
Joachim Herz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6466156/publications.pdf Version: 2024-02-01

LOACHIM HEDZ

#	Article	IF	CITATIONS
1	Wnt5a Promotes Lysosomal Cholesterol Egress and Protects Against Atherosclerosis. Circulation Research, 2022, 130, 184-199.	4.5	12
2	Interplay of Low-Density Lipoprotein Receptors, LRPs, and Lipoproteins inÂPulmonary Hypertension. JACC Basic To Translational Science, 2022, 7, 164-180.	4.1	23
3	Reelin signaling modulates GABA B receptor function in the neocortex. Journal of Neurochemistry, 2021, 156, 589-603.	3.9	12
4	Endothelial LRP1 protects against neurodegeneration by blocking cyclophilin A. Journal of Experimental Medicine, 2021, 218, .	8.5	59
5	CD11c ⁺ CD88 ⁺ CD317 ⁺ myeloid cells are critical mediators of persistent CNS autoimmunity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	11
6	Reelin Depletion Protects Against Atherosclerosis by Decreasing Vascular Adhesion of Leukocytes. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1309-1318.	2.4	14
7	Reelin regulates neuronal excitability through STriatal Enriched Protein Tyrosine phosphatase (STEP61) and Calcium Permeable AMPARs in an NMDAR-dependent manner. Journal of Neuroscience, 2021, 41, JN-RM-0388-21.	3.6	4
8	Apolipoprotein E receptor 2 deficiency decreases endothelial adhesion of monocytes and protects against autoimmune encephalomyelitis. Science Immunology, 2021, 6, .	11.9	8
9	Reelin changes hippocampal learning in aging and Alzheimer's disease. Behavioural Brain Research, 2021, 414, 113482.	2.2	11
10	Serum amyloid A delivers retinol to intestinal myeloid cells to promote adaptive immunity. Science, 2021, 373, eabf9232.	12.6	45
11	Protein Phosphatase 2A Activation Via ApoER2 in Trophoblasts Drives Preeclampsia in a Mouse Model of the Antiphospholipid Syndrome. Circulation Research, 2021, 129, 735-750.	4.5	10
12	Reelin restricts dendritic growth of interneurons in the neocortex. Development (Cambridge), 2021, 148, .	2.5	7
13	NHE6 depletion corrects ApoE4-mediated synaptic impairments and reduces amyloid plaque load. ELife, 2021, 10, .	6.0	12
14	Selective Inactivation of Reelin in Inhibitory Interneurons Leads to Subtle Changes in the Dentate Gyrus But Leaves Cortical Layering and Behavior Unaffected. Cerebral Cortex, 2020, 30, 1688-1707.	2.9	16
15	Reelin depletion protects against autoimmune encephalomyelitis by decreasing vascular adhesion of leukocytes. Science Translational Medicine, 2020, 12, .	12.4	14
16	Lymphoangiocrine signals promote cardiac growth and repair. Nature, 2020, 588, 705-711.	27.8	103
17	Biolistic transfection and expression analysis of acute cortical slices. Journal of Neuroscience Methods, 2020, 337, 108666.	2.5	2
18	Sodium-hydrogen exchanger 6 (NHE6) deficiency leads to hearing loss, via reduced endosomal signalling through the BDNF/Trk pathway. Scientific Reports, 2020, 10, 3609.	3.3	8

#	Article	IF	CITATIONS
19	Kinetic Tuning of HDAC Inhibitors Affords Potent Inducers of Progranulin Expression. ACS Chemical Neuroscience, 2019, 10, 3769-3777.	3.5	16
20	LRP1 Deficiency in Vascular SMC Leads to Pulmonary Arterial Hypertension That Is Reversed by PPARÎ ³ Activation. Circulation Research, 2019, 124, 1778-1785.	4.5	46
21	NGP 555, a γâ€secretase modulator, shows a beneficial shift in the ratio of amyloid biomarkers in human cerebrospinal fluid at safe doses. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2019, 5, 458-467.	3.7	3
22	Lrp1 in osteoblasts controls osteoclast activity and protects against osteoporosis by limiting PDGF–RANKL signaling. Bone Research, 2018, 6, 4.	11.4	45
23	Antiphospholipid antibodies induce thrombosis by PP2A activation via apoER2-Dab2-SHC1 complex formation in endothelium. Blood, 2018, 131, 2097-2110.	1.4	50
24	Loss of the adaptor protein ShcA in endothelial cells protects against monocyte macrophage adhesion, LDL-oxydation, and atherosclerotic lesion formation. Scientific Reports, 2018, 8, 4501.	3.3	12
25	Intracellular lipid metabolism impairs β cell compensation during diet-induced obesity. Journal of Clinical Investigation, 2018, 128, 1178-1189.	8.2	33
26	Lrp4/Wise regulates palatal rugae development through Turing-type reaction-diffusion mechanisms. PLoS ONE, 2018, 13, e0204126.	2.5	15
27	Blood-brain barrier-associated pericytes internalize and clear aggregated amyloid-β42 by LRP1-dependent apolipoprotein E isoform-specific mechanism. Molecular Neurodegeneration, 2018, 13, 57.	10.8	164
28	How We Can Rebuild Trust in Science—And Why We Must. Angewandte Chemie - International Edition, 2018, 57, 13696-13697.	13.8	13
