Zhijing Qin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/646662/publications.pdf

Version: 2024-02-01

80 papers

5,884 citations

147801 31 h-index 197818 49 g-index

84 all docs 84 docs citations

times ranked

84

4480 citing authors

#	Article	IF	CITATIONS
1	Toward Wisdom-Evolutionary and Primitive-Concise 6G: A New Paradigm of Semantic Communication Networks. Engineering, 2022, 8, 60-73.	6.7	77
2	Task-Oriented Multi-User Semantic Communications for VQA. IEEE Wireless Communications Letters, 2022, 11, 553-557.	5.0	55
3	Reconfigurable Intelligent Surface Aided Cellular Networks With Device-to-Device Users. IEEE Transactions on Communications, 2022, 70, 1808-1819.	7.8	12
4	Series Editorial The Fourth Issue of the Series on Machine Learning in Communications and Networks. IEEE Journal on Selected Areas in Communications, 2022, 40, 1-4.	14.0	0
5	Resource Allocation for Text Semantic Communications. IEEE Wireless Communications Letters, 2022, 11, 1394-1398.	5.0	31
6	Compressive Sensing in Massive MIMO Array Testing: A Practical Guide. IEEE Transactions on Antennas and Propagation, 2022, 70, 7978-7988.	5.1	3
7	Task-Oriented Image Transmission for Scene Classification in Unmanned Aerial Systems. IEEE Transactions on Communications, 2022, 70, 5181-5192.	7.8	28
8	Task-Oriented Multi-User Semantic Communications. IEEE Journal on Selected Areas in Communications, 2022, 40, 2584-2597.	14.0	46
9	Federated Generative Adversarial Networks based Channel Estimation. , 2022, , .		6
10	Federated Learning Enabled Channel Estimation for RIS-Aided Multi-User Wireless Systems., 2022,,.		2
11	The Fifth Issue of the Series on Machine Learning in Communications and Networks. IEEE Journal on Selected Areas in Communications, 2022, 40, 2251-2253.	14.0	O
12	LEDGE: Leveraging Edge Computing for Resilient Access Management of Mobile IoT. IEEE Transactions on Mobile Computing, 2021, 20, 1110-1125.	5.8	28
13	Energy Efficiency Maximization in NOMA Enabled Backscatter Communications With QoS Guarantee. IEEE Wireless Communications Letters, 2021, 10, 353-357.	5.0	59
14	Power Optimization in Device-to-Device Communications: A Deep Reinforcement Learning Approach With Dynamic Reward. IEEE Wireless Communications Letters, 2021, 10, 508-511.	5.0	22
15	Intelligent Reflecting Surface Aided Multiple Access Over Fading Channels. IEEE Transactions on Communications, 2021, 69, 2015-2027.	7.8	48
16	Series Editorial: Inauguration Issue of the Series on Machine Learning in Communications and Networks. IEEE Journal on Selected Areas in Communications, 2021, 39, 1-3.	14.0	3
17	Deep Learning Enabled Semantic Communication Systems. IEEE Transactions on Signal Processing, 2021, 69, 2663-2675.	5. 3	296
18	A Lite Distributed Semantic Communication System for Internet of Things. IEEE Journal on Selected Areas in Communications, 2021, 39, 142-153.	14.0	152

