Shinkoh Nanbu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6464227/publications.pdf

Version: 2024-02-01

304743 377865 1,536 102 22 34 citations h-index g-index papers 105 105 105 1349 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Synthesis and Structureâ€Photophysics Evaluation of 2â€ <i>N</i> àêAminoâ€quinazolines: Small Molecule Fluorophores for Solution and Solid State. Chemistry - an Asian Journal, 2021, 16, 2087-2099.	3.3	8
2	Acridinium Ester Chemiluminescence: Methyl Substitution on the Acridine Moiety. Journal of Oleo Science, 2021, 70, 1677-1684.	1.4	6
3	N–C bond formation between two anilines coordinated to a ruthenium center in <i>cis</i> i>-form affording a 3,5-cyclohexadiene-1,2-diimine moiety. RSC Advances, 2021, 11, 36644-36650.	3.6	O
4	Framework Conversion of Oxido-Bridged Dinuclear Ruthenium Complexes. Inorganic Chemistry, 2020, 59, 612-622.	4.0	5
5	Chemiluminescence of methoxycarbonylphenyl 10-methyl-10î»4 -2,7-disubstituted acridine-9-carboxylate derivatives. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 403, 112851.	3.9	3
6	Theoretical analysis of the kinetic isotope effect on carboxylation in RubisCO. Journal of Computational Chemistry, 2020, 41, 1116-1123.	3.3	1
7	Theoretical Molecular Dynamics Simulation of the DIF-1 Receptor Activation. Bulletin of the Chemical Society of Japan, 2019, 92, 1436-1443.	3.2	1
8	Synthesis, chemiluminescence, and application of 2,4-disubstituted phenyl 10-methyl-10λ4-acridine-9-carboxylates. Dyes and Pigments, 2019, 170, 107628.	3.7	8
9	Total Absorption Cross Section for UV Excitation of Sulfur Monoxide. Journal of Physical Chemistry A, 2019, 123, 3697-3702.	2.5	8
10	Theoretical study of electronic properties and isotope effects in the UV absorption spectrum of disulfur. Chemical Physics, 2019, 516, 108-115.	1.9	5
11	Enhancement effect on the chemiluminescence of acridinium esters under neutral conditions. Luminescence, 2018, 33, 345-348.	2.9	3
12	Nonadiabatic ab initio molecular dynamics with PME-ONIOM scheme of photoisomerization reaction between 1,3-cyclohexadiene and 1,3,5-cis-hexatriene in solution phase. Chemical Physics, 2017, 485-486, 45-59.	1.9	3
13	Clarification of nonadiabatic chemical dynamics by the Zhu-Nakamura theory of nonadiabatic transition: from tri-atomic systems to reactions in solutions. International Reviews in Physical Chemistry, 2017, 36, 229-285.	2.3	24
14	Strongly Chemiluminescent Acridinium Esters under Neutral Conditions: Synthesis, Properties, Determination, and Theoretical Study. Journal of Organic Chemistry, 2017, 82, 2450-2461.	3.2	26
15	Reactions of Azides Coordinated to Ruthenium(II) Centers with Haloalkanes To Afford Nitrogenâ€Containing Moieties. European Journal of Inorganic Chemistry, 2017, 2017, 2998-3007.	2.0	2
16	The Nonadiabatic Trajectory. , 2017, , .		0
17	Dinuclear Ruthenium(III)–Ruthenium(IV) Complexes, Having a Doubly Oxido-Bridged and Acetato- or Nitrato-Capped Framework. Inorganic Chemistry, 2016, 55, 6830-6832.	4.0	14
18	Development of semiclassical molecular dynamics simulation method. Physical Chemistry Chemical Physics, 2016, 18, 11972-11985.	2.8	18

#	Article	IF	CITATIONS
19	Electronically nonadiabatic wave packet propagation using frozen Gaussian scattering. Journal of Chemical Physics, 2015, 143, 114103.	3.0	8
20	Theoretical study of ultraviolet induced photodissociation dynamics of sulfuric acid. Chemical Physics, 2015, 452, 17-24.	1.9	2
21	Nonadiabatic ab initio molecular dynamics of photoisomerization reaction between 1,3-cyclohexadiene and 1,3,5-cis-hexatriene. Chemical Physics, 2015, 459, 45-53.	1.9	16