29	Low-density lipoprotein receptor–related protein-1 dysfunction synergizes with dietary cholesterol to accelerate steatohepatitis progression. Journal of Biological Chemistry, 2018, 293, 9674-9684.	3.4	17
30	Distal Dendritic Enrichment of HCN1 Channels in Hippocampal CA1 Is Promoted by Estrogen, but Does Not Require Reelin. ENeuro, 2018, 5, ENEURO.0258-18.2018.	1.9	12
31	Reversal of ApoE4-induced recycling block as a novel prevention approach for Alzheimer's disease. ELife, 2018, 7, .	6.0	62
32	NGP 555, a γâ€secretase modulator, lowers the amyloid biomarker, Aβ _{42,} in cerebrospinal fluid while preventing Alzheimer's disease cognitive decline in rodents. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2017, 3, 65-73.	3.7	25
33	ApoE, ApoE Receptors, and the Synapse in Alzheimer's Disease. Trends in Endocrinology and Metabolism, 2017, 28, 273-284.	7.1	112
34	Reelin: Neurodevelopmental Architect and Homeostatic Regulator of Excitatory Synapses. Journal of Biological Chemistry, 2017, 292, 1330-1338.	3.4	98
35	A Consensus Definitive Classification of Scavenger Receptors and Their Roles in Health and Disease. Journal of Immunology, 2017, 198, 3775-3789.	0.8	261
36	News on the molecular regulation and function of hepatic low-density lipoprotein receptor and LDLR-related protein 1. Current Opinion in Lipidology, 2017, 28, 241-247.	2.7	76

#	Article	IF	CITATIONS
37	The ApoE receptors Vldlr and Apoer2 in central nervous system function and disease. Journal of Lipid Research, 2017, 58, 1036-1043.	4.2	64
38	Lipidomic and Transcriptomic Basis of Lysosomal Dysfunction in Progranulin Deficiency. Cell Reports, 2017, 20, 2565-2574.	6.4	98
39	Selectivity and Kinetic Requirements of HDAC Inhibitors as Progranulin Enhancers for Treating Frontotemporal Dementia. Cell Chemical Biology, 2017, 24, 892-906.e5.	5.2	31
40	Functional Roles of the Interaction of APP and Lipoprotein Receptors. Frontiers in Molecular Neuroscience, 2017, 10, 54.	2.9	58
41	Building a better blood-brain barrier. ELife, 2017, 6, .	6.0	3
42	LRP1 integrates murine macrophage cholesterol homeostasis and inflammatory responses in atherosclerosis. ELife, 2017, 6, .	6.0	76
43	Imaging subcellular dynamics with fast and light-efficient volumetrically parallelized microscopy. Optica, 2017, 4, 263.	9.3	41
44	High-Fat Diet Changes Hippocampal Apolipoprotein E (ApoE) in a Genotype- and Carbohydrate-Dependent Manner in Mice. PLoS ONE, 2016, 11, e0148099.	2.5	19
45	Expression of a recombinant full-length LRP1B receptor in human non-small cell lung cancer cells confirms the postulated growth-suppressing function of this large LDL receptor family member. Oncotarget, 2016, 7, 68721-68733.	1.8	35
46	Splicing therapeutics for <scp>A</scp> lzheimer's disease. EMBO Molecular Medicine, 2016, 8, 308-310.	6.9	6
47	Low-Density Lipoprotein Receptor-Related Protein-1 Protects Against Hepatic Insulin Resistance and Hepatic Steatosis. EBioMedicine, 2016, 7, 135-145.	6.1	58
48	Physiologic Reelin does not play a strong role in protection against acute stroke. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 1295-1303.	4.3	7
49	Genetic Restoration of Plasma ApoE Improves Cognition and Partially Restores Synaptic Defects in ApoE-Deficient Mice. Journal of Neuroscience, 2016, 36, 10141-10150.	3.6	81
50	Ephrin Bs and canonical Reelin signalling. Nature, 2016, 539, E4-E6.	27.8	14
51	Prosaposin is a regulator of progranulin levels and oligomerization. Nature Communications, 2016, 7, 11992.	12.8	68
52	Genome-wide RNAi screen reveals ALK1 mediates LDL uptake and transcytosis in endothelial cells. Nature Communications, 2016, 7, 13516.	12.8	115
53	Loss of Reelin protects against atherosclerosis by reducing leukocyte–endothelial cell adhesion and lesion macrophage accumulation. Science Signaling, 2016, 9, ra29.	3.6	46
54	ApoE Receptor 2 Mediation of Trophoblast Dysfunction and Pregnancy Complications Induced by Antiphospholipid Antibodies in Mice. Arthritis and Rheumatology, 2016, 68, 730-739.	5.6	56

#	Article	IF	CITATIONS
55	Agrin mediates chondrocyte homeostasis and requires both LRP4 and α-dystroglycan to enhance cartilage formation in vitro and in vivo. Annals of the Rheumatic Diseases, 2016, 75, 1228-1235.	0.9	46
56	Convergent Signaling Pathways Controlled by LRP1 (Receptor-related Protein 1) Cytoplasmic and Extracellular Domains Limit Cellular Cholesterol Accumulation. Journal of Biological Chemistry, 2016, 291, 5116-5127.	3.4	29
57	Lrp4 Domains Differentially Regulate Limb/Brain Development and Synaptic Plasticity. PLoS ONE, 2015, 10, e0116701.	2.5	21
