
Nicole Grobert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6463054/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rational synthesis of polymer coated inorganic nanoparticles-MWCNT hybrids via solvophobic effects. Carbon Trends, 2022, 6, 100141.	3.0	0
2	Chemo-bio catalysis using carbon supports: application in H ₂ -driven cofactor recycling. Chemical Science, 2021, 12, 8105-8114.	7.4	12
3	Nacre-like alumina with unique high strain rate capabilities. Journal of the European Ceramic Society, 2020, 40, 417-426.	5.7	26
4	Biocatalytic hydrogenations on carbon supports. Methods in Enzymology, 2020, 630, 303-325.	1.0	5
5	Synthesis, characterisation and applications of core–shell carbon–hexagonal boron nitride nanotubes. Nanoscale Advances, 2020, 2, 4996-5014.	4.6	7
6	Janus Structured Multiwalled Carbon Nanotube Forests for Simple Asymmetric Surface Functionalization and Patterning at the Nanoscale. ACS Applied Nano Materials, 2020, 3, 7554-7562.	5.0	2
7	Understanding the conversion mechanism and performance of monodisperse FeF2 nanocrystal cathodes. Nature Materials, 2020, 19, 644-654.	27.5	97
8	Single source precursor route to iron sulfide nanomaterials for energy storage. Chemical Physics Letters, 2020, 739, 136993.	2.6	5
9	Rapid, Heterogeneous Biocatalytic Hydrogenation and Deuteration in a Continuous Flow Reactor. ChemCatChem, 2020, 12, 3913-3918.	3.7	15
10	Carbon nanotube columns for flow systems: influence of synthesis parameters. Nanoscale Advances, 2020, 2, 5874-5882.	4.6	2
11	Electrophoretic Fabrication of Robust Carbon Nanotube "Buckyfilms―for Flexible Electronics. ACS Applied Nano Materials, 2019, 2, 5190-5199.	5.0	3
12	Singleâ€Step Spray Printing of Symmetric Allâ€Organic Solidâ€State Batteries Based on Porous Textile Dye Electrodes. Advanced Energy Materials, 2019, 9, 1901418.	19.5	23
13	MWCNT-coated alumina micro-platelets for nacre-like biomimetic composites. Carbon, 2019, 145, 586-595.	10.3	10
14	The application of the surface energy based solubility parameter theory for the rational design of polymer-functionalized MWCNTs. Physical Chemistry Chemical Physics, 2019, 21, 5331-5334.	2.8	3
15	Low ost Chitosanâ€Đerived Nâ€Đoped Carbons Boost Electrocatalytic Activity of Multiwall Carbon Nanotubes. Advanced Functional Materials, 2018, 28, 1707284.	14.9	68
16	High-frequency supercapacitors based on doped carbon nanostructures. Carbon, 2018, 126, 305-312.	10.3	65
17	Direct Measurement of the Surface Energy of Graphene. Nano Letters, 2017, 17, 3815-3821.	9.1	95
18	Vertically-aligned silicon carbide nanowires as visible-light-driven photocatalysts. Applied Catalysis B: Environmental, 2017, 218, 267-276.	20.2	25

#	Article	IF	CITATIONS
19	A carbon-nanotube based nano-furnace for in-situ restructuring of a magnetoelectric oxide. Carbon, 2017, 114, 291-300.	10.3	5
20	H ₂ -Driven biocatalytic hydrogenation in continuous flow using enzyme-modified carbon nanotube columns. Chemical Communications, 2017, 53, 9839-9841.	4.1	48
21	The effect of multi-wall carbon nanotube morphology on electrical and mechanical properties of polyurethane nanocomposites. Composites Part A: Applied Science and Manufacturing, 2017, 102, 305-313.	7.6	36
22	Time dependent decomposition of ammonia borane for the controlled production of 2D hexagonal boron nitride. Scientific Reports, 2017, 7, 14297.	3.3	31
23	Targeted removal of copper foil surface impurities for improved synthesis of CVD graphene. Carbon, 2017, 122, 207-216.	10.3	43
24	Direct visualization of electrical transport-induced alloy formation and composition changes in filled multi-wall carbon nanotubes by in situ scanning transmission electron microscopy. Journal of Alloys and Compounds, 2017, 721, 501-505.	5.5	2
