List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6462218/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Singleâ€Atom Catalysts for Electrocatalytic Applications. Advanced Functional Materials, 2020, 30, 2000768.	14.9	390
2	Water oxidation on a mononuclear manganese heterogeneous catalyst. Nature Catalysis, 2018, 1, 870-877.	34.4	244
3	Applications of metal–organic framework-derived materials in fuel cells and metal-air batteries. Coordination Chemistry Reviews, 2020, 409, 213214.	18.8	182
4	Applications of Magnetic Nanomaterials in Heterogeneous Catalysis. ACS Applied Nano Materials, 2019, 2, 4681-4697.	5.0	164
5	Strategies to improve electrocatalytic and photocatalytic performance of two-dimensional materials for hydrogen evolution reaction. Chinese Journal of Catalysis, 2021, 42, 511-556.	14.0	131
6	Optimizing the Electrocatalytic Selectivity of Carbon Dioxide Reduction Reaction by Regulating the Electronic Structure of Singleâ€Atom Mâ€N Materials. Advanced Functional Materials, 2022, 32, .	14.9	129
7	Research on Preparation, Structure and Properties of TiO2/Polythiourethane Hybrid Optical Films with High Refractive Index. Macromolecular Materials and Engineering, 2003, 288, 717-723.	3.6	124
8	Applications of single-atom catalysts. Nano Research, 2022, 15, 38-70.	10.4	115
9	Atomically dispersed manganese-based catalysts for efficient catalysis of oxygen reduction reaction. Applied Catalysis B: Environmental, 2019, 257, 117930.	20.2	113
10	Highly Dispersed Ruthenium-Based Multifunctional Electrocatalyst. ACS Catalysis, 2019, 9, 9897-9904.	11.2	109
11	Core–shell structured Fe3O4@SiO2 supported cobalt(ii) or copper(ii) acetylacetonate complexes: magnetically recoverable nanocatalysts for aerobic epoxidation of styrene. Catalysis Science and Technology, 2014, 4, 1246.	4.1	106
12	Immobilized Cu(ii) and Co(ii) salen complexes on graphene oxide and their catalytic activity for aerobic epoxidation of styrene. New Journal of Chemistry, 2013, 37, 1561.	2.8	104
13	Heterogenization of functionalized Cu(II) and VO(IV) Schiff base complexes by direct immobilization onto amino-modified SBA-15: Styrene oxidation catalysts with enhanced reactivity. Applied Catalysis A: General, 2010, 381, 274-281.	4.3	103
14	Synthesis and Demonstration of Subnanometric Iridium Oxide as Highly Efficient and Robust Water Oxidation Catalyst. ACS Catalysis, 2017, 7, 5983-5986.	11.2	100
15	Recent progress on MOF-derived electrocatalysts for hydrogen evolution reaction. Applied Materials Today, 2019, 16, 146-168.	4.3	100
16	Immobilization of transition metal (Fe2+, Co2+, VO2+ or Cu2+) Schiff base complexes onto graphene oxide as efficient and recyclable catalysts for epoxidation of styrene. RSC Advances, 2014, 4, 9990.	3.6	97
17	Co/CoOx nanoparticles inlaid onto nitrogen-doped carbon-graphene as a trifunctional electrocatalyst. Electrochimica Acta, 2019, 296, 830-841.	5.2	93
18	Recent progress and prospect of carbon-free single-site catalysts for the hydrogen and oxygen evolution reactions. Nano Research, 2022, 15, 818-837.	10.4	90

#	Article	IF	CITATIONS
19	Highly efficient single atom cobalt catalyst for selective oxidation of alcohols. Applied Catalysis A: General, 2017, 543, 61-66.	4.3	88
20	Progress in Nonmetalâ€Doped Graphene Electrocatalysts for the Oxygen Reduction Reaction. ChemSusChem, 2019, 12, 2133-2146.	6.8	81