58	FE65 and FE65L1 amyloid precursor proteinâ€binding protein compound null mice display adultâ€onset cataract and muscle weakness. FASEB Journal, 2015, 29, 2628-2639.	0.5	6
59	Reelin protects against amyloid \hat{I}^2 toxicity in vivo. Science Signaling, 2015, 8, ra67.	3.6	78
60	Generation and Characterization of an Nse-CreERT2 Transgenic Line Suitable for Inducible Gene Manipulation in Cerebellar Granule Cells. PLoS ONE, 2014, 9, e100384.	2.5	10
61	Activity-dependent FUS dysregulation disrupts synaptic homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4769-78.	7.1	116
62	Characterization and Distribution of Reelin-Positive Interneuron Subtypes in the Rat Barrel Cortex. Cerebral Cortex, 2014, 24, 3046-3058.	2.9	39
63	Differential splicing and glycosylation of Apoer2 alters synaptic plasticity and fear learning. Science Signaling, 2014, 7, ra113.	3.6	46
64	Constitutive and ligand-induced EGFR signalling triggers distinct and mutually exclusive downstream signalling networks. Nature Communications, 2014, 5, 5811.	12.8	72
65	The lipoprotein receptor LRP1 modulates sphingosine-1-phosphate signaling and is essential for vascular development. Development (Cambridge), 2014, 141, 4513-4525.	2.5	41
66	Is Apolipoprotein E Required for Cognitive Function in Humans?. JAMA Neurology, 2014, 71, 1213.	9.0	8
67	Antiphospholipid Antibodies Attenuate Endothelial Repair and Promote Neointima Formation in Mice. Journal of the American Heart Association, 2014, 3, e001369.	3.7	14
68	LRP1 is a receptor for <i>Clostridium perfringens</i> TpeL toxin indicating a two-receptor model of clostridial glycosylating toxins. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6431-6436.	7.1	82
69	Genetic variants of ApoE and ApoER2 differentially modulate endothelial function. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13493-13498.	7.1	49
70	Early retinal neurodegeneration and impaired Ran-mediated nuclear import of TDP-43 in progranulin-deficient FTLD. Journal of Experimental Medicine, 2014, 211, 1937-1945.	8.5	94
71	More than Cholesterol Transporters: Lipoprotein Receptors in CNS Function and Neurodegeneration. Neuron, 2014, 83, 771-787.	8.1	127
72	Standardizing Scavenger Receptor Nomenclature. Journal of Immunology, 2014, 192, 1997-2006.	0.8	166

#	Article	IF	CITATIONS
73	An AXL/LRP-1/RANBP9 complex mediates DC efferocytosis and antigen cross-presentation in vivo. Journal of Clinical Investigation, 2014, 124, 1296-1308.	8.2	91
74	Involvement of the Apoer2 and Lrp1 receptors in mediating the pathological effects of ApoE4 in vivo. Current Alzheimer Research, 2014, 11, 549-557.	1.4	26
75	Human apolipoprotein E isoforms differentially affect bone mass and turnover in vivo. Journal of Bone and Mineral Research, 2013, 28, 236-245.	2.8	19
76	Reelin Mobilizes a VAMP7-Dependent Synaptic Vesicle Pool and Selectively Augments Spontaneous Neurotransmission. Neuron, 2013, 80, 934-946.	8.1	106
77	Low Density Lipoprotein Receptor-related Protein 1 (LRP1) Modulates N-Methyl-d-aspartate (NMDA) Receptor-dependent Intracellular Signaling and NMDA-induced Regulation of Postsynaptic Protein Complexes. Journal of Biological Chemistry, 2013, 288, 21909-21923.	3.4	65
78	The Pro-Neurotrophin Receptor Sortilin Is a Major Neuronal Apolipoprotein E Receptor for Catabolism of Amyloid-β Peptide in the Brain. Journal of Neuroscience, 2013, 33, 358-370.	3.6	86
79	Progranulin Does Not Bind Tumor Necrosis Factor (TNF) Receptors and Is Not a Direct Regulator of TNF-Dependent Signaling or Bioactivity in Immune or Neuronal Cells. Journal of Neuroscience, 2013, 33, 9202-9213.	3.6	85
80	Reelin induces EphB activation. Cell Research, 2013, 23, 473-490.	12.0	62
81	Secreted Progranulin Is a Homodimer and Is Not a Component of High Density Lipoproteins (HDL). Journal of Biological Chemistry, 2013, 288, 8627-8635.	3.4	24
82	Role of the postnatal radial glial scaffold for the development of the dentate gyrus as revealed by reelin signaling mutant mice. Glia, 2013, 61, 1347-1363.	4.9	28
83	APP interacts with LRP4 and agrin to coordinate the development of the neuromuscular junction in mice. ELife, 2013, 2, e00220.	6.0	57
84	Apolipoprotein E and Apolipoprotein E Receptors: Normal Biology and Roles in Alzheimer Disease. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a006312-a006312.	6.2	637
85	Wnt signaling in the murine diastema. European Journal of Orthodontics, 2012, 34, 518-524.	2.4	17
86	Progranulin: A Proteolytically Processed Protein at the Crossroads of Inflammation and Neurodegeneration. Journal of Biological Chemistry, 2012, 287, 32298-32306.	3.4	192