#	Article	IF	CITATIONS
19	Federated Learning and Wireless Communications. IEEE Wireless Communications, 2021, 28, 134-140.	9.0	37
20	Semi-Grant-Free NOMA: Ergodic Rates Analysis With Random Deployed Users. IEEE Wireless Communications Letters, 2021, 10, 692-695.	5.0	18
21	Joint User Activity and Data Detection in Grant-Free NOMA using Generative Neural Networks. , 2021, , .		3
22	Semantic Communications for Speech Signals. , 2021, , .		24
23	Deep Neural Network-Based Robust Spectrum Sensing: Exploiting Phase Difference Distribution. , 2021, ,		4
24	User Fairness in Energy Harvesting-Based LoRa Networks With Imperfect SF Orthogonality. IEEE Transactions on Communications, 2021, 69, 4319-4334.	7.8	8
25	Series Editorial: The Second Issue of the Series on Machine Learning in Communications and Networks. IEEE Journal on Selected Areas in Communications, 2021, 39, 1855-1857.	14.0	1
26	Semantic Communication Systems for Speech Transmission. IEEE Journal on Selected Areas in Communications, 2021, 39, 2434-2444.	14.0	158
27	Series Editorial: The Third Issue of the Series on Machine Learning in Communications and Networks. IEEE Journal on Selected Areas in Communications, 2021, 39, 2267-2270.	14.0	0
28	Resource Allocation in Uplink NOMA-IoT Networks: A Reinforcement-Learning Approach. IEEE Transactions on Wireless Communications, 2021, 20, 5083-5098.	9.2	47
29	Non-Orthogonal Multiple Access for Massive Connectivity. SpringerBriefs in Computer Science, 2020, ,	0.2	18
30	20 Years of Evolution From Cognitive to Intelligent Communications. IEEE Transactions on Cognitive Communications and Networking, 2020, 6, 6-20.	7.9	73
31	Anti-Intelligent UAV Jamming Strategy via Deep Q-Networks. IEEE Transactions on Communications, 2020, 68, 569-581.	7.8	43
32	Reinforcement Learning for User Clustering in NOMA-Enabled Uplink IoT., 2020,,.		7
33	Deep Learning and Compressive Sensing-Based CSI Feedback in FDD Massive MIMO Systems. IEEE Transactions on Vehicular Technology, 2020, 69, 9217-9222.	6.3	54
34	The Application of Intelligent Reflecting Surface in Downlink NOMA Systems. , 2020, , .		9
35	Resource Allocation in Intelligent Reflecting Surface Assisted NOMA Systems. IEEE Transactions on Communications, 2020, 68, 7170-7183.	7.8	149
36	Coverage Analysis of mmWave Networks With Cooperative NOMA Systems. IEEE Communications Letters, 2020, 24, 1544-1547.	4.1	4

#	Article	IF	Citations
37	Artificial Intelligence (AI) Enabled NOMA. SpringerBriefs in Computer Science, 2020, , 89-94.	0.2	O
38	Sustainability of NOMA. SpringerBriefs in Computer Science, 2020, , 45-65.	0.2	0
39	Energy Efficient Uplink Transmissions in LoRa Networks. IEEE Transactions on Communications, 2020, 68, 4960-4972.	7.8	27
40	Downlink Analysis for Reconfigurable Intelligent Surfaces Aided NOMA Networks., 2020,,.		17
41	Intelligent Reflecting Surface Assisted NOMA Over Fading Channels. , 2020, , .		1
42	Reconfigurable Intelligent Surface Enhanced Device-to-Device Communications. , 2020, , .		13
43	Capacity Analysis of Asymmetric Multi-Antenna Relay Systems Using Free Probability Theory. , 2019, , .		1
44	Performance Analysis of Clustered LoRa Networks. IEEE Transactions on Vehicular Technology, 2019, 68, 7616-7629.	6.3	22
45	Minimum Throughput Maximization in LoRa Networks Powered by Ambient Energy Harvesting. , 2019, , .		14
46	Resource Allocation in Wireless Powered IoT Networks. IEEE Internet of Things Journal, 2019, 6, 4935-4945.	8.7	47
47	Low-Power Wide-Area Networks for Sustainable IoT. IEEE Wireless Communications, 2019, 26, 140-145.	9.0	51
48	Pilot Contamination Attack Detection and Defense Strategy in Wireless Communications. IEEE Signal Processing Letters, 2019, 26, 938-942.	3.6	5
49	Multiple Access for Mobile-UAV Enabled Networks: Joint Trajectory Design and Resource Allocation. IEEE Transactions on Communications, 2019, 67, 4980-4994.	7.8	71
50	Deep Learning in Physical Layer Communications. IEEE Wireless Communications, 2019, 26, 93-99.	9.0	399
51	Rethinking Outage Constraints for Resource Management in NOMA Networks. IEEE Journal on Selected Topics in Signal Processing, 2019, 13, 423-435.	10.8	13
52	UAV Communications Based on Non-Orthogonal Multiple Access. IEEE Wireless Communications, 2019, 26, 52-57.	9.0	198
53	Subchannel Assignment and Power Allocation for NOMA in Spatial Modulation Systems. , 2019, , .		0
54	Resource Allocation for NOMA Networks under Alternative Outage Constraints. , 2019, , .		1