21	MXenes for electrocatalysis applications: Modification and hybridization. Chinese Journal of Catalysis, 2022, 43, 2057-2090.	14.0	76
22	Atomically dispersed catalysts for hydrogen/oxygen evolution reactions and overall water splitting. Journal of Power Sources, 2020, 471, 228446.	7.8	74
23	Synthesis, characterization of hierarchical ZSM-5 zeolite catalyst and its catalytic performance for phenol tert-butylation reaction. Catalysis Communications, 2008, 9, 1272-1276.	3.3	68
24	Atomic cobalt catalysts for the oxygen evolution reaction. Chemical Communications, 2020, 56, 794-797.	4.1	68
25	Direct synthesis of acid–base bifunctional mesoporous MCM-41 silica and its catalytic reactivity in Deacetalization–Knoevenagel reactions. Microporous and Mesoporous Materials, 2010, 134, 44-50.	4.4	66
26	A comparison study of mesoporous Mo/H-ZSM-5 and conventional Mo/H-ZSM-5 catalysts in methane non-oxidative aromatization. Fuel Processing Technology, 2012, 96, 195-202.	7.2	66
27	Different transition metal (Fe ²⁺ , Co ²⁺ , Ni ²⁺ , Cu ²⁺ or) Tj E the epoxidation of styrene. RSC Advances, 2013, 4, 2310-2317.	TQq1 1 0.7 3.6	784314 rgB 63
28	Epoxidation of styrene over Fe(Cr)-MIL-101 metal–organic frameworks. RSC Advances, 2014, 4, 38048-38054.	3.6	63
29	Unveiling the active sites of ultrathin Co-Fe layered double hydroxides for the oxygen evolution reaction. Chinese Journal of Catalysis, 2022, 43, 2240-2248.	14.0	60
30	CoO _x nanoparticle anchored on sulfonated-graphite as efficient water oxidation catalyst. Chemical Science, 2017, 8, 6111-6116.	7.4	59
31	Recent Progress in Singleâ€Atom Catalysts for Photocatalytic Water Splitting. Solar Rrl, 2020, 4, 2000283.	5.8	59
32	Applications of Atomically Dispersed Oxygen Reduction Catalysts in Fuel Cells and Zinc–Air Batteries. Energy and Environmental Materials, 2021, 4, 307-335.	12.8	58
33	Atomically Dispersed Cobalt- and Nitrogen-Codoped Graphene toward Bifunctional Catalysis of Oxygen Reduction and Hydrogen Evolution Reactions. ACS Sustainable Chemistry and Engineering, 2019, 7, 9249-9256.	6.7	57
34	Cu(II), Co(II), Fe(III) or VO(II) Schiff base complexes immobilized onto CMK-3 for styrene epoxidation. Microporous and Mesoporous Materials, 2016, 221, 58-66.	4.4	54
35	Co/CoO _{<i>x</i>} Nanoparticles Embedded on Carbon for Efficient Catalysis of Oxygen Evolution and Oxygen Reduction Reactions. ChemSusChem, 2018, 11, 1722-1727.	6.8	54
36	Atomic manganese coordinated to nitrogen and sulfur for oxygen evolution. Nano Research, 2022, 15, 6019-6025.	10.4	53

#	Article	IF	CITATIONS
37	Dioxomolybdenum(VI) complex covalently attached to aminoâ€modified graphene oxide: heterogeneous catalyst for the epoxidation of alkenes. Applied Organometallic Chemistry, 2014, 28, 317-323.	3.5	50
38	Oxovanadium(iv) and iron(iii) salen complexes immobilized on amino-functionalized graphene oxide for the aerobic epoxidation of styrene. New Journal of Chemistry, 2013, 37, 4220.	2.8	49
39	Co(II), Fe(III) or VO(II) Schiff base metal complexes immobilized on graphene oxide for styrene epoxidation. Applied Organometallic Chemistry, 2015, 29, 462-467.	3.5	49
40	Atomic rhodium catalysts for hydrogen evolution and oxygen reduction reactions. Carbon, 2020, 164, 121-128.	10.3	48
