List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6467502/publications.pdf Version: 2024-02-01

		117625	189892
129	3,364	34	50
papers	citations	h-index	g-index
132	132	132	1878
all docs	docs citations	times ranked	citing authors

ΔΟΛΤΑ ΜΙΟΗΛΙΟΚΑ

#	Article	IF	CITATIONS
1	An Electrochemical Approach to Quantification of Volatile Organic Solvents Dispersed in Solution – Towards Bipolar Electrode Sensors. Electroanalysis, 2022, 34, 25-32.	2.9	5
2	Solidâ€Contact Ionâ€Selective Electrodes Paving the Way for Improved Nonâ€Zero Current Sensors: A Minireview. ChemElectroChem, 2022, 9, .	3.4	10
3	Polythiophene based fluorimetric insight into minute styrene concentration in solution and gas phase. Optical Materials, 2022, 123, 111848.	3.6	1
4	3D-Drawn Supports for Ion-Selective Electrodes. Analytical Chemistry, 2022, 94, 3436-3440.	6.5	5
5	Bypassed ion-selective electrodes – self-powered polarization for tailoring of sensor performance. Analyst, The, 2022, 147, 2764-2772.	3.5	1
6	Induced ion-pair formation/ de-aggregation of rhodamine B octadecyl ester for anion optical sensing: Towards ibuprofen selective optical sensors. Talanta, 2021, 227, 122147.	5.5	9
7	Emission Intensity Readout of Ion-Selective Electrodes Operating under an Electrochemical Trigger. Analytical Chemistry, 2021, 93, 10084-10089.	6.5	13
8	Fluorimetric readout of ion selective electrode signals operating under chronopotentiometric conditions. ChemElectroChem, 2021, 8, 4129.	3.4	2
9	Cubosome Based Ion-Selective Optodes–Toward Tunable Biocompatible Sensors. Analytical Chemistry, 2021, 93, 13106-13111.	6.5	10
10	Polypyrrole nanoparticles of high electroactivity. Simple synthesis methods and studies on electrochemical properties. Electrochimica Acta, 2021, 390, 138787.	5.2	8
11	Dual Sensitivity─Potentiometric and Fluorimetric─Ion-Selective Membranes. Analytical Chemistry, 2021, 93, 14737-14742.	6.5	2
12	Implementation of a Chlorideâ€selective Electrode Into a Closed Bipolar Electrode System with Fluorimetric Readout. Electroanalysis, 2020, 32, 812-819.	2.9	9
13	lon-selective reversing aggregation-caused quenching - Maximizing optodes signal stability. Talanta, 2020, 220, 121358.	5.5	13
14	Unintended Changes of Ion-Selective Membranes Composition—Origin and Effect on Analytical Performance. Membranes, 2020, 10, 266.	3.0	20
15	A potentiometric sensor based on modified electrospun PVDF nanofibers – towards 2D ion-selective membranes. Analyst, The, 2020, 145, 5594-5602.	3.5	9
16	Turn-on fluorimetric sensor for water dispersed volatile organic compounds - A nanosponge approach. Sensors and Actuators B: Chemical, 2020, 311, 127904.	7.8	11
17	Polymeric nanofiber-based ion-selective sensors. Current Opinion in Electrochemistry, 2020, 23, 74-79.	4.8	3
18	pH Switchable Electrochemical and Optical Properties of Polyoctylthiophene – Pyrene Composites. Electroanalysis, 2020, 32, 842-850.	2.9	4