87	Extracting β-amyloid from Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3199-3200.	7.1	14
88	TDP-43 in central nervous system development and function: clues to TDP-43-associated neurodegeneration. Biological Chemistry, 2012, 393, 589-594.	2.5	69
89	The nuclear hormone receptor PPARÎ ³ counteracts vascular calcification by inhibiting Wnt5a signalling in vascular smooth muscle cells. Nature Communications, 2012, 3, 1077.	12.8	73
90	Reelin Controls Neuronal Positioning by Promoting Cell-Matrix Adhesion via Inside-Out Activation of Integrin α5β1. Neuron, 2012, 76, 353-369.	8.1	156

#	Article	IF	CITATIONS
91	TDP-43 aggregation in neurodegeneration: Are stress granules the key?. Brain Research, 2012, 1462, 16-25.	2.2	180
92	Identification of Neuronal RNA Targets of TDP-43-containing Ribonucleoprotein Complexes. Journal of Biological Chemistry, 2011, 286, 1204-1215.	3.4	366
93	Signaling through LRP1: Protection from atherosclerosis and beyond. Biochemical Pharmacology, 2011, 81, 1-5.	4.4	101
94	Apolipoprotein E Induces Antiinflammatory Phenotype in Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1160-1168.	2.4	257
95	Suberoylanilide Hydroxamic Acid (Vorinostat) Up-regulates Progranulin Transcription. Journal of Biological Chemistry, 2011, 286, 16101-16108.	3.4	138
96	Differential Signaling by Adaptor Molecules LRP1 and ShcA Regulates Adipogenesis by the Insulin-like Growth Factor-1 Receptor. Journal of Biological Chemistry, 2011, 286, 16775-16782.	3.4	25
97	TDP-43 Is Directed to Stress Granules by Sorbitol, a Novel Physiological Osmotic and Oxidative Stressor. Molecular and Cellular Biology, 2011, 31, 1098-1108.	2.3	296
98	ApoER2 Function in the Establishment and Maintenance of Retinal Synaptic Connectivity. Journal of Neuroscience, 2011, 31, 14413-14423.	3.6	24
99	Lipoprotein Receptor LRP1 Regulates Leptin Signaling and Energy Homeostasis in the Adult Central Nervous System. PLoS Biology, 2011, 9, e1000575.	5.6	70
100	Trypanosoma cruzi Utilizes the Host Low Density Lipoprotein Receptor in Invasion. PLoS Neglected Tropical Diseases, 2011, 5, e953.	3.0	71
101	Antiphospholipid antibodies promote leukocyte–endothelial cell adhesion and thrombosis in mice by antagonizing eNOS via β2GPI and apoER2. Journal of Clinical Investigation, 2011, 121, 120-131.	8.2	165
102	LRP4 Mutations Alter Wnt/β-Catenin Signaling and Cause Limb and Kidney Malformations in Cenani-Lenz Syndrome. American Journal of Human Genetics, 2010, 86, 696-706.	6.2	151
103	Origin, maturation, and astroglial transformation of secondary radial glial cells in the developing dentate gyrus. Glia, 2010, 58, 1553-1569.	4.9	74
104	Emerging topics in Reelin function. European Journal of Neuroscience, 2010, 31, 1511-1518.	2.6	115
105	Lrp4 Regulates Initiation of Ureteric Budding and Is Crucial for Kidney Formation – A Mouse Model for Cenani-Lenz Syndrome. PLoS ONE, 2010, 5, e10418.	2.5	54
106	Ectodomains of the LDL Receptor-Related Proteins LRP1b and LRP4 Have Anchorage Independent Functions In Vivo. PLoS ONE, 2010, 5, e9960.	2.5	37
107	ApoE4 reduces glutamate receptor function and synaptic plasticity by selectively impairing ApoE receptor recycling. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12011-12016.	7.1	304
108	Reelin Signals through Apolipoprotein E Receptor 2 and Cdc42 to Increase Growth Cone Motility and Filopodia Formation. Journal of Neuroscience, 2010, 30, 14759-14772.	3.6	75

#	Article	IF	CITATIONS
109	TDP-43 Is a Developmentally Regulated Protein Essential for Early Embryonic Development. Journal of Biological Chemistry, 2010, 285, 6826-6834.	3.4	333
110	A role for suppressed incisor cuspal morphogenesis in the evolution of mammalian heterodont dentition. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 92-97.	7.1	51
111	Proteomic Analysis of GLUT4 Storage Vesicles Reveals LRP1 to Be an Important Vesicle Component and Target of Insulin Signaling. Journal of Biological Chemistry, 2010, 285, 104-114.	3.4	113
112	Lipoprotein receptors – an evolutionarily ancient multifunctional receptor family. Biological Chemistry, 2010, 391, 1341-63.	2.5	103
113	LRP1 Controls cPLA2 Phosphorylation, ABCA1 Expression and Cellular Cholesterol Export. PLoS ONE, 2009, 4, e6853.	2.5	35
114	Lrp4, a Novel Receptor for Dickkopf 1 and Sclerostin, Is Expressed by Osteoblasts and Regulates Bone Growth and Turnover In Vivo. PLoS ONE, 2009, 4, e7930.	2.5	181
115	Expanding functions of lipoprotein receptors. Journal of Lipid Research, 2009, 50, S287-S292.	4.2	69