41	Synthesis, characterization and catalytic activity of acid–base bifunctional materials by controlling steric hindrance. Microporous and Mesoporous Materials, 2010, 128, 120-125.	4.4	46
42	Enhanced catalytic performances by surface silylation of Cu(II) Schiff base-containing SBA-15 in epoxidation of styrene with H2O2. Applied Surface Science, 2010, 256, 3346-3351.	6.1	45
43	Synthesis of Beta/MCM-41 composite molecular sieve with high hydrothermal stability in static and stirred condition. Journal of Colloid and Interface Science, 2009, 329, 346-350.	9.4	42
44	Cu Nanoparticles Embedded in <scp>Nâ€Đoped</scp> Carbon Materials for Oxygen Reduction Reaction. Chinese Journal of Chemistry, 2020, 38, 941-946.	4.9	42
45	Application of metal organic frameworks M(bdc)(ted) _{0.5} (M = Co, Zn, Ni, Cu) in the oxidation of benzyl alcohol. RSC Advances, 2016, 6, 72433-72438.	3.6	41
46	Bifunctional atomic iron-based catalyst for oxygen electrode reactions. Journal of Catalysis, 2019, 378, 353-362.	6.2	41
47	Synthesis of Mo/IM-5 catalyst and its catalytic behavior in methane non-oxidative aromatization. Fuel, 2011, 90, 1515-1521.	6.4	40
48	Iron–cobalt–nickel trimetal phosphides as high-performance electrocatalysts for overall water splitting. Sustainable Energy and Fuels, 2020, 4, 4531-4537.	4.9	40
49	Synthesis and characterization of MoVTeCeO catalysts and their catalytic performance for selective oxidation of isobutane and isobutylene. Journal of Catalysis, 2007, 251, 354-362.	6.2	39
50	Synthesis of Mo/TNU-9 (TNU-9 Taejon National University No. 9) catalyst and its catalytic performance in methane non-oxidative aromatization. Energy, 2011, 36, 1582-1589.	8.8	39
51	Atomic scandium and nitrogen-codoped graphene for oxygen reduction reaction. Journal of Power Sources, 2019, 431, 265-273.	7.8	39
52	Amorphous Fe Co Ni oxide for oxygen evolution reaction. Materials Today Energy, 2019, 12, 311-317.	4.7	38
53	Recent advancement in the electrocatalytic synthesis of ammonia. Nanoscale, 2020, 12, 8065-8094.	5.6	37
54	Synthesis, characterization, and micellization of an epoxyâ€based amphiphilic diblock copolymer of ϵâ€caprolactone and glycidyl methacrylate by enzymatic ringâ€opening polymerization and atom transfer radical polymerization. Journal of Polymer Science Part A, 2007, 45, 5037-5049.	2.3	36

#	Article	IF	CITATIONS
55	Oxidation of benzyl alcohol over metal organic frameworks M-BTC (M = Co, Cu, Fe). New Journal of Chemistry, 2017, 41, 2891-2894.	2.8	36
56	Atomically dispersed iridium catalysts for multifunctional electrocatalysis. Journal of Materials Chemistry A, 2020, 8, 19665-19673.	10.3	36
57	Exploring the Potential of Fulvalene Dimetals as Platforms for Molecular Solar Thermal Energy Storage: Computations, Syntheses, Structures, Kinetics, and Catalysis. Chemistry - A European Journal, 2014, 20, 15587-15604.	3.3	35
58	Effect of the particle size of MoO ₃ on the catalytic activity of Mo/ZSM-5 in methane non-oxidative aromatization. New Journal of Chemistry, 2015, 39, 5459-5469.	2.8	34
59	Alkylation of Phenol with tert-Butanol Catalyzed by Mesoporous Material with Enhanced Acidity Synthesized from Zeolite MCM-22. Catalysis Letters, 2008, 126, 333-340.	2.6	33
