylene but is not accompanied by an increase in their production. Physiological and Molecular Plant Pathology, 2000, 57, 123-134.	2.5	222
84	Identification of a Locus in Arabidopsis Controlling Both the Expression of Rhizobacteria-Mediated Induced Systemic Resistance (ISR) and Basal Resistance Against Pseudomonas syringae pv. tomato. Molecular Plant-Microbe Interactions, 1999, 12, 911-918.	2.6	88
85	Elucidating Pathways Controlling Induced Resistance. , 0, , 99-109.		5
86	Induced Resistance– Orchestrating Defence Mechanisms through Crosstalk and Priming. , 0, , 334-370.		4
87	Role of Abscisic Acid in Disease Resistance. , 0, , 1-22.		6
88	Induced Resistance?????? Orchestrating Defence Mechanisms through Crosstalk and Priming. , 0, , 334-370.		0