Jun Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6467831/publications.pdf

Version: 2024-02-01

	230014	129628
4,219	27	63
citations	h-index	g-index
70	70	5000
/9	/9	5982
docs citations	times ranked	citing authors
	citations 79	4,219 27 citations h-index 79 79

#	Article	IF	CITATIONS
1	An integrative genomics approach to infer causal associations between gene expression and disease. Nature Genetics, 2005, 37, 710-717.	9.4	967
2	A Generalized Combinatorial Approach for Detecting Gene-by-Gene and Gene-by-Environment Interactions with Application to Nicotine Dependence. American Journal of Human Genetics, 2007, 80, 1125-1137.	2.6	533
3	QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics, 2008, 24, 721-723.	1.8	396
4	Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics, 2007, 23, 1527-1536.	1.8	299
5	Developmental Quantitative Genetics, Conditional Epigenetic Variability and Growth in Mice. Genetics, 1997, 147, 765-776.	1.2	152
6	Molecular Dissection of Developmental Behavior of Plant Height in Rice (Oryza sativa L.). Genetics, 1998, 150, 1257-1265.	1.2	144
7	Methods for predicting superior genotypes under multiple environments based on QTL effects. Theoretical and Applied Genetics, 2005, 110, 1268-1274.	1.8	132
8	THE GENETIC BASIS OF LIFEâ€HISTORY CHARACTERS IN A POLYCHAETE EXHIBITING PLANKTOTROPHY AND LECITHOTROPHY. Evolution; International Journal of Organic Evolution, 1991, 45, 380-397.	1.1	105
9	Quantitative analysis and QTL mapping for agronomic and fiber traits in an RI population of upland cotton. Euphytica, 2009, 165, 231-245.	0.6	105
10	Molecular Markerâ€Assisted Dissection of Genotype × Environment Interaction for Plant Type Traits in Rice (<i>Oryza sativa</i> L.). Crop Science, 1999, 39, 538-544.	0.8	91
11	A Combinatorial Approach to Detecting Gene-Gene and Gene-Environment Interactions in Family Studies. American Journal of Human Genetics, 2008, 83, 457-467.	2.6	90
12	A functional–structural model of rice linking quantitative genetic information with morphological development and physiological processes. Annals of Botany, 2011, 107, 817-828.	1.4	71
13	Development of GMDR-GPU for Gene-Gene Interaction Analysis and Its Application to WTCCC GWAS Data for Type 2 Diabetes. PLoS ONE, 2013, 8, e61943.	1.1	60
14	Association Mapping for Epistasis and Environmental Interaction of Yield Traits in 323 Cotton Cultivars under 9 Different Environments. PLoS ONE, 2014, 9, e95882.	1.1	55
15	Title is missing!. Euphytica, 2003, 129, 183-191.	0.6	50
16	Mixed Linear Model Approaches of Association Mapping for Complex Traits Based on Omics Variants. Scientific Reports, 2015, 5, 10298.	1.6	47
17	Practical and Theoretical Considerations in Study Design for Detecting Gene-Gene Interactions Using MDR and GMDR Approaches. PLoS ONE, 2011, 6, e16981.	1.1	45
18	Mixed model approaches for diallel analysis based on a bio-model. Genetical Research, 1996, 68, 233-240.	0.3	42