22	Application of particle-mesh Ewald summation to ONIOM theory. Chemical Physics, 2015, 461, 47-57.	1.9	7
23	Development of efficient time-evolution method based on three-term recurrence relation. Journal of Chemical Physics, 2015, 142, 204104.	3.0	4
24	Nonadiabatic calculations of ultraviolet absorption cross section of sulfur monoxide: Isotopic effects on the photodissociation reaction. Journal of Chemical Physics, 2014, 140, 044319.	3.0	20
25	Haptotropic Shift of [5]Cumulenes in Zirconocene Complexes and Effects of Steric Factors. Organometallics, 2014, 33, 5220-5230.	2.3	11
26	Unsymmetric indolylmaleimides: Synthesis, photophysical properties and amyloid detection. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 289, 39-46.	3.9	4
27	Effects of Cyclodextrins on Intramolecular Photoinduced Electron Transfer in a Boronic Acid Fluorophore. Analytical Sciences, 2014, 30, 643-648.	1.6	11
28	Real-Time TDHF/TDDFT Calculation with Efficient Time-Evolution Based on Three-Term Recurrence Relation. Journal of Computer Chemistry Japan, 2014, 13, 184-186.	0.1	0
29	OCS photolytic isotope effects from first principles: sulfur and carbon isotopes, temperature dependence and implications for the stratosphere. Atmospheric Chemistry and Physics, 2013, 13, 1511-1520.	4.9	25
30	THEORETICAL STUDY OF PHOTO-PHYSICAL PROCESSES IN 2-ARYL SUBSTITUTED INDOLES. Journal of Theoretical and Computational Chemistry, 2012, 11, 1311-1322.	1.8	0
31	Theoretical study of photo-physical properties of indolylmaleimide derivatives. Physical Chemistry Chemical Physics, 2012, 14, 3017.	2.8	5
32	Photoabsorption crossâ€section measurements of (sup>32 (sup>5, (sup>33 (sup>5, (sup>34 (sup>5, and (sup>36 (sup>5 sulfur dioxide for the (i>8 (i> (sup>1 (sup> (i>8 (i) (sup>1 (sup> (i>8 (i) (sup> (i>8 (i) (sup> (i>8 (i) (sup> (su	3.3	27
33	Photochemical dynamics of indolylmaleimide derivatives. Physical Chemistry Chemical Physics, 2012, 14, 11546.	2.8	11
34	QM/MM Trajectory Surface Hopping Approach to Photoisomerization of Rhodopsin and Isorhodopsin: The Origin of Faster and More Efficient Isomerization for Rhodopsin. Journal of Physical Chemistry B, 2012, 116, 8009-8023.	2.6	43
35	First principle study of proton transfer in the green fluorescent protein (GFP): Ab initio PES in a cluster model. Computational and Theoretical Chemistry, 2012, 990, 185-193.	2.5	9
36	Characterization of the $\langle i \rangle E \langle i \rangle$ Isomer of Tetrasubstituted [5] Cumulene and Trapping of the $\langle i \rangle Z \langle i \rangle$ Isomer as a Zirconocene Complex. Organometallics, 2011, 30, 3544-3548.	2.3	24

3

#	Article	lF	CITATIONS
37	Isomerization reaction between linear AlNC and AlCN including the Xlf 11° and Alf 11° states studied by three-dimensional wave packet propagation. Journal of Chemical Physics, 2011, 135, 024305.	3.0	1
38	A Nonadiabatic Ab Initio Dynamics Study on Rhodopsin and Its Analog Isorhodopsin: Chemical Dynamics Reasons behind Selection of Rhodopsin by Life. Chemistry Letters, 2011, 40, 1395-1397.	1.3	1
39	A theoretical study of SiCN and SiNC in the <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mrow><mml:mover accent="true"><mml:mrow><mml:mrow><mml:mi>X</mml:mi>X</mml:mrow><mml:mrow><mml:mrow><mml:mo>E@</mml:mo></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:< th=""><th>2.6 ow><th>4 l:mover><</th></th></mml:<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mover></mml:mrow></mml:msup></mml:mrow></mml:math>	2.6 ow> <th>4 l:mover><</th>	4 l:mover><
40	Fluorescence properties of 2-aryl substituted indoles. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2011, 78, 905-908.	3.9	6
