
Michael Kracht

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6463606/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SIAH ubiquitin E3 ligases as modulators of inflammatory gene expression. Heliyon, 2022, 8, e09029.	3.2	2
2	Thapsigargin: key to new host-directed coronavirus antivirals?. Trends in Pharmacological Sciences, 2022, 43, 557-568.	8.7	8
3	Targeting histone acetylation in pulmonary hypertension and right ventricular hypertrophy. British Journal of Pharmacology, 2021, 178, 54-71.	5.4	69
4	Regulation of Transcription Factor NF-κB in Its Natural Habitat: The Nucleus. Cells, 2021, 10, 753.	4.1	14
5	TRAF6 Phosphorylation Prevents Its Autophagic Degradation and Re-Shapes LPS-Triggered Signaling Networks. Cancers, 2021, 13, 3618.	3.7	4
6	Multi-level inhibition of coronavirus replication by chemical ER stress. Nature Communications, 2021, 12, 5536.	12.8	54
7	MEKK1-Dependent Activation of the CRL4 Complex Is Important for DNA Damage-Induced Degradation of p21 and DDB2 and Cell Survival. Molecular and Cellular Biology, 2021, 41, e0008121.	2.3	6
8	Monitoring the Levels of Cellular NF- $\hat{I}^{e}B$ Activation States. Cancers, 2021, 13, 5351.	3.7	15
9	Differential effects of right and left heart failure on skeletal muscle in rats. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 1830-1849.	7.3	13
10	Chromatin Targeting of HIPK2 Leads to Acetylation-Dependent Chromatin Decondensation. Frontiers in Cell and Developmental Biology, 2020, 8, 852.	3.7	9
11	Mutual regulation of metabolic processes and proinflammatory NF-κB signaling. Journal of Allergy and Clinical Immunology, 2020, 146, 694-705.	2.9	51
12	Dynamic mRNP Remodeling in Response to Internal and External Stimuli. Biomolecules, 2020, 10, 1310.	4.0	16
13	CTRP9 Mediates Protective Effects in Cardiomyocytes via AMPK- and Adiponectin Receptor-Mediated Induction of Anti-Oxidant Response. Cells, 2020, 9, 1229.	4.1	19
14	HDAC3 functions as a positive regulator in Notch signal transduction. Nucleic Acids Research, 2020, 48, 3496-3512.	14.5	31
15	SIAH2-mediated and organ-specific restriction of HO-1 expression by a dual mechanism. Scientific Reports, 2020, 10, 2268.	3.3	17
16	Distinct ILâ€Iαâ€responsive enhancers promote acute and coordinated changes in chromatin topology in a hierarchical manner. EMBO Journal, 2020, 39, e101533.	7.8	25
17	Single-Cell Analysis of Multiple Steps of Dynamic NF-κB Regulation in Interleukin-1α-Triggered Tumor Cells Using Proximity Ligation Assays. Cancers, 2019, 11, 1199.	3.7	8
18	Chemotherapeutic Drugs Inhibiting Topoisomerase 1 Activity Impede Cytokine-Induced and NF-κB p65-Regulated Gene Expression. Cancers, 2019, 11, 883.	3.7	11

#	Article	IF	CITATIONS
19	ULK1/2 Restricts the Formation of Inducible SINT-Speckles, Membraneless Organelles Controlling the Threshold of TBK1 Activation. IScience, 2019, 19, 527-544.	4.1	13
20	Phosphoproteome Analysis of Cells Infected with Adapted and Nonadapted Influenza A Virus Reveals Novel Pro- and Antiviral Signaling Networks. Journal of Virology, 2019, 93, .	3.4	19
21	CDK1-mediated phosphorylation at H2B serine 6 is required for mitotic chromosome segregation. Journal of Cell Biology, 2019, 218, 1164-1181.	5.2	21
22	NFâ€ÎºB p65 dimerization and DNAâ€binding is important for inflammatory gene expression. FASEB Journal, 2019, 33, 4188-4202.	0.5	30