25	Ultra-stiff large-area carpets of carbon nanotubes. Nanoscale, 2016, 8, 11993-12001.	5.6	4
26	Metal-free chemical vapor deposition growth of graphitic tubular structures on engineered perovskite oxide substrates. Carbon, 2016, 99, 591-598.	10.3	4
27	Classification of carbon nanostructure families occurring in a chemically activated arc discharge reaction. RSC Advances, 2016, 6, 24912-24920.	3.6	7
28	Morphology $\hat{a} \in \hat{a}$ composition correlations in carbon nanotubes synthesised with nitrogen and phosphorus containing precursors. Physical Chemistry Chemical Physics, 2015, 17, 2137-2142.	2.8	6
29	Aerosol-assisted chemical vapour deposition synthesis of multi-wall carbon nanotubes: III. Towards upscaling. Carbon, 2015, 88, 148-156.	10.3	33
30	Ceramic composites from mesoporous silica coated multi-wall carbonÂnanotubes. Microporous and Mesoporous Materials, 2015, 217, 159-166.	4.4	18
31	Rapid epitaxy-free graphene synthesis on silicidated polycrystalline platinum. Nature Communications, 2015, 6, 7536.	12.8	46
32	Controlling pyridinic, pyrrolic, graphitic, and molecular nitrogen in multi-wall carbon nanotubes using precursors with different N/C ratios in aerosol assisted chemical vapor deposition. Physical Chemistry Chemical Physics, 2015, 17, 23741-23747.	2.8	61
33	Stiffness, strength and interwall sliding in aligned and continuous multi-walled carbon nanotube/glass composite microcantilevers. Acta Materialia, 2015, 100, 118-125.	7.9	9
34	WS ₂ 2D nanosheets in 3D nanoflowers. Chemical Communications, 2014, 50, 12360-12362.	4.1	26
35	Comparison of carbon materials as electrodes for enzyme electrocatalysis: hydrogenase as a case study. Faraday Discussions, 2014, 172, 473-496.	3.2	28
36	Boron- and nitrogen-doped multi-wall carbon nanotubes for gas detection. Carbon, 2014, 66, 662-673.	10.3	139

#	Article	IF	CITATIONS
37	Effects of temperature and ammonia flow rate on the chemical vapour deposition growth of nitrogen-doped graphene. Physical Chemistry Chemical Physics, 2014, 16, 19446.	2.8	21
38	A Graphene Surface Force Balance. Langmuir, 2014, 30, 11485-11492.	3.5	21
39	Versatile in Situ Gas Analysis Apparatus for Nanomaterials Reactors. Analytical Chemistry, 2014, 86, 8850-8856.	6.5	4
40	Probing the Bonding in Nitrogen-Doped Graphene Using Electron Energy Loss Spectroscopy. ACS Nano, 2013, 7, 7145-7150.	14.6	69
41	In situ engineering of NanoBud geometries. Chemical Communications, 2013, 49, 10956.	4.1	15
42	Layer-by-layer spray deposition and unzipping of single-wall carbon nanotube-based thin film electrodes for electrochemical capacitors. Carbon, 2013, 61, 525-536.	10.3	38
43	Controlled growth of Ni nanocrystals on SrTiO3 and their application in the catalytic synthesis of carbon nanotubes. Chemical Communications, 2013, 49, 3748.	4.1	18
44	Flame spray pyrolysis generated transition metal oxide nanoparticles as catalysts for the growth of carbon nanotubes. RSC Advances, 2013, 3, 20040.	3.6	6
45	Aerosol-assisted chemical vapour deposition synthesis of multi-wall carbon nanotubes: II. An analytical study. Carbon, 2013, 58, 159-169.	10.3	37
46	Aerosol-assisted chemical vapour deposition synthesis of multi-wall carbon nanotubes: I. Mapping the reactor. Carbon, 2013, 58, 151-158.	10.3	36
47	Synthesis of carbon nanocoil forests on BaSrTiO3 substrates with the aid of a Sn catalyst. Carbon, 2013, 60, 5-15.	10.3	12
48	Controlling the Orientation, Edge Geometry, and Thickness of Chemical Vapor Deposition Graphene. ACS Nano, 2013, 7, 1351-1359.	14.6	182
49	Encyclopedia of Carbon Nanoforms. , 2012, , 1-65.		2
50	Customised transition metal oxide nanoparticles for the controlled production of carbon nanostructures. RSC Advances, 2012, 2, 3748.	3.6	7