#	Article	IF	CITATIONS
19	Quantifying plasticizer leakage from ion-selective membranes – a nanosponge approach. Analyst, The, 2020, 145, 2966-2974.	3.5	30
20	Tailoring polythiophene cation-selective optodes for wide pH range sensing. Talanta, 2020, 211, 120663.	5.5	17
21	Si-corrole-based fluoride fluorometric turn-on sensor. Journal of Porphyrins and Phthalocyanines, 2020, 24, 929-937.	0.8	8
22	Insights into Primary Ion Exchange between Ion-Selective Membranes and Solution. From Altering Natural Isotope Ratios to Isotope Dilution Inductively Coupled Plasma Mass Spectrometry Studies. ACS Sensors, 2020, 5, 3930-3938.	7.8	3
23	Polypyrrole – Gold nanocomposites. Templateless synthesis and electrochemical properties. Electrochimica Acta, 2019, 320, 134585.	5.2	10
24	Voltammetric Properties of Allâ€solid State Ionâ€selective Electrodes with Multiwalled Carbon Nanotubesâ€poly(3â€octylthiopheneâ€2,5â€diyl) Nanocomposite Transducer. Electroanalysis, 2019, 31, 2379-2.	386. ⁹	11
25	Rational design of nanoptodes architecture – Towards multifunctional sensors. Talanta, 2019, 196, 226-230.	5.5	11
26	Ultrasmall self-assembly poly(N-isopropylacrylamide-butyl acrylate) (polyNIPAM-BA) thermoresponsive nanoparticles. Journal of Colloid and Interface Science, 2019, 542, 317-324.	9.4	14
27	Electrospun nanofiber supported optodes: scaling down the receptor layer thickness to nanometers $\hat{a} \in $ towards 2D optodes. Analyst, The, 2019, 144, 4667-4676.	3.5	16
28	Multiwalled Carbon Nanotubes–Poly(3-octylthiophene-2,5-diyl) Nanocomposite Transducer for Ion-Selective Electrodes: Raman Spectroscopy Insight into the Transducer/Membrane Interface. Analytical Chemistry, 2019, 91, 9010-9017.	6.5	43
29	Electrolyte gated transistors modified by polypyrrole nanoparticles. Electrochimica Acta, 2019, 309, 65-73.	5.2	8
30	Self-Powered Cascade Bipolar Electrodes with Fluorimetric Readout. Analytical Chemistry, 2019, 91, 15525-15531.	6.5	15
31	Advantages of Amperometric Readout Mode of Ionâ€selective Electrodes under Potentiostatic Conditions. Electroanalysis, 2019, 31, 343-349.	2.9	17
32	Using Lipophilic Membrane for Enhancedâ€Performance Aqueous Gated Carbon Nanotube Field Effect Transistors. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700993.	1.8	4
33	Fate of Poly(3-octylthiophene) Transducer in Solid Contact Ion-Selective Electrodes. Analytical Chemistry, 2018, 90, 2625-2630.	6.5	36
34	Electrochemical Properties of Polypyrrole Nanoparticles – The Role of Doping Ions and Synthesis Medium. Electroanalysis, 2018, 30, 716-726.	2.9	16
35	Improving Fluorometric Determination of Water Content in Aprotic Solvents. Food Analytical Methods, 2018, 11, 486-494.	2.6	2
36	Rectifying effect for ion-selective electrodes with conducting polymer solid contact. Synthetic Metals, 2018, 246, 246-253.	3.9	15