23	PHD3 Controls Lung Cancer Metastasis and Resistance to EGFR Inhibitors through TGFα. Cancer Research, 2018, 78, 1805-1819.	0.9	38
24	RNAi-Based Identification of Gene-Specific Nuclear Cofactor Networks Regulating Interleukin-1 Target Genes. Frontiers in Immunology, 2018, 9, 775.	4.8	7
25	The Direct and Indirect Roles of NF-κB in Cancer: Lessons from Oncogenic Fusion Proteins and Knock-in Mice. Biomedicines, 2018, 6, 36.	3.2	15
26	The Crosstalk of Endoplasmic Reticulum (ER) Stress Pathways with NF-κB: Complex Mechanisms Relevant for Cancer, Inflammation and Infection. Biomedicines, 2018, 6, 58.	3.2	94
27	The CCR4-NOT complex contributes to repression of Major Histocompatibility Complex class II transcription. Scientific Reports, 2017, 7, 3547.	3.3	22
28	Testing the Effects of SIAH Ubiquitin E3 Ligases on Lysine Acetyl Transferases. Methods in Molecular Biology, 2017, 1510, 297-312.	0.9	0
29	The NF-κB-dependent and -independent transcriptome and chromatin landscapes of human coronavirus 229E-infected cells. PLoS Pathogens, 2017, 13, e1006286.	4.7	89
30	The Influenza A Virus Genotype Determines the Antiviral Function of NF-κB. Journal of Virology, 2016, 90, 7980-7990.	3.4	15
31	HIPK family kinases bind and regulate the function of the CCR4-NOT complex. Molecular Biology of the Cell, 2016, 27, 1969-1980.	2.1	17
32	K63-Ubiquitylation and TRAF6 Pathways Regulate Mammalian P-Body Formation and mRNA Decapping. Molecular Cell, 2016, 62, 943-957.	9.7	35
33	Cyclin-Dependent Kinases as Coregulators of Inflammatory Gene Expression. Trends in Pharmacological Sciences, 2016, 37, 101-113.	8.7	75
34	The Activation of IL-1-Induced Enhancers Depends on TAK1 Kinase Activity and NF-κB p65. Cell Reports, 2015, 10, 726-739.	6.4	41
35	C/EBPβ is a transcriptional key regulator of IL-36α in murine macrophages. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 966-978.	1.9	16
36	Copper Metabolism Domain-Containing 1 Represses Genes That Promote Inflammation and Protects Mice From Colitis and Colitis-Associated Cancer. Gastroenterology, 2014, 147, 184-195.e3.	1.3	33

#	Article	IF	CITATIONS
37	Identification of Two Forms of TNF Tolerance in Human Monocytes: Differential Inhibition of NF-κB/AP-1– and PP1-Associated Signaling. Journal of Immunology, 2014, 192, 3143-3155.	0.8	14
38	Cyclin-Dependent Kinase 6 Is a Chromatin-Bound Cofactor for NF-κB-Dependent Gene Expression. Molecular Cell, 2014, 53, 193-208.	9.7	129
39	The intricate interplay between RNA viruses and NF-κB. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 2754-2764.	4.1	60
40	The cytokine-induced conformational switch of nuclear factor κB p65 is mediated by p65 phosphorylation. Biochemical Journal, 2014, 457, 401-413.	3.7	49
41	Induction of a broad spectrum of inflammation-related genes by Coxsackievirus B3 requires Interleukin-1 signaling. Medical Microbiology and Immunology, 2013, 202, 11-23.	4.8	12
42	The coactivator role of histone deacetylase 3 in IL-1-signaling involves deacetylation of p65 NF-κB. Nucleic Acids Research, 2013, 41, 90-109.	14.5	218
43	Regulation of TAK1/TAB1-Mediated IL-1Î ² Signaling by Cytoplasmic PPARÎ ² /Î ⁷ . PLoS ONE, 2013, 8, e63011.	2.5	15
44	Human Primary Keratinocytes Show Restricted Ability to Up-regulate Suppressor of Cytokine Signaling (SOCS)3 Protein Compared with Autologous Macrophages. Journal of Biological Chemistry, 2012, 287, 9923-9930.	3.4	14