60	Synthesis, characterization and catalytic properties of heterogeneous iron(III) tetradentate Schiff base complexes for the aerobic epoxidation of styrene. Transition Metal Chemistry, 2010, 35, 263-270.	1.4	33
61	Catalysis of Oxygen Reduction Reaction on Atomically Dispersed Copper- and Nitrogen-Codoped Graphene. ACS Applied Energy Materials, 2019, 2, 4755-4762.	5.1	33
62	The effect of the distance between acidic site and basic site immobilized on mesoporous solid on the activity in catalyzing aldol condensation. Journal of Solid State Chemistry, 2011, 184, 289-295.	2.9	32
63	Synthesis, Characterization, and Catalytic Performance of Mesoporous Al-SBA-15 for Tert-butylation of Phenol. Chinese Journal of Catalysis, 2006, 27, 9-14.	14.0	31
64	Direct synthesis of acid–base bifunctionalized hexagonal mesoporous silica and its catalytic activity in cascade reactions. Journal of Colloid and Interface Science, 2011, 355, 190-197.	9.4	31
65	Synthesis of bifunctional catalysts Al-SBA-15-NH2 with high aluminum content and the catalytic application for different one-pot reactions. Applied Surface Science, 2012, 258, 6846-6852.	6.1	29
66	Immobilization of Proline onto Al-SBA-15 for C–C Bond-Forming Reactions. ACS Sustainable Chemistry and Engineering, 2014, 2, 925-933.	6.7	29
67	Methane non-oxidative aromatization on Mo/ZSM-5: Effect of adding triethoxyphenylsilanes into the synthesis system of ZSM-5. Applied Surface Science, 2011, 257, 2448-2454.	6.1	28
68	Preparation of acid-base bifunctional mesoporous KIT-6 (KIT: Korea Advanced Institute of Science and) Tj ETQq0 C 2014, 213, 250-255.	0 rgBT /C 2.9)verlock 107 28
69	Ultrafine iridium oxide supported on carbon nanotubes for efficient catalysis of oxygen evolution and oxygen reduction reactions. Materials Today Energy, 2018, 10, 153-160.	4.7	25
70	One-pot cascade reactions catalyzed by acid–base mesoporous MCM-41 materials. Materials Research Bulletin, 2012, 47, 801-806.	5.2	24
71	Enhanced alkenes epoxidation reactivity of discrete bis(8-quinolinol)oxovanadium(IV) or bis(8-quinolinol)dioxomolybdenum(VI) tethered to graphene oxide by a metal-template/metal-exchange method. Applied Catalysis A: General, 2014, 470, 104-114.	4.3	24
72	Nano-Co3O4 supported on magnetic N-doped graphene as highly efficient catalyst for epoxidation of alkenes. Molecular Catalysis, 2017, 432, 267-273.	2.0	24

#	Article	IF	CITATIONS
73	Effect of mesopore structure of TNU-9 on methane dehydroaromatization. RSC Advances, 2014, 4, 26577.	3.6	23
74	A binuclear Co-based metal–organic framework towards efficient oxygen evolution reaction. Chemical Communications, 2021, 57, 5016-5019.	4.1	23
75	Highly efficient N-doped magnetic cobalt-graphene composite for selective oxidation of benzyl alcohol. Catalysis Communications, 2016, 87, 90-93.	3.3	22
76	Monoâ€ / Multinuclear Water Oxidation Catalysts. ChemSusChem, 2019, 12, 3209-3235.	6.8	22
77	Charge-Transfer Effects in Fe–Co and Fe–Co–Y Oxides for Electrocatalytic Water Oxidation Reaction. ACS Applied Energy Materials, 2019, 2, 8903-8911.	5.1	21
78	Detemplation with H2O2 and characterization of MCM-56. Catalysis Communications, 2008, 9, 234-238.	3.3	20
79	Encapsulation of tetraazamacrocyclic complexes of cobalt(II), copper(II) and oxovanadium(IV) in zeolite-Y and their use as catalysts for the oxidation of styrene. Transition Metal Chemistry, 2013, 38, 243-251.	1.4	20