#	Article	IF	Citations
19	Analysis of gene expression profiles of two near-isogenic lines differing at a QTL region affecting oil content at high temperatures during seed maturation in oilseed rape (Brassica napus L.). Theoretical and Applied Genetics, 2012, 124, 515-531.	1.8	41
20	Functional mapping for genetic control of programmed cell death. Physiological Genomics, 2006, 25, 458-469.	1.0	39
21	Genomic Prediction of Genotypic Effects with Epistasis and Environment Interactions for Yield-Related Traits of Rapeseed (Brassica napus L.). Frontiers in Genetics, 2017, 8, 15.	1.1	36
22	Identification of candidate genes for drought stress tolerance in rice by the integration of a genetic (QTL) map with the rice genome physical map. Journal of Zhejiang University Science B, 2005, 6B, 382-388.	0.4	31
23	A Unified Statistical Model for Functional Mapping of Environment-Dependent Genetic Expression and Genotype × Environment Interactions for Ontogenetic Development. Genetics, 2004, 168, 1751-1762.	1.2	30
24	Marker-assisted selection in segregating generations of self-fertilizing crops. Theoretical and Applied Genetics, 2004, 109, 370-376.	1.8	30
25	Genetic analysis for protein content in indica rice. Euphytica, 1999, 107, 135-140.	0.6	29
26	Sampling a Core Collection of Island Cotton (Gossypium barbadense L.) Based on the Genotypic Values of Fiber Traits. Genetic Resources and Crop Evolution, 2006, 53, 515-521.	0.8	29
27	An approach for predicting heterosis based on an additive, dominance and additive $\tilde{A}-$ additive model with environment interaction. Heredity, 1999, 82, 510-517.	1.2	28
28	A method for marker-assisted selection based on QTLs with epistatic effects. Genetica, 2003, 119, 75-86.	0.5	28
29	An association study revealed substantial effects of dominance, epistasis and substance dependence coâ€morbidity on alcohol dependence symptom count. Addiction Biology, 2017, 22, 1475-1485.	1.4	28
30	Mapping QTL for Biomass Yield and Its Components in Rice (Oryza sativa L.). Journal of Genetics and Genomics, 2006, 33, 607-616.	0.3	27
31	Genetic studies of anther culture ability in rice (Oryza sativa). Plant Cell, Tissue and Organ Culture, 1996, 45, 253-258.	1.2	26
32	Mapping QTLs with digenic epistasis under multiple environments and predicting heterosis based on QTL effects. Theoretical and Applied Genetics, 2007, 115, 325-333.	1.8	26
33	Genetic association of yield with its component traits in a recombinant inbred line population of cotton. Euphytica, 2004, 140, 171-179.	0.6	25
34	Comparing GWAS Results of Complex Traits Using Full Genetic Model and Additive Models for Revealing Genetic Architecture. Scientific Reports, 2017, 7, 38600.	1.6	24
35	Dominance and Epistasis Interactions Revealed as Important Variants for Leaf Traits of Maize NAM Population. Frontiers in Plant Science, 2018, 9, 627.	1.7	24
36	Genetic and genotype × environment interaction effects from embryo, endosperm, cytoplasm and maternal plant for rice grain shape traits of indica rice. Field Crops Research, 2000, 68, 191-198.	2.3	22

#	Article	IF	CITATIONS
37	Dissection of complicate genetic architecture and breeding perspective of cottonseed traits by genome-wide association study. BMC Genomics, 2018, 19, 451.	1.2	22
38	Mapping epigenetic quantitative trait loci (QTL) altering a developmental trajectory. Genome, 2002, 45, 28-33.	0.9	21
39	Using matrix of thresholding partial correlation coefficients to infer regulatory network. BioSystems, 2008, 91, 158-165.	0.9	21
40	Genome-wide association study of maize plant architecture using F1 populations. Plant Molecular Biology, 2019, 99, 1-15.	2.0	17
41	Gene Polymorphism Association with Type 2 Diabetes and Related Gene-Gene and Gene-Environment Interactions in a Uyghur Population. Medical Science Monitor, 2016, 22, 474-87.	0.5	17
42	Title is missing!. Euphytica, 1999, 109, 9-15.	0.6	13
43	Quantitative genetic analysis station for the genetic analysis of complex traits. Science Bulletin, 2012, 57, 2721-2726.	1.7	13
44	A two-step strategy for detecting differential gene expression in cDNA microarray data. Current Genetics, 2005, 47, 121-131.	0.8	12
45	Statistical approaches in QTL mapping and molecular breeding for complex traits. Science Bulletin, 2012, 57, 2637-2644.	1.7	12
46	Impacts of QTL $\tilde{A}-$ Environment Interactions on Genetic Response to Marker-Assisted Selection. Journal of Genetics and Genomics, 2006, 33, 63-71.	0.3	11
47	A faster pedigree-based generalized multifactor dimensionality reduction method for detecting gene-gene interactions. Statistics and Its Interface, 2011, 4, 295-304.	0.2	11
48	Analysis of genetic effects of major genes and polygenes on quantitative traits. II. Genetic models for seed traits of crops. Theoretical and Applied Genetics, 2002, 105, 964-971.	1.8	10
49	A robust statistical procedure to discover expression biomarkers using microarray genomic expression data. Journal of Zhejiang University: Science B, 2006, 7, 603-607.	1.3	10
50	Full genetic analysis for genome-wide association study of Fangji: a powerful approach for effectively dissecting the molecular architecture of personalized traditional Chinese medicine. Acta Pharmacologica Sinica, 2018, 39, 906-911.	2.8	10
51	Nonparametric Functional Mapping of Quantitative Trait Loci Underlying Programmed Cell Death. Statistical Applications in Genetics and Molecular Biology, 2008, 7, Article4.	0.2	9
52	Genetic effects of embryo and endosperm for four malting quality traits of barley. Euphytica, 1999, 106, 27-34.	0.6	8
53	Genetic control of the opaque-2 gene and background polygenes over some kernel traits in maize (Zea) Tj ETQq1	10,7843	14 rgBT /Ov
54	Improvement of Mapping Accuracy by Unifying Linkage and Association Analysis. Genetics, 2006, 172, 647-661.	1.2	8