41	Chemiluminescence enhancement of 1,2â€di[3,4,5â€tri(3,4,5â€trihydroxybenzoyloxy)benzoyloxy] benzene in the presence of quaternary ammonium ions. Luminescence, 2010, 25, 360-363.	2.9	O
42	Theoretical studies of absorption cross sections for the $\hat{C}_f \hat{a} \in \mathbb{Z}_f \hat{a} \times$	3.0	32
43	First-Principle Study of Atomic Hydrogen Interaction with a Fluorinated Corannulene Radical. Australian Journal of Chemistry, 2010, 63, 371.	0.9	4
44	Electronic Spectra of Two Long-Lived Photoproducts: Double-Proton Transfer in 7-Hydroxyquinoline Dimer in a 2-Methyltetrahydrofuran Glass Matrix. Journal of Physical Chemistry A, 2010, 114, 5041-5048.	2.5	9
45	Isotopomer Fractionation in the UV Photolysis of N2O: 3. 3D Ab Initio Surfaces and Anharmonic Effectsâ€. Journal of Physical Chemistry A, 2010, 114, 9700-9708.	2.5	10
46	Nonadiabatic ab Initio Dynamics of a Model Protonated Schiff Base of 9-cis Retinal. Journal of Physical Chemistry A, 2010, 114, 8190-8201.	2.5	30
47	Fluorescence and chemiluminescence properties of indolylmaleimides: experimental and theoretical studies. Physical Chemistry Chemical Physics, 2010, 12, 9783.	2.8	11
48	Future perspectives of nonadiabatic chemical dynamics. Chemical Science, 2010, 1, 663.	7.4	47
49	Control of Chemical Dynamics by Lasers: Theoretical Considerations. Journal of Physical Chemistry A, 2010, 114, 6171-6187.	2.5	12
50	INITIAL ROTATIONAL QUANTUM STATE EXCITATION AND ISOTOPIC EFFECTS FOR THE O (¹ D)+ HCl â†' OH+Cl (OCl+H) REACTION. Journal of Theoretical and Computational Chemistry, 2009, 08, 1003-1024.	1.8	3
51	Nonadiabatic ab Initio Dynamics of Two Models of Schiff Base Retinal. Journal of Physical Chemistry A, 2009, 113, 4356-4366.	2.5	51
52	Carbonyl sulfide isotopologues: Ultraviolet absorption cross sections and stratospheric photolysis. Journal of Chemical Physics, 2009, 131, 024307.	3.0	24
53	Quantum mechanical study of atomic hydrogen interaction with a fluorinated boron-substituted coronene radical. Journal of Physics Condensed Matter, 2009, 21, 144209.	1.8	2
54	Intramolecular energy transfer in 3-amino-N-(7′-methoxy-4′-methylcoumaryl)phthalimide. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 208, 21-26.	3.9	10

#	Article	IF	CITATIONS
55	Theoretical Study of Photophysical Properties of Bisindolylmaleimide Derivatives. Journal of Physical Chemistry A, 2009, 113, 8213-8220.	2.5	22
56	Ab initio study of sulfur isotope fractionation in the reaction of OCS with OH. Chemical Physics Letters, 2008, 450, 214-220.	2.6	27
57	Raman spectroscopic study on isomers of photochromic 1,2-bis(2,5-dimethyl-3-thienyl)perfluorocyclopentene in crystal and stability of the closed-ring forms in the open-ring forms. Chemical Physics Letters, 2008, 454, 42-48.	2.6	12
58	Quantum Mechanical Calculation of Energy Dependence of OCI/OH Product Branching Ratio and Product Quantum State Distributions for the O(¹ <i>>O(i) + HCI Reaction on All Three Contributing Electronic State Potential Energy Surfaces. Journal of Physical Chemistry A, 2008, 112, 7947-7960.</i>	2.5	14
59	Quantum Calculation of Ro-vibrational States:  Methodology and DOCl Application Results. Journal of Physical Chemistry A, 2008, 112, 4141-4147.	2.5	6
60	Chemiluminescence Change of Polyphenol Dendrimers with Different Core Molecules. Organic Letters, 2008, 10, 5171-5174.	4.6	7
61	Collision Energy Dependence of the $O(1D)$ + HCl $\hat{a}\dagger$ OH + Cl(2P) Reaction Studied by Crossed Beam Scattering and Quasiclassical Trajectory Calculations on Ab Initio Potential Energy Surfaces. Journal of Physical Chemistry A, 2008, 112, 818-825.	2.5	22