116	LRP1 Controls Intracellular Cholesterol Storage and Fatty Acid Synthesis through Modulation of Wnt Signaling. Journal of Biological Chemistry, 2009, 284, 381-388.	3.4	106
117	Smooth Muscle LDL Receptor-Related Protein-1 Inactivation Reduces Vascular Reactivity and Promotes Injury-Induced Neointima Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1772-1778.	2.4	42
118	Mutations in <i>VLDLR</i> as a Cause for Autosomal Recessive Cerebellar Ataxia With Mental Retardation (Dysequilibrium Syndrome). Journal of Child Neurology, 2009, 24, 1310-1315.	1.4	60
119	Reelin signaling antagonizes β-amyloid at the synapse. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15938-15943.	7.1	139
120	Apolipoprotein E receptors in the nervous system. Current Opinion in Lipidology, 2009, 20, 190-196.	2.7	70
121	LRP1 Regulates Architecture of the Vascular Wall by Controlling PDGFRβ-Dependent Phosphatidylinositol 3-Kinase Activation. PLoS ONE, 2009, 4, e6922.	2.5	61
122	Antiphospholipid Antibodies Promote Leukocyte-Endothelial Cell Adhesion by Antagonizing Endothelial NO Synthase Via b2GPI and ApoER2 Blood, 2009, 114, 3039-3039.	1.4	0
123	Contribution of the Reelin signaling pathways to nociceptive processing. European Journal of Neuroscience, 2008, 27, 523-537.	2.6	20
124	"Devolution―of bipedality. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, E25.	7.1	16
125	Role of Smooth Muscle cGMP/cGKI Signaling in Murine Vascular Restenosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1244-1250.	2.4	32
126	Î ³ -Secretase Limits the Inflammatory Response Through the Processing of LRP1. Science Signaling, 2008, 1, ra15.	3.6	116

#	Article	IF	CITATIONS
127	The Reelin Receptors Apoer2 and Vldlr Coordinate the Patterning of Purkinje Cell Topography in the Developing Mouse Cerebellum. PLoS ONE, 2008, 3, e1653.	2.5	45
128	Lrp4 Modulates Extracellular Integration of Cell Signaling Pathways in Development. PLoS ONE, 2008, 3, e4092.	2.5	171
129	Overview: The Long and Winding Road to Understanding Alzheimer's Disease. Neuron, 2007, 53, 477-479.	8.1	7
130	Amyloid Precursor Protein Regulates Brain Apolipoprotein E and Cholesterol Metabolism through Lipoprotein Receptor LRP1. Neuron, 2007, 56, 66-78.	8.1	320
131	The Pafah1b Complex Interacts with the Reelin Receptor VLDLR. PLoS ONE, 2007, 2, e252.	2.5	57
132	Disruption of LDL but not VLDL clearance in autosomal recessive hypercholesterolemia. Journal of Clinical Investigation, 2007, 117, 165-174.	8.2	51
133	Adipocyte LDL receptor–related protein–1 expression modulates postprandial lipid transport and glucose homeostasis in mice. Journal of Clinical Investigation, 2007, 117, 3271-3282.	8.2	135
134	LRP1 Functions as an Atheroprotective Integrator of TGF \hat{I}^2 and PDGF Signals in the Vascular Wall: Implications for Marfan Syndrome. PLoS ONE, 2007, 2, e448.	2.5	110
135	The Switch on the RAPper's Necklace…. Molecular Cell, 2006, 23, 451-455.	9.7	17
136	Defective splicing of Megf7/Lrp4, a regulator of distal limb development, in autosomal recessive mulefoot disease. Genomics, 2006, 88, 600-609.	2.9	52
137	Reelin, lipoprotein receptors and synaptic plasticity. Nature Reviews Neuroscience, 2006, 7, 850-859.	10.2	452
138	Essential roles for the FE65 amyloid precursor protein-interacting proteins in brain development. EMBO Journal, 2006, 25, 420-431.	7.8	122
139	Endocytic receptor LRP together with tPA and PAI-1 coordinates Mac-1-dependent macrophage migration. EMBO Journal, 2006, 25, 1860-1870.	7.8	161
140	ApoE Receptor 2 Controls Neuronal Survival in the Adult Brain. Current Biology, 2006, 16, 2446-2452.	3.9	78
141	Activation of ERK signaling upon alternative protease nexin-1 internalization mediated by syndecan-1. Journal of Cellular Biochemistry, 2006, 99, 936-951.	2.6	26
142	Functional Dissection of Reelin Signaling by Site-Directed Disruption of Disabled-1 Adaptor Binding to Apolipoprotein E Receptor 2: Distinct Roles in Development and Synaptic Plasticity. Journal of Neuroscience, 2006, 26, 2041-2052.	3.6	105
143	Abnormal development of the apical ectodermal ridge and polysyndactyly in Megf7-deficient mice. Human Molecular Genetics, 2005, 14, 3523-3538.	2.9	124
144	Clinical and Biological Features Associated With Epidermal Growth Factor Receptor Gene Mutations in Lung Cancers. Journal of the National Cancer Institute, 2005, 97, 339-346.	6.3	2,194

#	Article	IF	CITATIONS
145	Phosphoinositide Binding by the Disabled-1 PTB Domain Is Necessary for Membrane Localization and Reelin Signal Transduction. Journal of Biological Chemistry, 2005, 280, 9671-9677.	3.4	36