#	Article	IF	CITATIONS
37	All-solid-state paper based potentiometric potassium sensors containing cobalt(II) porphyrin/cobalt(III) corrole in the transducer layer. Sensors and Actuators B: Chemical, 2018, 277, 306-311.	7.8	25
38	Capsules as ion-selective optodes – Maximizing sensitivity of ion-selective optodes. Sensors and Actuators B: Chemical, 2018, 273, 1730-1734.	7.8	9
39	Ambient Processed, Water-Stable, Aqueous-Gated sub 1 V n-type Carbon Nanotube Field Effect Transistor. Scientific Reports, 2018, 8, 11386.	3.3	13
40	Fluorimetric readout of ion-selective electrode potential changes. Electrochimica Acta, 2018, 284, 321-327.	5.2	20
41	Critical assessment of polymeric nanostructures used as colorimetric ions probes. Materials Science and Engineering C, 2018, 92, 69-76.	7.3	3
42	Introducing Cobalt(II) Porphyrin/Cobalt(III) Corrole Containing Transducers for Improved Potential Reproducibility and Performance of All-Solid-State Ion-Selective Electrodes. Analytical Chemistry, 2017, 89, 7107-7114.	6.5	52
43	Polypyrrole Nanoparticles Based Disposable Potentiometric Sensors. Electroanalysis, 2017, 29, 2766-2772.	2.9	19
44	Core-shell nanoparticles optical sensors - Rational design of zinc ions fluorescent nanoprobes of improved analytical performance. Optical Materials, 2017, 72, 214-219.	3.6	3
45	Fluorescent Polypyrrole Nanospheres – Synthesis and Properties of "Wireless―Redox Probes. Electroanalysis, 2017, 29, 2167-2176.	2.9	2
46	Analytical advantages of copolymeric microspheres for fluorimetric sensing – tuneable sensitivity sensors and titration agents. Talanta, 2017, 163, 17-23.	5.5	5
47	Polypyrrole Nanospheres – Electrochemical Properties and Application as a Solid Contact in Ionâ€selective Electrodes. Electroanalysis, 2017, 29, 123-130.	2.9	19
48	Poly(3-octylthiophene) nanoparticles for turn-on fluorescent sensor. Sensors and Actuators B: Chemical, 2017, 238, 160-165.	7.8	7
49	Optimizing Carbon Nanotubes Dispersing Agents from the Point of View of Ionâ€selective Membrane Based Sensors Performance – Introducing Carboxymethylcellulose as Dispersing Agent for Carbon Nanotubes Based Solid Contacts. Electroanalysis, 2016, 28, 947-953.	2.9	16
50	Nanoparticles of Fluorescent Conjugated Polymers: Novel Ion-Selective Optodes. Analytical Chemistry, 2016, 88, 5644-5648.	6.5	58
51	Copolymeric hexyl acrylate-methacrylic acid microspheres – surface vs. bulk reactive carboxyl groups. Coulometric and colorimetric determination and analytical applications for heterogeneous microtitration. Talanta, 2016, 159, 248-254.	5.5	6
52	Optimization of capacitance of conducting polymer solid contact in ion-selective electrodes. Electrochimica Acta, 2016, 187, 397-405.	5.2	39
53	Bilayer membranes for ion-selective electrodes. Journal of Electroanalytical Chemistry, 2016, 766, 128-134.	3.8	14
54	Electrochemical Properties of Polypyrrole Doped by Alternating Polymer Micelles. Electroanalysis, 2015, 27, 752-759.	2.9	2