80	Enhanced Aerobic Epoxidation of Styrene with Copper(II), Cobalt(II), Iron(III), or Oxovanadium(IV) Salen Complexes Immobilized onto Carbon-Coated Fe3O4Nanoparticles Hybridized with Graphene Sheets. ChemPlusChem, 2014, 79, 716-724.	2.8	20
81	Highly dispersed cobalt oxide nanoparticles on CMK-3 for selective oxidation of benzyl alcohol. RSC Advances, 2015, 5, 102508-102515.	3.6	20
82	Mesoporous Mn–Fe oxyhydroxides for oxygen evolution. Inorganic Chemistry Frontiers, 2022, 9, 3559-3565.	6.0	20
83	Synthesis, characterization and catalytic application of bifunctional catalyst: Al-MCM-41-NH2. Catalysis Communications, 2011, 12, 739-743.	3.3	19
84	Optimizing the matching between the acid and the base of cooperative catalysis to inhibit dehydration in the aldol condensation. Journal of Colloid and Interface Science, 2011, 362, 625-628.	9.4	19
85	Tetraazamacrocycle complexes of Cu(II) and VO(IV) exchanged in the interlayers of montmorillonite clay: Heterogeneous catalysts for the aerobic oxidation of styrene. Materials Research Bulletin, 2013, 48, 1920-1926.	5.2	19
86	Oxidation of cyclohexane with hydrogen peroxide catalyzed by Dawson-type vanadium-substituted heteropolyacids. Reaction Kinetics and Catalysis Letters, 2006, 89, 55-61.	0.6	18
87	Selective Oxidation of Isobutane to Methacrolein over Mo–V–Te–Sb Mixed Oxide Catalysts with Different Antimony Contents. Catalysis Letters, 2006, 108, 125-129.	2.6	18
88	Oxidation of isobutane and isobutene to methacrolein over hydrothermally synthesized Mo–V–Te–O mixed oxide catalysts. Catalysis Communications, 2009, 10, 528-532.	3.3	18
89	Hemoglobin immobilized with modified "fish-in-net―approach for the catalytic removal of aniline. Journal of Hazardous Materials, 2012, 217-218, 156-163.	12.4	18
90	The synthesis and characterization of three organic–inorganic hybrids based on different transition metal complexes and {As ₈ V ₁₄ O ₄₂ (H ₂ O)} clusters. CrystEngComm, 2014, 16, 2251-2259.	2.6	18

#	Article	IF	CITATIONS
91	Core–shell Co3O4@FeOx catalysts for efficient oxygen evolution reaction. Materials Today Energy, 2021, 21, 100715.	4.7	18
92	Selective Oxidation of Isobutane and Isobutene to Methacrolein over Te–Mo Mixed Oxide Catalysts. Catalysis Letters, 2008, 124, 428-433.	2.6	17
93	Post-treatment of mesoporous material with high temperature for synthesis super-microporous materials with enhanced hydrothermal stability. Applied Surface Science, 2009, 255, 5843-5846.	6.1	17
94	Ultrafine Mn3O4 nanoparticles supported on functionalized-graphite towards efficient photochemical and electrochemical water oxidation catalysis. International Journal of Hydrogen Energy, 2018, 43, 15807-15814.	7.1	17
95	Preparation of uniform Silicalite-1 microspheres with large secondary pore architecture using monodisperse porous polystyrene particles as template. Materials Letters, 2010, 64, 1325-1327.	2.6	16
96	Epoxidation of styrene with molecular oxygen catalyzed by a novel oxovanadium(IV) catalyst containing two different kinds of ligands. Applied Organometallic Chemistry, 2012, 26, 252-257.	3.5	16
97	Insights into active species of ultrafine iridium oxide nanoparticle electrocatalysts in hydrogen/oxygen evolution reactions. Chemical Engineering Journal, 2021, 419, 129567.	12.7	16
