
Eva BenkovÃ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6468375/publications.pdf Version: 2024-02-01

Ενα Βενκονά:

#	Article	IF	CITATIONS
1	Xyloglucan Remodeling Defines Auxin-Dependent Differential Tissue Expansion in Plants. International Journal of Molecular Sciences, 2021, 22, 9222.	4.1	9
2	Nitrate triggered phosphoproteome changes and a PIN2 phosphosite modulating root system architecture. EMBO Reports, 2021, 22, e51813.	4.5	22
3	Modulation of plant root growth by nitrogen sourceâ€defined regulation of polar auxin transport. EMBO Journal, 2021, 40, e106862.	7.8	60
4	A coupled mechano-biochemical model for cell polarity guided anisotropic root growth. ELife, 2021, 10, .	6.0	8
5	Cytokinin fluoroprobe reveals multiple sites of cytokinin perception at plasma membrane and endoplasmic reticulum. Nature Communications, 2020, 11, 4285.	12.8	64
6	The Arabidopsis NRT1.1 transceptor coordinately controls auxin biosynthesis and transport to regulate root branching in response to nitrate. Journal of Experimental Botany, 2020, 71, 4480-4494.	4.8	64
7	SYNERGISTIC ON AUXIN AND CYTOKININ 1 positively regulates growth and attenuates soil pathogen resistance. Nature Communications, 2020, 11, 2170.	12.8	34
8	All Roads Lead to Auxin: Post-translational Regulation of Auxin Transport by Multiple Hormonal Pathways. Plant Communications, 2020, 1, 100048.	7.7	31
9	Phytohormone cytokinin guides microtubule dynamics during cell progression from proliferative to differentiated stage. EMBO Journal, 2020, 39, e104238.	7.8	15
10	Root gravity response module guides differential growth determining both root bending and apical hook formation. Development (Cambridge), 2019, 146, .	2.5	24
11	Ethylene and Cytokinin: Partners in Root Growth Regulation. Molecular Plant, 2019, 12, 1312-1314.	8.3	22
12	Re-activation of Stem Cell Pathways for Pattern Restoration in Plant Wound Healing. Cell, 2019, 177, 957-969.e13.	28.9	92
13	Design, synthesis and perception of fluorescently labeled isoprenoid cytokinins. Phytochemistry, 2018, 150, 1-11.	2.9	7
14	Transporters and Mechanisms of Hormone Transport in Arabidopsis. Advances in Botanical Research, 2018, 87, 115-138.	1.1	12
15	Methodological Advances in Auxin and Cytokinin Biology. Methods in Molecular Biology, 2017, 1569, 1-29.	0.9	7
16	Spatiotemporal mechanisms of root branching. Current Opinion in Genetics and Development, 2017, 45, 82-89.	3.3	15
17	Real-Time Analysis of the Apical Hook Development. Methods in Molecular Biology, 2017, 1497, 1-8.	0.9	14
18	Live tracking of moving samples in confocal microscopy for vertically grown roots. ELife, 2017, 6, .	6.0	123

Ενα ΒενκονÃι

#	Article	IF	CITATIONS
19	Cytokinin Response Factor 6 Represses Cytokinin-Associated Genes during Oxidative Stress. Plant Physiology, 2016, 172, pp.00415.2016.	4.8	85
20	Lateral root emergence in <i>Arabidopsis</i> is dependent on transcription factor LBD29 regulating auxin influx carrier <i>LAX3</i> . Development (Cambridge), 2016, 143, 3340-9.	2.5	111
21	Nitrate Controls Root Development through Post-Transcriptional Regulation of the NRT1.1/NPF6.3 transporter/sensor. Plant Physiology, 2016, 172, pp.01047.2016.	4.8	94
22	Seedlings' Strategy to Overcome a Soil Barrier. Trends in Plant Science, 2016, 21, 809-811.	8.8	4
23	Plant hormones in interactions with the environment. Plant Molecular Biology, 2016, 91, 597-597.	3.9	16
24	A Model of Differential Growth-Guided Apical Hook Formation in Plants. Plant Cell, 2016, 28, 2464-2477.	6.6	53
25	Targeted cell elimination reveals an auxin-guided biphasic mode of lateral root initiation. Genes and Development, 2016, 30, 471-483.	5.9	82
26	Strategies of seedlings to overcome their sessile nature: auxin in mobility control. Frontiers in Plant Science, 2015, 6, 218.	3.6	35
27	A coherent transcriptional feed-forward motif model for mediating auxin-sensitive PIN3 expression during lateral root development. Nature Communications, 2015, 6, 8821.	12.8	70
28	Cytokinin response factors regulate PIN-FORMED auxin transporters. Nature Communications, 2015, 6, 8717.	12.8	108
29	Real-time Analysis of Lateral Root Organogenesis in Arabidopsis. Bio-protocol, 2015, 5, .	0.4	6
30	Cytokinin Controls Polarity of PIN1-Dependent Auxin Transport during Lateral Root Organogenesis. Current Biology, 2014, 24, 1031-1037.	3.9	152
31	Dynamic infrared imaging analysis of apical hook development in <i>Arabidopsis</i> : the case of brassinosteroids. New Phytologist, 2014, 202, 1398-1411.	7.3	31
32	Inhibition of cell expansion by rapid ABP1-mediated auxin effect on microtubules. Nature, 2014, 516, 90-93.	27.8	129
33	An Auxin Transport Mechanism Restricts Positive Orthogravitropism in Lateral Roots. Current Biology, 2013, 23, 817-822.	3.9	134
34	Sequential induction of auxin efflux and influx carriers regulates lateral root emergence. Molecular Systems Biology, 2013, 9, 699.	7.2	104
35	Cytokinin cross-talking during biotic and abiotic stress responses. Frontiers in Plant Science, 2013, 4, 451.	3.6	251
36	Spatiotemporal Regulation of Lateral Root Organogenesis in <i>Arabidopsis</i> by Cytokinin. Plant Cell, 2012, 24, 3967-3981.	6.6	162