45	Cyclin-Dependent Kinase 6 Phosphorylates NF-κB P65 at Serine 536 and Contributes to the Regulation of Inflammatory Gene Expression. PLoS ONE, 2012, 7, e51847.	2.5	71
46	Identification and Functional Characterization of Novel Phosphorylation Sites in TAK1-Binding Protein (TAB) 1. PLoS ONE, 2011, 6, e29256.	2.5	21
47	Signal integration, crosstalk mechanisms and networks in the function of inflammatory cytokines. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 2165-2175.	4.1	81
48	c-Jun N-terminal kinase phosphorylates DCP1a to control formation of P bodies. Journal of Cell Biology, 2011, 194, 581-596.	5.2	68
49	Interleukin-1 Activates Synthesis of Interleukin-6 by Interfering with a KH-type Splicing Regulatory Protein (KSRP)-dependent Translational Silencing Mechanism. Journal of Biological Chemistry, 2011, 286, 33279-33288.	3.4	47
50	IL-1-induced Post-transcriptional Mechanisms Target Overlapping Translational Silencing and Destabilizing Elements in ll̂ºBζ mRNA*. Journal of Biological Chemistry, 2010, 285, 29165-29178.	3.4	29
51	IL-1 family nomenclature. Nature Immunology, 2010, 11, 973-973.	14.5	294
52	Interleukin-1β (IL-1β) Processing Pathway. Science Signaling, 2010, 3, cm2.	3.6	124
53	Interleukin-1 (IL-1) Pathway. Science Signaling, 2010, 3, cm1.	3.6	589
54	Phosphorylation of NFâ€₽̂B p65 at Ser468 controls its COMMD1â€dependent ubiquitination and target geneâ€specific proteasomal elimination. EMBO Reports, 2009, 10, 381-386.	4.5	149

#	Article	IF	CITATIONS
55	Targeting innate immunity protein kinase signalling in inflammation. Nature Reviews Drug Discovery, 2009, 8, 480-499.	46.4	307
56	c-Jun Controls Histone Modifications, NF-κB Recruitment, and RNA Polymerase II Function To Activate the <i>ccl2</i> Gene. Molecular and Cellular Biology, 2008, 28, 4407-4423.	2.3	83
57	Transcriptional Regulation of ECR-1 by the Interleukin-1-JNK-MKK7-c-Jun Pathway. Journal of Biological Chemistry, 2008, 283, 12120-12128.	3.4	76
58	Functional Analysis of KSRP Interaction with the AU-Rich Element of Interleukin-8 and Identification of Inflammatory mRNA Targets. Molecular and Cellular Biology, 2007, 27, 8388-8400.	2.3	131
59	Inhibition of mRNA deadenylation and degradation by different types of cell stress. Biological Chemistry, 2006, 387, 323-7.	2.5	38
60	Small interfering RNAs generated by recombinant dicer induce inflammatory gene expression independent from the TAK1-NFκB-MAPK signaling pathways. Biochemical and Biophysical Research Communications, 2006, 347, 566-573.	2.1	7
61	The Yersinia enterocolitica effector YopP inhibits host cell signalling by inactivating the protein kinase TAK1 in the ILâ€I signalling pathway. EMBO Reports, 2006, 7, 838-844.	4.5	52
62	Inducible Phosphorylation of NF-κB p65 at Serine 468 by T Cell Costimulation Is Mediated by IKKϵ. Journal of Biological Chemistry, 2006, 281, 6175-6183.	3.4	113
63	Silencing or permanent activation: host-cell responses in models of persistent Chlamydia pneumoniae infection. Cellular Microbiology, 2005, 7, 1099-1108.	2.1	31
64	Simultaneous Blockade of NFκB, JNK, and p38 MAPK by a Kinase-inactive Mutant of the Protein Kinase TAK1 Sensitizes Cells to Apoptosis and Affects a Distinct Spectrum of Tumor Necrosis Target Genes. Journal of Biological Chemistry, 2005, 280, 27728-27741.	3.4	58