98	Efficient Conversion of Benzyl Alcohol on a Mesoporous Co3O4. Industrial & Engineering Chemistry Research, 2019, 58, 4774-4779.	3.7	15
99	Effect of coordination surroundings of isolated metal sites on electrocatalytic performances. Journal of Power Sources, 2021, 506, 230143.	7.8	15
100	Exploration of acid–base geometric influence on cooperative activation for aldol reaction. Applied Catalysis A: General, 2012, 443-444, 1-7.	4.3	14
101	Oxovanadium(IV), copper(II) or cobalt(II) acetylacetone complexes immobilized on aminoâ€functionalized CMKâ€3 for the aerobic epoxidation of styrene. Applied Organometallic Chemistry, 2015, 29, 698-706.	3.5	14
102	Selective oxidation of isobutane and isobutene over vanadium phosphorus oxides. Catalysis Communications, 2008, 10, 276-280.	3.3	13
103	A comparative study of aminopropyl-functionalized SBA-15 prepared by grafting in different solvents. Reaction Kinetics, Mechanisms and Catalysis, 2011, 103, 181-190.	1.7	13
104	Synthesis of Three-Dimensional-Ordered Mesoporous Cobalt Oxides for Selective Oxidation of Benzyl Alcohol. ChemistrySelect, 2017, 2, 9486-9489.	1.5	13
105	Recent Advancements in Grapheneâ€Based Supports of Metal Complexes/Oxides for Epoxidation of Alkenes. Chemistry - an Asian Journal, 2018, 13, 3790-3799.	3.3	13
106	Synthesis and characterization of strong acidic mesoporous alumino-silicates constructed of zeolite MCM-22 precursors. Catalysis Communications, 2009, 10, 631-634.	3.3	12
107	Synthesis of acidâ ϵ "base bifunctional mesoporous materials by oxidation and thermolysis. Materials Research Bulletin, 2011, 46, 951-957.	5.2	12
108	Hierarchical ZSM-5 Zeolite with Enhanced Catalytic Activity for Alkylation of Phenol with Tert-Butanol. Catalysts, 2019, 9, 202.	3.5	12

#	Article	IF	CITATIONS
109	Partial crystallization of Co–Fe oxyhydroxides towards enhanced oxygen evolution activity. International Journal of Hydrogen Energy, 2022, 47, 16711-16718.	7.1	12
110	Selective oxidation of isobutane over hydrothermally synthesized Mo–V–Te–Sb–O mixed oxide catalysts. Catalysis Communications, 2009, 10, 1437-1440.	3.3	11
111	Catalytic performance of zeolite ITQ-13 with 9- and 10-member rings for methane dehydroaromation. Reaction Kinetics, Mechanisms and Catalysis, 2010, 99, 193.	1.7	11
112	A Copper(II) Schiff base complex immobilized onto SBA-15 silica for selective oxidation of benzyl alcohol. Transition Metal Chemistry, 2014, 39, 233-238.	1.4	11
113	Enhanced oxygen evolution activity on mesoporous cobalt–iron oxides. Chemical Communications, 2021, 57, 11843-11846.	4.1	11
114	Bimetallic Iron–Cobalt Nanoparticles Coated with Amorphous Carbon for Oxygen Evolution. ACS Applied Nano Materials, 2021, 4, 12663-12671.	5.0	11
115	Effect of antimony doping on the catalytic behavior of Mo–V–Te–P mixed oxide catalysts in oxidation of isobutane. Catalysis Communications, 2007, 8, 1219-1223.	3.3	10
116	Nanoâ€MoO ₃ â€modified MCMâ€⊋2 for methane dehydroaromatization. Applied Organometallic Chemistry, 2015, 29, 638-645.	3.5	10
117	Highly efficient Ni–Co oxide nanoparticles on nitrogen-doped FDU-15 for aerobic benzyl alcohol oxidation. RSC Advances, 2016, 6, 57507-57513.	3.6	10
118	Selective Oxidation and Oxidative Dehydrogenation of Isobutane over Hydrothermally Synthesized Mo–V–O Mixed Oxide Catalysts. Catalysis Letters, 2008, 126, 293-300.	2.6	9
