
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6462499/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Milking miRNAs for All Their Worth. Journal of Nutrition, 2022, 152, 1-2.	2.9	0
2	Crucial Role of Mammalian Glutaredoxin 3 in Cardiac Energy Metabolism in Diet-induced Obese Mice Revealed by Transcriptome Analysis. International Journal of Biological Sciences, 2021, 17, 2871-2883.	6.4	3
3	<i>Fusobacterium nucleatum</i> Secretes Outer Membrane Vesicles and Promotes Intestinal Inflammation. MBio, 2021, 12, .	4.1	101
4	Genetically Modified Plants: Nutritious, Sustainable, yet Underrated. Journal of Nutrition, 2020, 150, 2628-2634.	2.9	13
5	Roles of Regulatory RNAs in Nutritional Control. Annual Review of Nutrition, 2020, 40, 77-104.	10.1	8
6	Dietary impact of a plant-derived microRNA on the gut microbiome. ExRNA, 2020, 2, .	1.0	18
7	Alteration of iron responsive gene expression in Arabidopsis glutaredoxin <i>S17</i> loss of function plants with or without iron stress. Plant Signaling and Behavior, 2020, 15, 1758455.	2.4	7
8	Gut Bacteria have a novel sweet tooth: ribose sensing and scavenging from fiber. Gut Microbes, 2020, 11, 1483-1485.	9.8	2
9	Expression of mouse small interfering RNAs in lettuce using artificial microRNA technology. BioTechniques, 2020, 68, 214-218.	1.8	4
10	Cardiacâ€specific ablation of glutaredoxin 3 leads to cardiac hypertrophy and heart failure. Physiological Reports, 2019, 7, e14071.	1.7	15
11	Planting the Microbiome. Trends in Microbiology, 2019, 27, 90-93.	7.7	11
12	The flip side of the Arabidopsis type I proton-pumping pyrophosphatase (AVP1): Using a transmembrane H+ gradient to synthesize pyrophosphate. Journal of Biological Chemistry, 2019, 294, 1290-1299.	3.4	26
13	Uptake of Dietary Milk microRNAs by Adult Humans: Rules for the Game of Hide and Seek. Journal of Nutrition, 2018, 148, 5-6.	2.9	4
14	Intestinal permeability, digestive stability and oral bioavailability of dietary small RNAs. Scientific Reports, 2018, 8, 10253.	3.3	28
15	The atypical genesis and bioavailability of the plant-based small RNA MIR2911: Bulking up while breaking down. Molecular Nutrition and Food Research, 2017, 61, 1600974.	3.3	18
16	Expression of a monothiol glutaredoxin, AtGRXS17, in tomato (Solanum lycopersicum) enhances drought tolerance. Biochemical and Biophysical Research Communications, 2017, 491, 1034-1039.	2.1	37
17	Silencing of OsGRXS17 in rice improves drought stress tolerance by modulating ROS accumulation and stomatal closure. Scientific Reports, 2017, 7, 15950.	3.3	64
18	Heterodimerization of Arabidopsis calcium/proton exchangers contributes to regulation of guard cell dynamics and plant defense responses. Journal of Experimental Botany, 2017, 68, 4171-4183.	4.8	39

#	Article	IF	CITATIONS
19	Arabidopsis Glutaredoxin S17 Contributes to Vegetative Growth, Mineral Accumulation, and Redox Balance during Iron Deficiency. Frontiers in Plant Science, 2017, 8, 1045.	3.6	20
20	Conjecture Regarding Posttranslational Modifications to the Arabidopsis Type I Proton-Pumping Pyrophosphatase (AVP1). Frontiers in Plant Science, 2017, 8, 1572.	3.6	9
21	Bioavailability of transgenic microRNAs in genetically modified plants. Genes and Nutrition, 2017, 12, 17.	2.5	19
22	Navigating dietary small RNAs. Genes and Nutrition, 2017, 12, 16.	2.5	5
23	Anomalous uptake and circulatory characteristics of the plant-based small RNA MIR2911. Scientific Reports, 2016, 6, 26834.	3.3	51
24	Phylogenetic analysis and protein structure modelling identifies distinct Ca2+/Cation antiporters and conservation of gene family structure within Arabidopsis and rice species. Rice, 2016, 9, 3.	4.0	43
25	Moving On Up: H+-PPase Mediated Crop Improvement. Trends in Biotechnology, 2016, 34, 347-349.	9.3	26
26	Tomato expressing Arabidopsis glutaredoxin gene AtGRXS17 confers tolerance to chilling stress via modulating cold responsive components. Horticulture Research, 2015, 2, 15051.	6.3	62
27	<scp>CHX</scp> 14 is a plasma membrane <scp><scp>K</scp><lscp>â€efflux transporter that regulates <scp><scp>K</scp></scp></lscp></scp> + redistribution in <scp><i>A</i></scp> <i>rabidopsis thaliana</i> . Plant, Cell and Environment, 2015, 38, 2223-2238.	5.7	48
28	Dietary RNAs: New Stories Regarding Oral Delivery. Nutrients, 2015, 7, 3184-3199.	4.1	32
29	Dietary delivery: a new avenue for microRNA therapeutics?. Trends in Biotechnology, 2015, 33, 431-432.	9.3	37
30	Detection of dietary plant-based small RNAs in animals. Cell Research, 2015, 25, 517-520.	12.0	101
31	Diet-responsive MicroRNAs Are Likely Exogenous. Journal of Biological Chemistry, 2015, 290, 25197.	3.4	25
32	Detection of an Abundant Plant-Based Small RNA in Healthy Consumers. PLoS ONE, 2015, 10, e0137516.	2.5	74
33	Digesting dietary miRNA therapeutics. Oncotarget, 2015, 6, 13848-13849.	1.8	7
34	Transfer and functional consequences of dietary microRNAs in vertebrates: Concepts in search of corroboration. BioEssays, 2014, 36, 394-406.	2.5	106
35	Ectopic expression of Arabidopsis H+-pyrophosphatase AVP1 enhances drought resistance in bottle gourd (Lagenaria siceraria Standl.). Plant Cell, Tissue and Organ Culture, 2014, 118, 383-389.	2.3	9
36	Vacuolar CAX1 and CAX3 Influence Auxin Transport in Guard Cells via Regulation of Apoplastic pH Â Â. Plant Physiology, 2012, 160, 1293-1302.	4.8	64