146	Low Density Lipoprotein Receptor-related Protein 1 (LRP1) Controls Endocytosis and c-CBL-mediated Ubiquitination of the Platelet-derived Growth Factor Receptor β (PDGFRβ). Journal of Biological Chemistry, 2005, 280, 18504-18510.	3.4	83
147	Reelin Modulates NMDA Receptor Activity in Cortical Neurons. Journal of Neuroscience, 2005, 25, 8209-8216.	3.6	254
148	The Modular Adaptor Protein Autosomal Recessive Hypercholesterolemia (ARH) Promotes Low Density Lipoprotein Receptor Clustering into Clathrin-coated Pits. Journal of Biological Chemistry, 2005, 280, 40996-41004.	3.4	80
149	Loss of Apaf-1 leads to partial rescue of the HAND2-null phenotype. Developmental Biology, 2005, 278, 155-162.	2.0	17
150	The apoE receptor apoER2 is involved in the maintenance of efficient synaptic plasticity. Neurobiology of Aging, 2005, 26, 195-206.	3.1	18
151	Modulation of Synaptic Plasticity and Memory by Reelin Involves Differential Splicing of the Lipoprotein Receptor Apoer2. Neuron, 2005, 47, 567-579.	8.1	429
152	Suppression of Aging in Mice by the Hormone Klotho. Science, 2005, 309, 1829-1833.	12.6	1,634
153	A Bull's Eye for Targeted Lung Cancer Therapy. Science, 2004, 304, 1458-1461.	12.6	84
154	Endocytosis of Hepatic Lipase and Lipoprotein Lipase into Rat Liver Hepatocytes in Vivo Is Mediated by the Low Density Lipoprotein Receptor-related Protein. Journal of Biological Chemistry, 2004, 279, 9030-9036.	3.4	19
155	Normal Development and Fertility of Knockout Mice Lacking the Tumor Suppressor Gene LRP1b Suggest Functional Compensation by LRP1. Molecular and Cellular Biology, 2004, 24, 3782-3793.	2.3	67
156	Reelin and Cyclin-Dependent Kinase 5-Dependent Signals Cooperate in Regulating Neuronal Migration and Synaptic Transmission. Journal of Neuroscience, 2004, 24, 1897-1906.	3.6	107
157	Apolipoprotein E Receptors Are Required for Reelin-induced Proteasomal Degradation of the Neuronal Adaptor Protein Disabled-1. Journal of Biological Chemistry, 2004, 279, 33471-33479.	3.4	97
158	The Central Fragment of Reelin, Generated by Proteolytic Processing In Vivo, Is Critical to Its Function during Cortical Plate Development. Journal of Neuroscience, 2004, 24, 514-521.	3.6	183
159	Functions of lipoprotein receptors in neurons. Journal of Lipid Research, 2004, 45, 403-409.	4.2	135
160	Receptor Clustering Is Involved in Reelin Signaling. Molecular and Cellular Biology, 2004, 24, 1378-1386.	2.3	179
161	Neuronal LRP1 Functionally Associates with Postsynaptic Proteins and Is Required for Normal Motor Function in Mice. Molecular and Cellular Biology, 2004, 24, 8872-8883.	2.3	197
162	Lipoprotein receptors in the vascular wall. Current Opinion in Lipidology, 2004, 15, 175-181.	2.7	29

#	Article	IF	CITATIONS
163	Hepatic low-density lipoprotein receptor–related protein deficiency in mice increases atherosclerosis independent of plasma cholesterol. Blood, 2004, 103, 3777-3782.	1.4	35
164	Reelin Activates Src Family Tyrosine Kinases in Neurons. Current Biology, 2003, 13, 18-26.	3.9	325
165	Origins of Peptide Selectivity and Phosphoinositide Binding Revealed by Structures of Disabled-1 PTB Domain Complexes. Structure, 2003, 11, 569-579.	3.3	117
166	Malformation of the radial glial scaffold in the dentate gyrus of reeler mice, scrambler mice, and ApoER2/VLDLRâ€deficient mice. Journal of Comparative Neurology, 2003, 460, 56-65.	1.6	91
167	LDL Receptorâ€Related Proteins in Neurodevelopment. Traffic, 2003, 4, 291-301.	2.7	59
168	Interaction of reelin signaling and Lis1 in brain development. Nature Genetics, 2003, 35, 270-276.	21.4	199
169	Coaxing the LDL Receptor Family into the Fold. Cell, 2003, 112, 289-292.	28.9	68
170	Mouse models as tools for dissecting disorders of lipoprotein metabolism. Seminars in Cell and Developmental Biology, 2003, 14, 25-35.	5.0	5
171	Essential Role of the Apolipoprotein E Receptor-2 in Sperm Development. Journal of Biological Chemistry, 2003, 278, 23989-23995.	3.4	95
172	LRP: Role in Vascular Wall Integrity and Protection from Atherosclerosis. Science, 2003, 300, 329-332.	12.6	528
173	Normal Sorting but Defective Endocytosis of the Low Density Lipoprotein Receptor in Mice with Autosomal Recessive Hypercholesterolemia. Journal of Biological Chemistry, 2003, 278, 29024-29030.	3.4	85
174	Phosphatidylinositol 3-Kinase Interacts with the Adaptor Protein Dab1 in Response to Reelin Signaling and Is Required for Normal Cortical Lamination. Journal of Biological Chemistry, 2003, 278, 38772-38779.	3.4	189