119	Synthesis, characterization and catalytic activity of a novel mesoporous aluminosilicate catalyst prepared by a citric acid route. Catalysis Communications, 2008, 9, 1970-1973.	3.3	9
120	Synthesis, characterization and catalytic activity of acid–base bifunctional materials through protection of amino groups. Materials Research Bulletin, 2012, 47, 768-773.	5.2	9
121	Synthesis of zeolite IM-5 under rotating and static conditions and the catalytic performance of Mo/H-IM-5 catalyst in methane non-oxidative aromatization. Kinetics and Catalysis, 2013, 54, 443-450.	1.0	9
122	Facile fabrication of magnetic MoO ₂ –Salenâ€modified grapheneâ€based catalyst for epoxidation of alkenes. Applied Organometallic Chemistry, 2017, 31, e3742.	3.5	9
123	Co(II) or Cu(II) Schiff Base Complex Immobilized onto Carbon Nanotubes as a Synergistic Catalyst for the Oxygen Reduction Reaction. ChemistrySelect, 2018, 3, 581-585.	1.5	9
124	Selective oxidation of isobutane over Mo-V-Te mixed oxide catalysts with different tellurium contents. Reaction Kinetics and Catalysis Letters, 2007, 90, 27-33.	0.6	8
125	Partial Oxidation of Isobutane Over Hydrothermally Synthesized Mo–V–Te–O Mixed Oxide Catalysts. Catalysis Letters, 2008, 126, 301-307.	2.6	8
126	Partial Oxidation of Isobutane over Vanadium Phosphorus Oxides. Catalysis Letters, 2009, 128, 356-362.	2.6	8

#	Article	IF	CITATIONS
127	Effect of crystallization time on the physico-chemical and catalytic properties of the hierarchical porous materials. Materials Research Bulletin, 2010, 45, 1293-1298.	5.2	8
128	Partial oxidation of isobutane to methacrolein over Te(1.5+0.5x)PMo12â^'xVxOn heteropolycompounds with tellurium as counter cations. Reaction Kinetics, Mechanisms and Catalysis, 2012, 106, 157-164.	1.7	8
129	Immobilization of Cu-chelate onto SBA-15 for partial oxidation of benzyl alcohol using water as the solvent. Research on Chemical Intermediates, 2015, 41, 5703-5712.	2.7	8
130	Non-crystalline mesoporous aluminosilicates catalysts: Synthesis, characterization and catalytic applications. Journal of Non-Crystalline Solids, 2011, 357, 1335-1341.	3.1	7
131	High-Efficiency Electrocatalytic Water Oxidation on Trimetal-Based Fe–Co–Cr Oxide. ACS Applied Energy Materials, 2019, 2, 5584-5590.	5.1	7
132	High-performance Fe–Co–Sn oxide electrocatalysts for oxygen evolution reaction. Materials Today Energy, 2019, 14, 100364.	4.7	7
133	Accelerative oxygen evolution by Cu-doping into Fe-Co oxides. Sustainable Energy and Fuels, 2020, 4, 143-148.	4.9	7
134	Synthesis and characterization of belt-like silicalite-1 nanocrystals with mesoporous structure. Materials Letters, 2010, 64, 2523-2525.	2.6	6
135	Synthesis and characterization of super-microporous material with enhanced hydrothermal stability. Bulletin of Materials Science, 2011, 34, 979-983.	1.7	6
136	Non-crystalline surface-modified hollow nanospheres of silica (HNS): Synthesis, characterization and catalytic application. Journal of Non-Crystalline Solids, 2012, 358, 47-53.	3.1	6
137	Enhanced Water Oxidation Activity by Introducing Gallium into Cobaltâ€ŀron Oxide System. ChemElectroChem, 2020, 7, 118-123.	3.4	6
138	Direct conversion of solid g-C ₃ N ₄ into metal-ended N-doped carbon nanotubes for rechargeable Zn–air batteries. Inorganic Chemistry Frontiers, 2022, 9, 3428-3435.	6.0	6