#	Article	IF	CITATIONS
37	New foods for thought. Trends in Plant Science, 2012, 17, 123-125.	8.8	20
38	Cell-Specific Vacuolar Calcium Storage Mediated by <i>CAX1</i> Regulates Apoplastic Calcium Concentration, Gas Exchange, and Plant Productivity in <i>Arabidopsis</i> Â Â. Plant Cell, 2011, 23, 240-257.	6.6	222
39	Characterization of <i>Arabidopsis</i> Ca ²⁺ /H ⁺ Exchanger CAX3. Biochemistry, 2011, 50, 6189-6195.	2.5	24
40	A mammalian monothiol glutaredoxin, Grx3, is critical for cell cycle progression during embryogenesis. FEBS Journal, 2011, 278, 2525-2539.	4.7	54
41	Interaction between Arabidopsis Ca2+/H+ Exchangers CAX1 and CAX3. Journal of Biological Chemistry, 2009, 284, 4605-4615.	3.4	51
42	Functional Studies of Split Arabidopsis Ca2+/H+ Exchangers. Journal of Biological Chemistry, 2009, 284, 34075-34083.	3.4	41
43	Improved watermelon quality using bottle gourd rootstock expressing a Ca2+/H+ antiporter. Molecular Breeding, 2009, 24, 201-211.	2.1	21
44	Nutrient Biofortification of Food Crops. Annual Review of Nutrition, 2009, 29, 401-421.	10.1	210
45	The Arabidopsis cax3 mutants display altered salt tolerance, pH sensitivity and reduced plasma membrane H+-ATPase activity. Planta, 2008, 227, 659-669.	3.2	110
46	Improved bioavailability of calcium in geneticallyâ€nodified carrots. FASEB Journal, 2008, 22, 1096.5.	0.5	0
47	Functional Association of Arabidopsis CAX1 and CAX3 Is Required for Normal Growth and Ion Homeostasis. Plant Physiology, 2005, 138, 2048-2060.	4.8	190
48	Evidence of differential pH regulation of theArabidopsisvacuolar Ca2+/H+antiporters CAX1 and CAX2. FEBS Letters, 2005, 579, 2648-2656.	2.8	46
49	The Calcium Conundrum. Both Versatile Nutrient and Specific Signal. Plant Physiology, 2004, 136, 2438-2442.	4.8	336
50	Increased calcium in carrots by expression of an Arabidopsis H+/Ca2+transporter. Molecular Breeding, 2004, 14, 275-282.	2.1	79
51	Don't shoot the (second) messenger: endomembrane transporters and binding proteins modulate cytosolic Ca2+ levels. Current Opinion in Plant Biology, 2003, 6, 257-262.	7.1	58
52	Strike while the ionome is hot: making the most of plant genomic advances. Trends in Biotechnology, 2003, 21, 520-521.	9.3	18
53	Insertional mutants: a foundation for assessing gene function. Trends in Plant Science, 2003, 8, 205-207.	8.8	18
54	The Arabidopsis cax1 Mutant Exhibits Impaired Ion Homeostasis, Development, and Hormonal Responses and Reveals Interplay among Vacuolar Transporters. Plant Cell, 2003, 15, 347-364.	6.6	207

#	Article	IF	CITATIONS
55	Genetic Manipulation of Vacuolar Proton Pumps and Transporters. Plant Physiology, 2002, 129, 967-973.	4.8	128
56	Characterization of CAX4, an Arabidopsis H+/Cation Antiporter. Plant Physiology, 2002, 128, 1245-1254.	4.8	109
57	Phenotypic changes in Arabidopsis caused by expression of a yeast vacuolar Ca2+/H+ antiporter. Plant Molecular Biology, 2001, 46, 57-65.	3.9	11
58	Structural Determinants of Ca2+ Transport in the Arabidopsis H+/Ca2+Antiporter CAX1. Journal of Biological Chemistry, 2001, 276, 43152-43159.	3.4	62
59	Regulation of CAX1, an Arabidopsis Ca2+/H+ Antiporter. Identification of an N-Terminal Autoinhibitory Domain. Plant Physiology, 2001, 127, 1020-1029.	4.8	102
60	Characterization of CAX-like genes in plants: implications for functional diversity. Gene, 2000, 257, 291-298.	2.2	59
61	Overexpression of Erg11p by the Regulatable <i>GAL1</i> Promoter Confers Fluconazole Resistance in <i>Saccharomyces cerevisiae</i> . Antimicrobial Agents and Chemotherapy, 1999, 43, 2798-2800.	3.2	56
62	Expression of Arabidopsis CAX1 in Tobacco: Altered Calcium Homeostasis and Increased Stress Sensitivity. Plant Cell, 1999, 11, 2113-2122.	6.6	246
63	Detection of dietary plant-based small RNAs in animals. , 0, .		1