175	Conditional Expression of Mutant M-line Titins Results in Cardiomyopathy with Altered Sarcomere Structure. Journal of Biological Chemistry, 2003, 278, 6059-6065.	3.4	118
176	Insulin-secreting β-Cell Dysfunction Induced by Human Lipoproteins. Journal of Biological Chemistry, 2003, 278, 18368-18375.	3.4	167
177	Differential Glycosylation Regulates Processing of Lipoprotein Receptors by Î ³ -Secretase. Journal of Biological Chemistry, 2003, 278, 37386-37392.	3.4	132
178	Elevated plasma factor VIII in a mouse model of low-density lipoprotein receptor–related protein deficiency. Blood, 2003, 101, 3933-3939.	1.4	111
179	Genetic Modulation of Tau Phosphorylation in the Mouse. Journal of Neuroscience, 2003, 23, 187-192.	3.6	80
180	LRP: a bright beacon at the blood-brain barrier. Journal of Clinical Investigation, 2003, 112, 1483-1485.	8.2	50

#	Article	IF	CITATIONS
181	Reelin-mediated Signaling Locally Regulates Protein Kinase B/Akt and Glycogen Synthase Kinase 3β. Journal of Biological Chemistry, 2002, 277, 49958-49964.	3.4	275
182	Proteolytic Processing of Low Density Lipoprotein Receptor-related Protein Mediates Regulated Release of Its Intracellular Domain. Journal of Biological Chemistry, 2002, 277, 18736-18743.	3.4	262
183	Smooth muscle-selective deletion of guanylyl cyclase-A prevents the acute but not chronic effects of ANP on blood pressure. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 7142-7147.	7.1	294
184	Platelet-derived Growth Factor Mediates Tyrosine Phosphorylation of the Cytoplasmic Domain of the Low Density Lipoprotein Receptor-related Protein in Caveolae. Journal of Biological Chemistry, 2002, 277, 15507-15513.	3.4	190
185	Lipoprotein Receptors in the Nervous System. Annual Review of Biochemistry, 2002, 71, 405-434.	11.1	402
186	Reelin and ApoE Receptors Cooperate to Enhance Hippocampal Synaptic Plasticity and Learning. Journal of Biological Chemistry, 2002, 277, 39944-39952.	3.4	548
187	Abnormal positioning of granule cells alters afferent fiber distribution in the mouse fascia dentata: Morphologic evidence from reeler, apolipoprotein E receptor 2â€; and very low density lipoprotein receptor knockout mice. Journal of Comparative Neurology, 2002, 445, 278-292.	1.6	29
188	The LDL Receptor Gene Family. Neuron, 2001, 29, 571-581.	8.1	221
189	Deconstructing the LDL receptora rhapsody in pieces. , 2001, 8, 476-478.		18
190	The LDL receptor gene family: signaling functions during development. Current Opinion in Neurobiology, 2001, 11, 74-81.	4.2	72
191	LRP: a multifunctional scavenger and signaling receptor. Journal of Clinical Investigation, 2001, 108, 779-784.	8.2	832
192	Cellular signalling by lipoprotein receptors. Current Opinion in Lipidology, 2000, 11, 161-166.	2.7	69
193	Apolipoprotein E receptors: linking brain development and alzheimer's disease. Nature Reviews Neuroscience, 2000, 1, 51-58.	10.2	190
194	Plasmodium sporozoites invade cells with targeted deletions in the LDL receptor related protein. Molecular and Biochemical Parasitology, 2000, 106, 293-298.	1.1	8
195	Interactions of the Low Density Lipoprotein Receptor Gene Family with Cytosolic Adaptor and Scaffold Proteins Suggest Diverse Biological Functions in Cellular Communication and Signal Transduction. Journal of Biological Chemistry, 2000, 275, 25616-25624.	3.4	417
196	The Reelin Receptor ApoER2 Recruits JNK-interacting Proteins-1 and -2. Journal of Biological Chemistry, 2000, 275, 25625-25632.	3.4	220
197	Adult Apaf-1-Deficient Mice Exhibit Male Infertility. Developmental Biology, 2000, 218, 248-258.	2.0	188
198	The LDL Receptor Gene Family, Apolipoprotein B and Cholesterol in Embryonic Development. Journal of Nutrition, 1999, 129, 473S-475S.	2.9	22

#	Article	IF	CITATIONS
199	Gene Targets and Approaches for Raising HDL. Circulation, 1999, 99, 12-14.	1.6	23
200	An Extrahepatic Receptor-associated Protein-sensitive Mechanism Is Involved in the Metabolism of Triglyceride-rich Lipoproteins. Journal of Biological Chemistry, 1999, 274, 35219-35226.	3.4	36
201	Lipoprotein receptors: new roles for ancient proteins. Nature Cell Biology, 1999, 1, E157-E162.	10.3	205
202	Direct Binding of Reelin to VLDL Receptor and ApoE Receptor 2 Induces Tyrosine Phosphorylation of Disabled-1 and Modulates Tau Phosphorylation. Neuron, 1999, 24, 481-489.	8.1	846
203	An Endocytic Pathway Essential for Renal Uptake and Activation of the Steroid 25-(OH) Vitamin D3. Cell, 1999, 96, 507-515.	28.9	924
204	Reeler/Disabled-like Disruption of Neuronal Migration in Knockout Mice Lacking the VLDL Receptor and ApoE Receptor 2. Cell, 1999, 97, 689-701.	28.9	1,194