#	Article	IF	CITATIONS
55	Carbon Nanotubes-Based Potentiometric Bio-Sensors for Determination of Urea. Chemosensors, 2015, 3, 200-210.	3.6	8
56	Optimizing calcium selective fluorimetric nanospheres. Talanta, 2015, 144, 398-403.	5.5	17
57	Improving the Upper Detection Limit of Potentiometric Sensors. Electroanalysis, 2015, 27, 720-726.	2.9	8
58	Synthesis of conducting polymer nanospheres of high electrochemical activity. Chemical Communications, 2015, 51, 12645-12648.	4.1	15
59	Potentiometric layered membranes. Sensors and Actuators B: Chemical, 2015, 207, 995-1003.	7.8	9
60	Flexible Electrolyte-Gated Ion-Selective Sensors Based on Carbon Nanotube Networks. IEEE Sensors Journal, 2015, 15, 3127-3134.	4.7	31
61	Ultrasensitive 4-methylumbelliferone fluorimetric determination of water contents in aprotic solvents. Talanta, 2015, 132, 392-397.	5.5	9
62	Alternating polymer micelle nanospheres for optical sensing. Analyst, The, 2014, 139, 2515.	3.5	35
63	Spray-coated all-solid-state potentiometric sensors. Analyst, The, 2014, 139, 6010-6015.	3.5	23
64	Polyacrylate Microspheres for Tunable Fluorimetric Zinc Ions Sensor. Analytical Chemistry, 2014, 86, 411-418.	6.5	48
65	A simple currentless method of determination of ion fluxes to and within electroactive ion-exchange membranes. Journal of Solid State Electrochemistry, 2014, 18, 2131-2138.	2.5	0
66	Polymeric ion-selective membrane functionalized gate-electrodes: Ion-selective response of electrolyte-gated poly (3-hexylthiophene) field-effect transistors. Organic Electronics, 2014, 15, 595-601.	2.6	30
67	Dithizone Modified Gold Nanoparticles Films as Solid Contact for Cu ²⁺ Ionâ€Selective Electrodes. Electroanalysis, 2013, 25, 141-146.	2.9	22
68	Reference Electrodes for Aqueous Solutions. , 2013, , 77-143.		15
69	Simple and disposable potentiometric sensors based on graphene or multi-walled carbon nanotubes – carbon–plastic potentiometric sensors. Analyst, The, 2013, 138, 2363.	3.5	46
70	Dithizone Modified Gold Nanoparticles Films for Potentiometric Sensing. Analytical Chemistry, 2012, 84, 4437-4442.	6.5	33
71	Microspheres aided introduction of ionophore and ion-exchanger to the ion-selective membrane. Talanta, 2012, 88, 66-72.	5.5	8
72	Critical assessment of graphene as ion-to-electron transducer for all-solid-state potentiometric sensors. Talanta, 2012, 97, 414-419.	5.5	36

#	Article	IF	CITATIONS
73	Non-covalently functionalized graphene for the potentiometric sensing of zinc ions. Analyst, The, 2012, 137, 1895.	3.5	21
74	Allâ€Solidâ€State Ion Selective and Allâ€Solidâ€State Reference Electrodes. Electroanalysis, 2012, 24, 1253-126	5.2.9	155
75	Estimation of primary silver ions contents in poly(vinyl chloride) ion-selective membranes using chronopotentiometry and mass spectrometry. Electrochimica Acta, 2012, 73, 86-92.	5.2	3
76	Photopolymerized Polypyrrole Microvessels. Chemistry - A European Journal, 2012, 18, 310-320.	3.3	30
77	Polypyrrole Microcapsules in Allâ€solidâ€state Reference Electrodes. Electroanalysis, 2012, 24, 165-172.	2.9	21
78	Electrochemical evidences and consequences of significant differences in ions diffusion rate in polyacrylate-based ion-selective membranes. Analyst, The, 2011, 136, 4787.	3.5	11
79	Lowering the Resistivity of Polyacrylate Ion-Selective Membranes by Platinum Nanoparticles Addition. Analytical Chemistry, 2011, 83, 438-445.	6.5	59
80	Potentiometric responses of ion-selective electrodes after galvanostatically controlled incorporation of primary ions. Talanta, 2011, 84, 814-819.	5.5	18
81	Gold nanoparticles solid contact for ion-selective electrodes of highly stable potential readings. Talanta, 2011, 85, 1986-1989.	5.5	83
82	Optimizing incorporation of nickel(II)–cyclam complex in poly(3,4-ethylenedioxythiophene) films for catalytic purposes. Journal of Solid State Electrochemistry, 2011, 15, 2369-2376.	2.5	1
83	Solid-state reference electrodes based on carbon nanotubes and polyacrylate membranes. Analytical and Bioanalytical Chemistry, 2011, 399, 3613-3622.	3.7	60
84	Dual potentiometric and UV/Vis spectrophotometric disposable sensors with dispersion cast polyaniline. Journal of Solid State Electrochemistry, 2010, 14, 2027-2037.	2.5	10
85	Polypyrrole microcapsules as a transducer for ion-selective electrodes. Electrochemistry Communications, 2010, 12, 1568-1571.	4.7	35
86	Comparison of trihexadecylalkylammonium iodides as ion-exchangers for polyacrylate and poly(vinyl) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
87	Experimental study on stability of different solid contact arrangements of ion-selective electrodes. Talanta, 2010, 82, 151-157.	5.5	41
88	Polyacrylate microspheres composite for all-solid-state reference electrodes. Analyst, The, 2010, 135, 2420.	3.5	19
89	Quantifying Primary Silver Ions Contents in Poly(vinyl chloride) and Poly(<i>n</i> â€butyl acrylate) Ion‣elective Membranes. Electroanalysis, 2009, 21, 1931-1938.	2.9	20