65	MEK1-dependent Delayed Expression of Fos-related Antigen-1 Counteracts c-Fos and p65 NF-κB-mediated Interleukin-8 Transcription in Response to Cytokines or Growth Factors. Journal of Biological Chemistry, 2005, 280, 9706-9718.	3.4	100
66	Constitutive and Interleukin-1-inducible Phosphorylation of p65 NF-Î [®] B at Serine 536 Is Mediated by Multiple Protein Kinases Including IÎ [®] B Kinase (IKK)-α, IKKÎ ² , IKKIµ, TRAF Family Member-associated (TANK)-binding Kinase 1 (TBK1), and an Unknown Kinase and Couples p65 to TATA-binding Protein-associated Factor II31-mediated Interleukin-8 Transcription. Journal of Biological Chemistry,	3.4	323
67	2004, 279, 55633-55643. Phosphorylation of Serine 468 by GSK-3β Negatively Regulates Basal p65 NF-κB Activity. Journal of Biological Chemistry, 2004, 279, 49571-49574.	3.4	213
68	Transient and Selective NF-κB p65 Serine 536 Phosphorylation Induced by T Cell Costimulation Is Mediated by IκB Kinase β and Controls the Kinetics of p65 Nuclear Import. Journal of Immunology, 2004, 172, 6336-6344.	0.8	205
69	NF-κB: A Multifaceted Transcription Factor Regulated at Several Levels. ChemBioChem, 2004, 5, 1348-1358.	2.6	220
70	NF-ϰB: A Multifaceted Transcription Factor Regulated at Several Levels. ChemInform, 2004, 35, no.	0.0	0
71	Comparative analysis of T-cell costimulation and CD43 activation reveals novel signaling pathways and target genes. Blood, 2004, 104, 3302-3304.	1.4	31
72	Disruption of the c-JUN-JNK Complex by a Cell-permeable Peptide Containing the c-JUN δDomain Induces Apoptosis and Affects a Distinct Set of Interleukin-1-induced Inflammatory Genes. Journal of Biological Chemistry, 2003, 278, 40213-40223.	3.4	83

#	Article	IF	CITATIONS
73	TRANSCRIPTIONAL AND POST-TRANSCRIPTIONAL CONTROL OF GENE EXPRESSION IN INFLAMMATION. Cytokine, 2002, 20, 91-106.	3.2	215
74	Multiple control of interleukin-8 gene expression. Journal of Leukocyte Biology, 2002, 72, 847-55.	3.3	728
75	The NF-κB Repressing Factor Is Involved in Basal Repression and Interleukin (IL)-1-induced Activation of IL-8 Transcription by Binding to a Conserved NF-κB-flanking Sequence Element. Journal of Biological Chemistry, 2001, 276, 4501-4508.	3.4	114
76	ll°B-independent control of NF-l°B activity by modulatory phosphorylations. Trends in Biochemical Sciences, 2001, 26, 186-190.	7.5	220
77	The MAPK Kinase Kinase TAK1 Plays a Central Role in Coupling the Interleukin-1 Receptor to Both Transcriptional and RNA-targeted Mechanisms of Gene Regulation. Journal of Biological Chemistry, 2001, 276, 3508-3516.	3.4	85
78	Induction of Interleukin-8 Synthesis Integrates Effects on Transcription and mRNA Degradation from at Least Three Different Cytokine- or Stress-Activated Signal Transduction Pathways. Molecular and Cellular Biology, 1999, 19, 6742-6753.	2.3	274
79	Stress-activated Protein Kinase/Jun N-terminal Kinase Is Required for Interleukin (IL)-1-induced IL-6 and IL-8 Gene Expression in the Human Epidermal Carcinoma Cell Line KB. Journal of Biological Chemistry, 1998, 273, 23681-23689.	3.4	88
80	The Interleukin-1 Receptor Accessory Protein (IL-1RAcP) Is Essential for IL-1-induced Activation of Interleukin-1 Receptor-associated Kinase (IRAK) and Stress-activated Protein Kinases (SAP Kinases). Journal of Biological Chemistry, 1997, 272, 7727-7731.	3.4	279
81	Selective activation of JNK/SAPK by interleukin-1 in rabbit liver is mediated by MKK7. FEBS Letters, 1997, 418, 144-148.	2.8	41