#	Article	IF	CITATIONS
55	Dissecting Genetic Network of Fruit Branch Traits in Upland Cotton by Association Mapping Using SSR Markers. PLoS ONE, 2017, 12, e0162815.	1.1	8
56	Functional Mapping of Dynamic Traits with Robust t-Distribution. PLoS ONE, 2011, 6, e24902.	1.1	7
57	Influence of outliers on QTL mapping for complex traits. Journal of Zhejiang University: Science B, 2008, 9, 931-937.	1.3	6
58	Mapping Interspecific Genetic Architecture in a Host–Parasite Interaction System. Genetics, 2008, 178, 1737-1743.	1.2	6
59	Analysis of the $3\hat{a}\in^2$ ends of tRNA as the cause of insertion sites of foreign DNA in Prochlorococcus. Journal of Zhejiang University: Science B, 2010, 11, 708-718.	1.3	6
60	Mapping epistasis and environment×QTX interaction based on four -omics genotypes for the detected QTX loci controlling complex traits in tobacco. Crop Journal, 2013, 1, 151-159.	2.3	6
61	Dissecting genetic architecture of startle response in Drosophila melanogaster using multi-omics information. Scientific Reports, 2017, 7, 12367.	1.6	5
62	MIXED LINEAR MODEL APPROACHES FOR ANALYZING GENETIC MODELS OF COMPLEX QUANTITATIVE TRAITS. Journal of Zhejiang University Science B, 2000, 1, 78.	0.4	5
63	A new approach to dissecting complex traits by combining quantitative trait transcript (QTT) mapping and diallel cross analysis. Science Bulletin, 2012, 57, 2695-2700.	1.7	4
64	Combined Analysis with Copy Number Variation Identifies Risk Loci in Lung Cancer. BioMed Research International, 2014, 2014, 1-9.	0.9	4
65	Large Population with Low Marker Density Verse Small Population with High Marker Density for QTL Mapping: A Case Study for Mapping QTL Controlling Barley Net Blotch Resistance. , 2013, , 301-315.		4
66	Clustering Gene Expression Data Based on Predicted Differential Effects of GV Interaction. Genomics, Proteomics and Bioinformatics, 2005, 3, 36-41.	3.0	3
67	Analysis of Genetic Effects of Nuclear-Cytoplasmic Interaction on Quantitative Traits: Genetic Model for Diploid Plants. Journal of Genetics and Genomics, 2007, 34, 562-568.	1.7	2
68	Identifying differentially expressed genes in human acute leukemia and mouse brain microarray datasets utilizing QTModel. Functional and Integrative Genomics, 2009, 9, 59-66.	1.4	2
69	QTLNetworkR: an interactive R package for QTL visualization. Journal of Zhejiang University: Science B, 2010, 11, 512-515.	1.3	2
70	Simulating superior genotypes for plant height based on QTLs: Towards virtual breeding of rice. , 2012, , .		2
71	Conditional GWAS revealing genetic impacts of lifestyle behaviors on low-density lipoprotein (LDL). Computational Biology and Chemistry, 2019, 78, 497-503.	1.1	2
72	Conditional and unconditional genome-wide association study reveal complicate genetic architecture of human body weight and impacts of smoking. Scientific Reports, 2020, 10, 12136.	1.6	2

#	Article	IF	CITATIONS
73	3D graphical visualization of the genetic architectures underlying complex traits in multiple environments. Journal of Zhejiang University: Science A, 2007, 8, 563-567.	1.3	1
74	Analysis of genetic effects of nuclear–cytoplasmic interaction on quantitative traits: Genetic models for seed traits of plants. Theoretical and Applied Genetics, 2008, 116, 769-776.	1.8	1
75	Advanced Topics in Biomathematics. , 1998, , .		1
76	Penalized Independence Rule for Testing High-Dimensional Hypotheses. Communications in Statistics - Theory and Methods, 2011, 40, 2424-2435.	0.6	0
77	Dissecting anxiety-related QTLs in mice by univariate and multivariate mapping. Science Bulletin, 2012, 57, 2727-2732.	1.7	O
78	Subsampling Technique to Estimate Variance Component for UK-Biobank Traits. Frontiers in Genetics, 2021, 12, 612045.	1.1	0
79	Genome-wide conditional association study reveals the influences of lifestyle cofactors on genetic regulation of body surface area in MESA population. PLoS ONE, 2021, 16, e0253167.	1.1	0