51	Boron-Mediated Nanotube Morphologies. ACS Nano, 2012, 6, 7800-7805.	14.6	20
52	Polarized light microscopy of chemical-vapor-deposition-grown graphene on copper. Applied Physics Letters, 2012, 100, 213103.	3.3	9
53	Tailoring gas sensing properties of multi-walled carbon nanotubes by in situ modification with Si, P, and N. Carbon, 2012, 50, 2816-2823.	10.3	39
54	Tuning the magnetic properties of iron-filled carbon nanotubes. Carbon, 2012, 50, 3674-3681.	10.3	57

#	Article	IF	CITATIONS
55	N-SWCNTs production by aerosol-assisted CVD method. Chemical Physics Letters, 2012, 538, 108-111.	2.6	16
56	Investigating the Structural, Electronic, and Chemical Evolution of B-Doped Multi-walled Carbon Nanotubes as a Result of Joule Heating. Journal of Physical Chemistry C, 2011, 115, 25019-25022.	3.1	10
57	Facile, fast, and inexpensive synthesis of monodisperse amorphous Nickel-Phosphide nanoparticles of predefined size. Chemical Communications, 2011, 47, 4108.	4.1	31
58	Currentâ€Induced Restructuring and Chemical Modification of Nâ€Doped Multiâ€walled Carbon Nanotubes. Advanced Functional Materials, 2011, 21, 3933-3937.	14.9	10
59	Stable Dispersions of Nitrogen Containing Multi-Walled Carbon Nanotubes. Materials Express, 2011, 1, 201-209.	0.5	7
60	Processing and properties of aligned multi-walled carbon nanotube/aluminoborosilicate glass composites made by sol–gel processing. Carbon, 2010, 48, 2212-2217.	10.3	36
61	Comparison of structural changes in nitrogen and boron-doped multi-walled carbon nanotubes. Carbon, 2010, 48, 3033-3041.	10.3	111
62	A facile route to self-assembled Hg//MoSI nanowire networks. New Journal of Chemistry, 2010, 34, 2241.	2.8	0
63	Effect of the experimental parameters on the structure of nitrogen-doped carbon nanotubes produced by aerosol chemical vapour deposition. Carbon, 2009, 47, 30-37.	10.3	127
64	Spray deposited fluoropolymer/multi-walled carbon nanotube composite films with high dielectric permittivity at low percolation threshold. Carbon, 2009, 47, 561-569.	10.3	68
65	Heterojunctions between metals and carbon nanotubes as ultimate nanocontacts. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4591-4595.	7.1	110
66	Scanning Tunneling Microscopy and Spectroscopy of Nitrogen Doped Multi-Walled Carbon Nanotubes Produced by the Pyrolysis of Ferrocene and Benzylamine. Journal of Nanoscience and Nanotechnology, 2009, 9, 6139-6143.	0.9	7
67	The structure of 1D CuI crystals inside SWNTs. Journal of Microscopy, 2008, 232, 335-342.	1.8	36
68	Fabrication of carbon-nanotube-reinforced glass–ceramic nanocomposites by ultrasonic in situ sol–gel processing. Journal of Materials Chemistry, 2008, 18, 5344.	6.7	59
69	Doping of carbon nanotubes with nitrogen improves protein coverage whilst retaining correct conformation. Nanotechnology, 2008, 19, 384001.	2.6	16
70	Effect of Acid Treatment on the Structure and Electrical Properties of Nitrogen-Doped Multiwalled Carbon Nanotubes. Journal of Physical Chemistry C, 2008, 112, 1908-1912.	3.1	13
71	The Behaviour of 1D Cul Crystal@SWNT Nanocomposite under Electron Irradiation. AIP Conference Proceedings, 2008, , .	0.4	10
72	Tumbling motion of magnetic particles on a magnetic substrate induced by a rotational magnetic field. Physical Review E, 2008, 78, 021403.	2.1	55

#	Article	IF	CITATIONS
73	Lipid-Modulated Assembly of Magnetized Iron-Filled Carbon Nanotubes in Millimeter-Scale Structures. Japanese Journal of Applied Physics, 2007, 46, 2799-2805.	1.5	3
74	Carbon nanotubes – becoming clean. Materials Today, 2007, 10, 28-35.	14.2	294
75	Synthesis of SWCNT Rings Made by Two Y Junctions and Possible Applications in Electron Interferometry. Small, 2007, 3, 1900-1905.	10.0	19