⁹⁰Inducing Sensitivity to Heavy Metal Ions in Polypyrrole Modified by Azamacrocyclic Ligands.2.9290Electroanalysis, 2009, 21, 2044-2053.2.92

#	Article	IF	CITATIONS
91	Silver and lead all-plastic sensors—polyaniline vs. poly(3,4-ethyledioxythiophene) solid contact. Journal of Solid State Electrochemistry, 2009, 13, 99-106.	2.5	34
92	Poly(n-butyl acrylate) based lead (II) selective electrodes. Talanta, 2009, 79, 1247-1251.	5.5	24
93	Allâ€Solidâ€State Reference Electrodes with Poly(<i>n</i> â€butyl acrylate) Based Membranes. Electroanalysis, 2008, 20, 318-323.	2.9	46
94	Composite Polyacrylateâ^'Poly(3,4- ethylenedioxythiophene) Membranes for Improved All-Solid-State Ion-Selective Sensors. Analytical Chemistry, 2008, 80, 321-327.	6.5	37
95	Method of Achieving Desired Potentiometric Responses of Polyacrylate-Based Ion-Selective Membranes. Analytical Chemistry, 2008, 80, 3921-3924.	6.5	40
96	Chloride-Selective Electrodes with Poly(n-butyl acrylate) Based Membranes. Electroanalysis, 2007, 19, 393-397.	2.9	13
97	Plastic reference electrodes and plastic potentiometric cells with dispersion cast poly(3,4-ethylenedioxythiophene) and poly(vinyl chloride) based membranes. Bioelectrochemistry, 2007, 71, 75-80.	4.6	45
98	Laser Ablation Inductively Coupled Plasma Mass Spectrometry Assisted Insight into Ion-Selective Membranes. Analytical Chemistry, 2006, 78, 5584-5589.	6.5	42
99	Accumulation of Cu(II) cations in poly(3,4-ethylenedioxythiophene) films doped by hexacyanoferrate anions and its application in Cu2+-selective electrodes with PVC based membranes. Electrochimica Acta, 2006, 51, 2298-2305.	5.2	50
100	Effect of interferents present in the internal solution or in the conducting polymer transducer on the responses of ion-selective electrodes. Analytical and Bioanalytical Chemistry, 2006, 385, 203-207.	3.7	16
101	Tailoring Solution Cast Poly(3,4-dioctyloxythiophene) Transducers for Potentiometric All-Solid-State Ion-Selective Electrodes. Electroanalysis, 2006, 18, 763-771.	2.9	35
102	Galvanostatic Polarization of All-Solid-State K+-Selective Electrodes with Polypyrrole Ion-to-Electron Transducer. Electroanalysis, 2006, 18, 1339-1346.	2.9	24
103	The influence of spontaneous charging/discharging of conducting polymer ion-to-electron transducer on potentiometric responses of all-solid-state calcium-selective electrodes. Journal of Electroanalytical Chemistry, 2005, 576, 339-352.	3.8	36
104	Highly Selective All-Plastic, Disposable, Cu2+-Selective Electrodes. Electroanalysis, 2005, 17, 327-333.	2.9	36
105	Improvement of Analytical Characteristic of Calcium Selective Electrode with Conducting Polymer Contact. The Role of Conducting Polymer Spontaneous Charge Transfer Processes and Their Galvanostatic Compensation. Electroanalysis, 2005, 17, 400-407.	2.9	53
106	Sensitivity and Selectivity of Polypyrrole Based AC-Amperometric Sensors for Electroinactive Ions - Frequency and Applied Potential Influence. Electroanalysis, 2005, 17, 1269-1278.	2.9	9
107	Optimizing the analytical performance and construction of ion-selective electrodes with conducting polymer-based ion-to-electron transducers. Analytical and Bioanalytical Chemistry, 2005, 384, 391-406.	3.7	90
108	All-solid-state reference electrodes based on conducting polymers. Analyst, The, 2005, 130, 1655.	3.5	80