139	Effect of pH on the Catalytic Properties of Mo–V–Te–P–O Catalysts for Selective Oxidation of Isobutane. Catalysis Letters, 2009, 131, 512-516.	2.6	5
140	Preparation of Te(12â^'x)/4PMo12â^'xVxOn mixed oxides from heteropolycompound precursors for selective oxidation of isobutane. Catalysis Communications, 2012, 18, 81-84.	3.3	5
141	Sub-2 nm cobalt oxide cluster catalyst supported on alumina for efficient water oxidation. Applied Catalysis A: General, 2016, 521, 154-159.	4.3	5
142	Favorable role of heterojunction in trimetallic Fe–Co–Cu phosphides on nitrogen-doped carbon materials for hydrogen evolution. Materials Today Energy, 2020, 17, 100464.	4.7	5
143	Core-shell Ni3Fe-based nanocomposites for the oxygen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 2304-2312.	7.1	5
144	Oxidation of isobutane over hydrothermally synthesized Mo-V-Te-Nb-O mixed oxide catalysts. Reaction Kinetics and Catalysis Letters, 2008, 95, 313-320.	0.6	4

#	Article	IF	CITATIONS
145	Binary Ni ₂ FeO _x anchored on modified graphite for efficient and durable oxygen evolution electrocatalysis. Sustainable Energy and Fuels, 2018, 2, 2160-2164.	4.9	4
146	Trifunctional iridium-based electrocatalysts for overall water splitting and Zn-air batteries. Electrochimica Acta, 2021, 380, 138215.	5.2	4
147	Synthesis, characterization and catalytic performance of a novel zeolite ITQ-2-like by treating MCM-22 precursor with H2O2. Bulletin of Materials Science, 2011, 34, 1605-1610.	1.7	3
148	Anchoring Tri(8-Quinolinolato)Iron Onto Sba-15 for Partial Oxidation of Benzyl Alcohol Using Water as the Solvent. Polish Journal of Chemical Technology, 2014, 16, 12-17.	0.5	2
149	Enhancing Methane Aromatization Performance by Reducing the Particle Size of Molybdenum Oxide. Nanomaterials, 2020, 10, 1991.	4.1	2
150	Promotion of the water oxidation activity of iridium oxide by a nitrogen coordination strategy. Chemical Communications, 2020, 56, 14909-14912.	4.1	2
151	Effect of calcination conditions on the catalytic behavior of Te-Mo mixed oxide catalysts in oxidation of isobutane and isobutene. Reaction Kinetics and Catalysis Letters, 2008, 95, 321-328.	0.6	1
152	Catalytic activity of V-substituted Cs2Te0.2H0.6 + x PMo12 â^' x V x O n heteropoly compounds in selective oxidation of isobutane. Kinetics and Catalysis, 2012, 53, 404-408.	1.0	1
153	Influence of Al content on textural properties and catalytic activity of hierarchical porous aluminosilicate materials. Bulletin of Materials Science, 2013, 36, 1291-1295.	1.7	1
154	Bis(8-quinolinolato)copper(II) immobilized onto amino-modified SBA-15 for the selective oxidation of benzyl alcohol. Reaction Kinetics, Mechanisms and Catalysis, 2014, 111, 751-761.	1.7	1
155	Enhanced Phenol Tert-Butylation Reaction Activity over Hierarchical Porous Silica-Alumina Materials. Catalysts, 2020, 10, 1098.	3.5	1
156	Promotion of Oxygen Evolution Activity of Co-Based Nanocomposites by Introducing Fe3+ Ions. Topics in Catalysis, 0, , 1.	2.8	1
157	Electrocatalysts for Oxygen/Hydrogen-Involved Reactions. Molecules, 2022, 27, 2628.	3.8	1
158	Effect of Different Silicate Supports on the Catalytic Performance of MoVTeO Mixed Oxides in Partial Oxidation of Isobutane. International Journal of Chemical Reactor Engineering, 2014, 12, 623-628.	1.1	0