76	Nanotubes – grow or go?. Materials Today, 2006, 9, 64.	14.2	26
77	Electrical conductance and breakdown in individual CNx multiwalled nanotubes. Applied Physics Letters, 2006, 89, 143110.	3.3	33
78	Zipper Mechanism of Nanotube Fusion: Theory and Experiment. Physical Review Letters, 2004, 92, 075504.	7.8	78
79	Microstructural investigations on zirconium oxide–carbon nanotube composites synthesized by hydrothermal crystallization. Carbon, 2004, 42, 1995-1999.	10.3	111
80	Preparation and characterisation of novel "sea-cucumber―like structures containing carbon and boron. Carbon, 2004, 42, 2223-2231.	10.3	11
81	Characterisation of conductive CVD carbon–glass fibres. Carbon, 2004, 42, 2349-2351.	10.3	6
82	Efficient encapsulation of gaseous nitrogen inside carbon nanotubes with bamboo-like structure using aerosol thermolysis. Chemical Physics Letters, 2004, 396, 167-173.	2.6	72
83	Microstructural characterization of C–SiC–carbon nanotube composite flakes. Carbon, 2004, 42, 1-4.	10.3	37
84	STM investigation of carbon nanotubes connected by functional groups. Materials Science and Engineering C, 2003, 23, 1007-1011.	7.3	31
85	Structure, transport and field-emission properties of compound nanotubes: CN x vs. BNC x (x <0.1). Applied Physics A: Materials Science and Processing, 2003, 76, 499-507.	2.3	89
86	Production and State-of-the-Art Characterization of Aligned Nanotubes with Homogeneous BCxN (1 â‰ ¤ €‰x â‰ ¤ €‰5) Compositions. Advanced Materials, 2003, 15, 1899-1903.	21.0	56
87	In-situ formation of carbon nanotubes in an alumina–nanotube composite by spray pyrolysis. Carbon, 2003, 41, 2737-2741.	10.3	37
88	Nonlinear Behavior in the Thermopower of Doped Carbon Nanotubes Due to Strong, Localized States. Nano Letters, 2003, 3, 839-842.	9.1	77
89	Selective Attachment of Gold Nanoparticles to Nitrogen-Doped Carbon Nanotubes. Nano Letters, 2003, 3, 275-277.	9.1	518
90	Experimental observation and quantum modeling of electron irradiation on single-wall carbon nanotubes. IEEE Nanotechnology Magazine, 2003, 2, 349-354.	2.0	14

#	Article	IF	CITATIONS
91	Cables of BN-insulated B–C–N nanotubes. Applied Physics Letters, 2003, 82, 1275-1277.	3.3	36
92	Experimental observation and quantum modeling of electron irradiation on single-wall carbon nanotubes. , 2003, , .		0
93	STM investigation of carbon nanotubes completely covered with functional groups. , 2003, , .		0
94	Exploring the carbon nanocosmos: doped nanotubes, networks, and other novel forms of carbon. , 2003, , .		0
95	Nanocages of layered BN: Super-high-pressure nanocells for formation of solid nitrogen. Journal of Chemical Physics, 2002, 116, 8523.	3.0	23
96	Hysteresis shift in Fe-filled carbon nanotubes due to \hat{I}^3 -Fe. Physical Review B, 2002, 65, .	3.2	114
97	SiO2-coated carbon nanotubes: theory and experiment. International Journal of Materials Research, 2002, 93, 455-458.	0.8	6
98	Doping and connecting carbon nanotubes. Molecular Crystals and Liquid Crystals, 2002, 387, 51-62.	0.9	8
99	Enhanced Electron Field Emission in B-doped Carbon Nanotubes. Nano Letters, 2002, 2, 1191-1195.	9.1	136
100	Nanotubes in a Flash–Ignition and Reconstruction. Science, 2002, 296, 705-705.	12.6	256
101	N-doping and coalescence of carbon nanotubes: synthesis and electronic properties. Applied Physics A: Materials Science and Processing, 2002, 74, 355-361.	2.3	392
102	Preparation of aligned multi-walled BN and B/C/N nanotubular arrays and their characterization using HRTEM, EELS and energy-filtered TEM. Physica B: Condensed Matter, 2002, 323, 60-66.	2.7	34
103	Synthetic routes to nanoscale BxCyNz architectures. Carbon, 2002, 40, 1665-1684.	10.3	164