205	39-kDa receptor-associated protein (RAP) facilitates secretion and ligand binding of extracellular region of very-low-density-lipoprotein receptor: implications for a distinct pathway from low-density-lipoprotein receptor. Biochemical Journal, 1999, 341, 377-383.	3.7	16
206	Cholesterol metabolism and embryogenesis. Trends in Genetics, 1998, 14, 115-120.	6.7	125
207	Interaction of Cytosolic Adaptor Proteins with Neuronal Apolipoprotein E Receptors and the Amyloid Precursor Protein. Journal of Biological Chemistry, 1998, 273, 33556-33560.	3.4	502
208	C1 Inhibitor-C1Â ⁻ s Complexes Are Internalized and Degraded by the Low Density Lipoprotein Receptor-related Protein. Journal of Biological Chemistry, 1997, 272, 31043-31050.	3.4	38
209	Avian and Murine LR8B and Human Apolipoprotein E Receptor 2: Differentially Spliced Products from Corresponding Genes. Genomics, 1997, 42, 185-191.	2.9	52
210	Cholesterol, hedgehog and embryogenesis. Nature Genetics, 1997, 15, 123-124.	21.4	27
211	Calcium cages, acid baths and recycling receptors. Nature, 1997, 388, 629-630.	27.8	155
212	The low-density-lipoprotein receptor-related protein (LRP) is processed by furin in vivo and in vitro. Biochemical Journal, 1996, 313, 71-76.	3.7	117
213	Sustained somatic gene inactivation by viral transfer of Cre recombinase. Nature Biotechnology, 1996, 14, 1562-1565.	17.5	129
214	Disruption of Cholesterol 7α-Hydroxylase Gene in Mice. Journal of Biological Chemistry, 1996, 271, 18017-18023.	3.4	203
215	Disruption of Cholesterol 7α-Hydroxylase Gene in Mice. Journal of Biological Chemistry, 1996, 271, 18024-18031.	3.4	227
216	The Major Subunit of the Asialoglycoprotein Receptor Is Expressed on the Hepatocellular Surface in Mice Lacking the Minor Receptor Subunit. Journal of Biological Chemistry, 1996, 271, 21160-21166.	3.4	63

#	Article	IF	CITATIONS
217	The Low Density Lipoprotein Receptor-related Protein Can Function Independently from Heparan Sulfate Proteoglycans in Tissue Factor Pathway Inhibitor Endocytosis. Journal of Biological Chemistry, 1996, 271, 25873-25879.	3.4	40
218	Lipoprotein and receptor interactions in vivo. Current Opinion in Lipidology, 1995, 6, 97-103.	2.7	83
219	Essential functions of synapsins I and II in synaptic vesicle regulation. Nature, 1995, 375, 488-493.	27.8	708
220	Differential Recognition of α1-Antitrypsin-Elastase and α1-Antichymotrypsin-Cathepsin G Complexes by the Low Density Lipoprotein Receptor-related Protein. Journal of Biological Chemistry, 1995, 270, 2841-2845.	3.4	57
221	Two Receptor Systems Are Involved in the Plasma Clearance of Tissue Factor Pathway Inhibitor in Vivo. Journal of Biological Chemistry, 1995, 270, 24800-24804.	3.4	67
222	Gene transfer and disruption strategies to elucidate hepatic lipoprotein receptor functions. Atherosclerosis, 1995, 118, S37-S41.	0.8	1
223	Functions of the LDL Receptor Gene Family. Annals of the New York Academy of Sciences, 1994, 737, 14-19.	3.8	31
224	The LDL-receptor-related protein ??? portrait of a multifunctional receptor. Current Opinion in Lipidology, 1993, 4, 107-113.	2.7	72
225	LDL receptor-related protein internalizes and degrades uPA-PAI-1 complexes and is essential for embryo implantation. Cell, 1992, 71, 411-421.	28.9	574
226	Putative apolipoprotein receptor gene (LRP, A2MR) is not rearranged in either myxoid liposarcoma or lipomas with translocations in 12q13–14. Cancer Genetics and Cytogenetics, 1992, 60, 125-130.	1.0	4
227	The low-density lipoprotein receptor-related protein: double agent or decoy?. Current Opinion in Lipidology, 1991, 2, 65-72.	2.7	157
228	Structure and biosynthesis of the signal-sequence receptor. FEBS Journal, 1990, 188, 439-445.	0.2	64
229	The 68 kDa protein of signal recognition particle contains a glycine-rich region also found in certain RNA-binding proteins. FEBS Letters, 1990, 276, 103-107.	2.8	32
230	Homology of 54K protein of signal-recognition particle, docking protein and two E. coli proteins with putative GTP–binding domains. Nature, 1989, 340, 478-482.	27.8	388
231	The LDL–receptor–related protein, LRP, is an apolipoprotein E-binding protein. Nature, 1989, 341, 162-164.	27.8	645
232	The gene for the human putative apoE receptor is on chromosome 12 in the segment q13–14. Genomics, 1989, 5, 65-69.	2.9	29
233	The primary structure of the 70 kDa subunit of bovine soluble guanylate cyclase. FEBS Letters, 1988, 239, 29-34.	2.8	136
234	Efficient construction of cDNA libraries in plasmid expression vectors using an adaptor strategy. Nucleic Acids Research, 1986, 14, 8615-8624.	14.5	107