#	Article	IF	Citations
55	Joint Offloading and Trajectory Design for UAV-Enabled Mobile Edge Computing Systems. IEEE Internet of Things Journal, 2019, 6, 1879-1892.	8.7	308
56	Sparse Representation in Wireless Networks. Springer Briefs in Electrical and Computer Engineering, 2019, , 9-20.	0.5	0
57	Malicious User Detection Based on Low-Rank Matrix Completion in Wideband Spectrum Sensing. IEEE Transactions on Signal Processing, 2018, 66, 5-17.	5.3	25
58	Sparse Representation for Wireless Communications: A Compressive Sensing Approach. IEEE Signal Processing Magazine, 2018, 35, 40-58.	5.6	169
59	Modulation and Multiple Access for 5G Networks. IEEE Communications Surveys and Tutorials, 2018, 20, 629-646.	39.4	348
60	Energy Efficient Resource Allocation for Uplink LoRa Networks. , 2018, , .		11
61	Joint Trajectory Design and Power Allocation for UAV-Enabled Non-Orthogonal Multiple Access Systems. , 2018, , .		10
62	Outage Performance of a Unified Non-Orthogonal Multiple Access Framework. , 2018, , .		6
63	A Unified Framework for Non-Orthogonal Multiple Access. IEEE Transactions on Communications, 2018, 66, 5346-5359.	7.8	87
64	Modeling and Analysis of Data Aggregation From Convergecast in Mobile Sensor Networks for Industrial IoT. IEEE Transactions on Industrial Informatics, 2018, 14, 4457-4467.	11.3	35
65	User Association and Resource Allocation in Unified NOMA Enabled Heterogeneous Ultra Dense Networks. , 2018, 56, 86-92.		91
66	Enhancing the Physical Layer Security of Non-Orthogonal Multiple Access in Large-Scale Networks. IEEE Transactions on Wireless Communications, 2017, 16, 1656-1672.	9.2	485
67	Non-Orthogonal Multiple Access in Large-Scale Heterogeneous Networks. IEEE Journal on Selected Areas in Communications, 2017, 35, 2667-2680.	14.0	176
68	Wireless Powered Cognitive Radio Networks With Compressive Sensing and Matrix Completion. IEEE Transactions on Communications, 2017, 65, 1464-1476.	7.8	40
69	Nonorthogonal Multiple Access for 5G and Beyond. Proceedings of the IEEE, 2017, 105, 2347-2381.	21.3	961
70	Resource Efficiency in Low-Power Wide-Area Networks for IoT Applications. , 2017, , .		42
71	Modelling and analysis of low-power wide-area networks. , 2017, , .		18
72	Scalable and Reliable IoT Enabled by Dynamic Spectrum Management for M2M in LTE-A. IEEE Internet of Things Journal, 2016, 3, 1135-1145.	8.7	68

ZHIJING QIN

#	Article	IF	CITATION
73	Data-Assisted Low Complexity Compressive Spectrum Sensing on Real-Time Signals Under Sub-Nyquist Rate. IEEE Transactions on Wireless Communications, 2016, 15, 1174-1185.	9.2	90
74	Wideband Spectrum Sensing on Real-Time Signals at Sub-Nyquist Sampling Rates in Single and Cooperative Multiple Nodes. IEEE Transactions on Signal Processing, 2016, 64, 3106-3117.	5.3	145
75	Compressive spectrum sensing augmented by geo-location database. , 2015, , .		9
76	UbiFlow: Mobility management in urban-scale software defined IoT., 2015,,.		87
77	Efficient compressive spectrum sensing algorithm for M2M devices. , 2014, , .		17
78	A Software Defined Networking architecture for the Internet-of-Things. , 2014, , .		240
79	Low-rank matrix completion based malicious user detection in cooperative spectrum sensing. , 2013, , .		6
80	Smart communications via a tree-based overlay over multiple and heterogeneous (TOMH) spontaneous networks. , 2013, , .		4