62	Quantum dynamical study of the O(D1)+HCl reaction employing three electronic state potential energy surfaces. Journal of Chemical Physics, 2008, 128, 014308.	3.0	21
63	The vibrational structure of the XÌfAllâ^'AÌfBll and AÌfBllâ^'BÌfAll band systems of GeH2â^•GeD2 based on g potential energy surfaces. Journal of Chemical Physics, 2007, 126, 044313.	ilobal 3.0	5
64	Bisindolylmaleimides with Large Stokes Shift and Long-Lasting Chemiluminescence Properties. Organic Letters, 2007, 9, 3583-3586.	4.6	45
65	Remarkable suppression of the excited-state double-proton transfer in the 7-azaindole dimer due to substitution of the dimethylamino group studied by electronic spectroscopy in the gas phase. Chemical Physics Letters, 2007, 443, 194-198.	2.6	9
66	HOCl Ro-Vibrational Bound-State Calculations for Nonzero Total Angular Momentumâ€. Journal of Physical Chemistry A, 2006, 110, 5468-5474.	2.5	6
67	Atomic hydrogen transmission through five-membered carbon ring by the mechanism of non-adiabatic tunneling. Chemical Physics, 2006, 324, 721-732.	1.9	10
68	Theoretical study of water-induced oxidation reaction on a bare Si surface: $H2O+Si(100)\hat{a}\in (2\tilde{A}-1)$. Chemical Physics Letters, 2006, 424, 133-138.	2.6	12
69	Laser control of reactions of photoswitching functional molecules. Journal of Chemical Physics, 2006, 125, 034307.	3.0	32
70	Ab initio nonadiabatic quantum dynamics of cyclohexadiene/hexatriene ultrafast photoisomerization. Journal of Chemical Physics, 2006, 124, 084313.	3.0	78
71	Theoretical transition probabilities for the $A \hat{f} \hat{l} + 1$ system of AINC and AICN isomers based on global potential energy surfaces. Journal of Chemical Physics, 2006, 124, 224301.	3.0	5
72	Isotope effects in the dissociation of the BlfAll state of SiH2, SiHD, and SiD2 using three-dimensional wave packet propagation. Journal of Chemical Physics, 2006, 124, 114308.	3.0	5

#	Article	IF	CITATIONS
73	Ab initio calculated structures of conformers for 1,3-dimethoxy-p-tert-butylcalix[4]crown-5-ether complexed with potassium cation. Computational and Theoretical Chemistry, 2005, 722, 117-123.	1.5	8
74	A theoretical study of cyclohexadiene/hexatriene photochemical interconversion: multireference configuration interaction potential energy surfaces and transition probabilities for the radiationless decays. Chemical Physics Letters, 2005, 401, 487-491.	2.6	52
75	H atom-induced oxidation reaction on water-terminated Si surface, $2H + H2O/Si(1\ 0\ 0)$ â \in "(2 Å $-\ 1$): A theoretical study. Chemical Physics Letters, 2005, 412, 347-352.	2.6	2
76	Assignment of surface IR absorption spectra observed in the oxidation reactions: 2H+H2O/Si(100) and H2O+H/Si(100). Surface Science, 2005, 575, 330-342.	1.9	24
77	Vibrational energies for the XÌfAll, AÌfBll, and BÌfAll states of SiH2â°•SiD2 and related transition probabilities based on global potential energy surfaces. Journal of Chemical Physics, 2005, 122, 144307.	3.0	8
78	THEORETICAL TRANSITION PROBABILITIES FOR THE \$ilde{A}^{2}A_{1} -ilde{X}^{2}B_{1}\$ SYSTEM OF H2O+ AND D2O+ AND RELATED FRANCK–CONDON FACTORS BASED ON GLOBAL POTENTIAL ENERGY SURFACES. Journal of Theoretical and Computational Chemistry, 2005, 04, 225-245.	1.8	1
79	Theoretical analysis of the oxygen insertion process in the oxidation reactions of H2O+H/Si(100) and 2H+H2O/Si(100): a molecular orbital calculation and an analysis of tunneling reaction. Chemical Physics Letters, 2004, 383, 523-527.	2.6	8