104	Nanocomposites: synthesis and elemental mapping of aligned B–C–N nanotubes. Chemical Physics Letters, 2002, 360, 1-7.	2.6	28
105	Mössbauer Study of Iron-Containing Carbon Nanotubes. Hyperfine Interactions, 2002, 139/140, 535-542.	0.5	60
106	Identification of Electron Donor States in N-Doped Carbon Nanotubes. Nano Letters, 2001, 1, 457-460.	9.1	727
107	METAL ATOMS IN CARBON NANOTUBES AND RELATED NANOPARTICLES. International Journal of Modern Physics B, 2001, 15, 4037-4069.	2.0	70
108	Tungsten–niobium–sulfur composite nanotubes. Chemical Communications, 2001, , 121-122.	4.1	19

#	Article	IF	CITATIONS
109	Metal and alloy nanowires: Iron and invar inside carbon nanotubes. AIP Conference Proceedings, 2001, , .	0.4	5
110	Pure and aligned carbon nanotubes produced by the pyrolysis of benzene-based aerosols. AIP Conference Proceedings, 2001, , .	0.4	3
111	SiOx-coating of carbon nanotubes at room temperature. Chemical Physics Letters, 2001, 339, 41-46.	2.6	106
112	Pyrolytic production of aligned carbon nanotubes from homogeneously dispersed benzene-based aerosols. Chemical Physics Letters, 2001, 338, 101-107.	2.6	205
113	Graphitic cones in palladium catalysed carbon nanofibres. Chemical Physics Letters, 2001, 343, 241-250.	2.6	150
114	Magnetic and hysteretic properties of Fe-filled nanotubes. IEEE Transactions on Magnetics, 2001, 37, 2117-2119.	2.1	20
115	Carbon Nanotubes as Nanoreactors for Boriding Iron Nanowires. Advanced Materials, 2000, 12, 1356-1359.	21.0	37
116	Self-assembly of Si nanostructures. Chemical Physics Letters, 2000, 322, 312-320.	2.6	15
117	Production of WS2Nanotubes. Chemistry of Materials, 2000, 12, 1190-1194.	6.7	108
118	A novel route to aligned nanotubes and nanofibres using laser-patterned catalytic substrates. Applied Physics A: Materials Science and Processing, 2000, 70, 175-183.	2.3	62
119	Generation of hollow crystalline tungsten oxide fibres. Applied Physics A: Materials Science and Processing, 2000, 70, 231-233.	2.3	83
120	Cathodoluminescence of fullerene C60. Journal of Physics Condensed Matter, 2000, 12, 7869-7878.	1.8	10
121	An Alternative Route to Molybdenum Disulfide Nanotubes. Journal of the American Chemical Society, 2000, 122, 10155-10158.	13.7	83
122	Aligned CN[sub x] nanotubes by pyrolysis of ferrocene/C[sub 60] under NH[sub 3] atmosphere. Applied Physics Letters, 2000, 77, 1807.	3.3	112
123	Mixed-Phase WxMoyCzS2Nanotubes. Chemistry of Materials, 2000, 12, 3541-3546.	6.7	44
124	Morphology, structure and growth of WS2 nanotubes. Journal of Materials Chemistry, 2000, 10, 2570-2577.	6.7	67
125	Boron-doping effects in carbon nanotubes. Journal of Materials Chemistry, 2000, 10, 1425-1429.	6.7	112
126	Tungsten oxide tree-like structures. Chemical Physics Letters, 1999, 309, 327-334.	2.6	152

#	Article	IF	CITATIONS
127	Solid-phase production of carbon nanotubes. Applied Physics A: Materials Science and Processing, 1999, 68, 493-495.	2.3	11
128	Carbon Nitride Nanocomposites: Formation of Aligned CxNy Nanofibers. Advanced Materials, 1999, 11, 655-658.	21.0	252
129	A Simple Route to Silicon-Based Nanostructures. Advanced Materials, 1999, 11, 844-847.	21.0	91
130	SiC–SiOx heterojunctions in nanowires. Journal of Materials Chemistry, 1999, 9, 3173-3178.	6.7	72
131	Microscopy Study of the Growth Process and Structural Features of Silicon Oxide Nanoflowers. Chemistry of Materials, 1999, 11, 2709-2715.	6.7	31
132	A Simple Route to Silicon-Based Nanostructures. Advanced Materials, 1999, 11, 844-847.	21.0	1
133	3D Silicon oxide nanostructures: from nanoflowers to radiolaria. Journal of Materials Chemistry, 1998, 8, 1859-1864.	6.7	107
134	Controlled production of aligned-nanotube bundles. Nature, 1997, 388, 52-55.	27.8	763