#	Article	IF	CITATIONS
109	PEDOT films: multifunctional membranes for electrochemical ion sensing. Journal of Solid State Electrochemistry, 2004, 8, 381-389.	2.5	59
110	All-plastic, disposable, low detection limit ion-selective electrodes. Analytica Chimica Acta, 2004, 523, 97-105.	5.4	85
111	Factors Affecting the Potentiometric Response of All-Solid-State Solvent Polymeric Membrane Calcium-Selective Electrode for Low-Level Measurements. Analytical Chemistry, 2004, 76, 6410-6418.	6.5	78
112	Conducting polymer membranes for low activity potentiometric ion sensing. Talanta, 2004, 63, 109-117.	5.5	35
113	Counter-Ion Influence on Polypyrrole Potentiometric pH Sensitivity. Mikrochimica Acta, 2003, 143, 163-175.	5.0	34
114	Amperometric Ion Sensing Using Polypyrrole Membranes. Electroanalysis, 2003, 15, 509-517.	2.9	15
115	Lowering the Detection Limit of Ion-Selective Plastic Membrane Electrodes with Conducting Polymer Solid Contact and Conducting Polymer Potentiometric Sensors. Analytical Chemistry, 2003, 75, 4964-4974.	6.5	103
116	All-Solid-State Calcium Solvent Polymeric Membrane Electrode for Low-Level Concentration Measurements. Analytical Chemistry, 2003, 75, 141-144.	6.5	67
117	Potentiometric Responses of Poly(pyrrole) Films Surface Modified by Nafion. Electroanalysis, 2002, 14, 1236-1244.	2.9	11
118	The modelled and observed transition from redox to ionic potentiometric sensitivity of poly(pyrrole). Electrochimica Acta, 2001, 46, 4113-4123.	5.2	17
119	Potentiometric selectivity of p-doped polymer films. Analytica Chimica Acta, 2000, 406, 159-169.	5.4	42
120	The specific influence of hydrogen ions on poly(pyrrole) potentiometry. Electrochimica Acta, 1999, 44, 2125-2129.	5.2	11
121	On the pH Influence on Electrochemical Properties of Poly(pyrrole) and Poly(N-methylpyrrole). Electroanalysis, 1998, 10, 177-180.	2.9	21
122	Modeling Potentiometric Sensitivity of Conducting Polymers. Analytical Chemistry, 1997, 69, 4060-4064.	6.5	60
123	All-solid-state chloride-selective electrode with poly(pyrrole) solid contact. Electroanalysis, 1995, 7, 692-693.	2.9	56
124	On the nature of the potentiometric response of polypyrrole in acidic solutions. Journal of Electroanalytical Chemistry, 1995, 392, 63-68.	3.8	30
125	Observed redox interferences of poly(pyrrole)-based perchlorate-selective electrodes. Electroanalysis, 1994, 6, 604-605.	2.9	30
126	All solid-state hydrogen ion-selective electrode based on a conducting poly(pyrrole) solid contact. Analyst, The, 1994, 119, 2417.	3.5	102

#	Article	IF	CITATIONS
127	Bifunctionality of chemical sensors based on the conducting polymer polypyrrole. Talanta, 1994, 41, 323-325.	5.5	41
128	Study of polypyrrole film as redox electrode. Electroanalysis, 1993, 5, 261-263.	2.9	41
129	lon-selective membrane plasticizer leakage in all-solid-state electrodes – an unobvious way to improve potential readings stability in time. Analyst, The, 0, , .	3.5	1