80	Analysis of the Ultraviolet Absorption Cross Sections of Six Isotopically Substituted Nitrous Oxide Species Using 3D Wave Packet Propagationâ€. Journal of Physical Chemistry A, 2004, 108, 8905-8913.	2.5	56
81	Three-pairs of doublet bands assigned toSiH2scissoring modes observed inH2O-induced oxidation of Si(100) surfaces. Physical Review B, 2004, 69, .	3.2	9
82	Theoretical study of vibrational spectra of p-tert-butylcalix[4]crown-6-ether complexed with ethyl ammonium cation. Chemical Physics Letters, 2003, 374, 572-576.	2.6	6
83	He*(2 3S) penning ionization of H2S. II. Formation of the SH+(A 3Î) and H2S+(Ã 2A1) ions. Journal of Chemical Physics, 2003, 119, 5882-5888.	3.0	4
84	He*(2 3S) Penning ionization of H2S. I. Theoretical Franck–Condon factors for the H2S(X̃ 1A1,v′=0)→H2S+(X̃ 2B1,Ã 2A1) ionization and H2S+(ÖX̃) transition. Journal of Ch 119, 5874-5881.	e s nocal Phy	/s/lcs, 2003,
85	Millimeter-wave spectroscopy of the internal-rotation band of the Heâ€"HCN complex and the intermolecular potential energy surface. Journal of Chemical Physics, 2002, 117, 7041-7050.	3.0	29
86	CHEMICAL REACTIONS IN THE O(1D) + HCl SYSTEM II Journal of Theoretical and Computational Chemistry, 2002, 01, 275-284.	1.8	15
87	CHEMICAL REACTIONS IN THE O(1D) + HCl SYSTEM I Journal of Theoretical and Computational Chemistry, 2002, 01, 263-273.	1.8	23
88	CHEMICAL REACTIONS IN THE O(1D) + HCl SYSTEM III Journal of Theoretical and Computational Chemistry, 2002, 01, 285-293.	1.8	12
89	Formation of HCl+(A2Σ+) and HBr+(A2Σ+) Resulting from He(23S) Penning Ionization of HCl and HBr. Journal of Physical Chemistry A, 2002, 106, 6068-6074.	2.5	3
90	Non-Adiabatic Bending Dissociation of OCS Induced by Orbital Unlocking. ACS Symposium Series, 2002, , 300-313.	0.5	2

#	ARTICLE	lF	CITATIONS
91	Nuclear motion driven by the Rennerâ \in "Teller effect as observed in the resonant Auger decay to the XÌ f 2Î electronic ground state of N2O+. Journal of Chemical Physics, 2001, 115, 864-869.	3.0	31
92	A comparative study of the quantum dynamics and rate constants of the O(3P)+HCl reaction described by two potential surfaces. Journal of Chemical Physics, 2000, 113, 227-236.	3.0	31
93	Theoretical study of the potential energy surfaces and bound states of HCP. Journal of Chemical Physics, 2000, 112, 5866-5876.	3.0	9
94	A theoretical study on vibrational spectra of C84 fullerenes: results for C2, D2, and D2d isomers. Computational and Theoretical Chemistry, 1999, 461-462, 453-461.	1.5	13
95	Nonadiabatic bending dissociation in 16 valence electron system OCS. Journal of Chemical Physics, 1998, 109, 5778-5794.	3.0	114
96	Theoretical study of the potential energy surfaces and dynamics of CaNC/CaCN. Journal of Chemical Physics, 1997, 106, 8073-8083.	3.0	19
97	Molecular switching in one-dimensional finite periodic nonadiabatic tunneling potential systems. Journal of Chemical Physics, 1997, 107, 5445-5459.	3.0	22
98	Potential energy surfaces of some low-lying states of fluoroformyl radical FCO. Chemical Physics, 1994, 184, 97-106.	1.9	1
99	Theoretical study of the photodissociation cross sections and the photodissociation dynamics of hypochlorous acid. The Journal of Physical Chemistry, 1992, 96, 2103-2111.	2.9	47
100	The excimer emission spectra and the interaction potential energy of the ground and excited states of He and alkali-metal ion systems. Chemical Physics Letters, 1992, 192, 443-450.	2.6	6
101	Theoretical studies of vacuum ultraviolet emission spectra of NeLi+ and ArLi+. Journal of Chemical Physics, 1991, 94, 3707-3714.	3.0	12
102	Theoretical emission spectra of NeAl+ and ArAl+ in the vacuum ultraviolet region. Chemical Physics Letters, 1988, 146, 275-279.	2.6	4