Ενα ΒενκονÃι

#	Article	IF	CITATIONS
37	Auxin reflux between the endodermis and pericycle promotes lateral root initiation. EMBO Journal, 2012, 32, 149-158.	7.8	148
38	Hormonal Interactions in the Regulation of Plant Development. Annual Review of Cell and Developmental Biology, 2012, 28, 463-487.	9.4	480
39	The Transcription Factors BEL1 and SPL Are Required for Cytokinin and Auxin Signaling During Ovule Development in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 2886-2897.	6.6	186
40	Inositol Trisphosphate-Induced Ca2+ Signaling Modulates Auxin Transport and PIN Polarity. Developmental Cell, 2011, 20, 855-866.	7.0	121
41	Cytokinin Modulates Endocytic Trafficking of PIN1 Auxin Efflux Carrier to Control Plant Organogenesis. Developmental Cell, 2011, 21, 796-804.	7.0	268
42	Hierarchy of hormone action controlling apical hook development in Arabidopsis. Plant Journal, 2011, 67, 622-634.	5.7	92
43	Polarization of PIN3â€dependent auxin transport for hypocotyl gravitropic response in <i>Arabidopsis thaliana</i> . Plant Journal, 2011, 67, 817-826.	5.7	171
44	Auxin minimum defines a developmental window for lateral root initiation. New Phytologist, 2011, 191, 970-983.	7.3	103
45	Sending mixed messages: auxin-cytokinin crosstalk in roots. Current Opinion in Plant Biology, 2011, 14, 10-16.	7.1	103
46	A Mutually Inhibitory Interaction between Auxin and Cytokinin Specifies Vascular Pattern in Roots. Current Biology, 2011, 21, 917-926.	3.9	359
47	Lateral root organogenesis — from cell to organ. Current Opinion in Plant Biology, 2010, 13, 677-683.	7.1	114
48	Role of PIN-mediated auxin efflux in apical hook development of <i>Arabidopsis thaliana</i> . Development (Cambridge), 2010, 137, 607-617.	2.5	297
49	The auxin influx carriers AUX1 and LAX3 are involved in auxin-ethylene interactions during apical hook development in <i>Arabidopsis thaliana</i> seedlings. Development (Cambridge), 2010, 137, 597-606.	2.5	226
50	Nitrate-Regulated Auxin Transport by NRT1.1 Defines a Mechanism for Nutrient Sensing in Plants. Developmental Cell, 2010, 18, 927-937.	7.0	870
51	Hormone interactions at the root apical meristem. Plant Molecular Biology, 2009, 69, 383-396.	3.9	141
52	Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter. Nature, 2009, 459, 1136-1140.	27.8	462
53	A morphogenetic trigger: is there an emerging concept in plant developmental biology?. Trends in Plant Science, 2009, 14, 189-193.	8.8	102
54	Arabidopsis lateral root development: an emerging story. Trends in Plant Science, 2009, 14, 399-408.	8.8	681

Ενα ΒενκονÃι

#	Article	IF	CITATIONS
55	Cytokinin regulates root meristem activity via modulation of the polar auxin transport. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4284-4289.	7.1	340
56	The auxin influx carrier LAX3 promotes lateral root emergence. Nature Cell Biology, 2008, 10, 946-954.	10.3	715
57	ARF GEF-Dependent Transcytosis and Polar Delivery of PIN Auxin Carriers in Arabidopsis. Current Biology, 2008, 18, 526-531.	3.9	250
58	Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8790-8794.	7.1	527
59	Cytokinins Act Directly on Lateral Root Founder Cells to Inhibit Root Initiation. Plant Cell, 2008, 19, 3889-3900.	6.6	498
60	Ethylene Regulates Root Growth through Effects on Auxin Biosynthesis and Transport-Dependent Auxin Distribution. Plant Cell, 2007, 19, 2197-2212.	6.6	682
61	PIN Proteins Perform a Rate-Limiting Function in Cellular Auxin Efflux. Science, 2006, 312, 914-918.	12.6	805
62	Immunocytochemical techniques for whole-mount in situ protein localization in plants. Nature Protocols, 2006, 1, 98-103.	12.0	201
63	Polar PIN Localization Directs Auxin Flow in Plants. Science, 2006, 312, 883-883.	12.6	754
64	Canalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarity. Genes and Development, 2006, 20, 2902-2911.	5.9	395
65	Functional redundancy of PIN proteins is accompanied by auxin-dependent cross-regulation of PIN expression. Development (Cambridge), 2005, 132, 4521-4531.	2.5	574
66	Local, Efflux-Dependent Auxin Gradients as a Common Module for Plant Organ Formation. Cell, 2003, 115, 591-602.	28.9	2,313
67	The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes and Development, 2002, 16, 1610-1615.	5.9	485
68	AtPIN4 Mediates Sink-Driven Auxin Gradients and Root Patterning in Arabidopsis. Cell, 2002, 108, 661-673.	28.9	763
69	Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature, 2002, 415, 806-809.	27.8	1,299