Michael Quante

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6461920/publications.pdf

Version: 2024-02-01

58 papers

4,327 citations

218677 26 h-index 149698 56 g-index

64 all docs

64 docs citations

times ranked

64

6943 citing authors

#	Article	IF	CITATIONS
1	Adenocarcinoma of the oesophagus: is it gastric cancer?. Gut, 2023, 72, 1027-1029.	12.1	7
2	Evolutionary dynamics in Barrett oesophagus: implications for surveillance, risk stratification and therapy. Nature Reviews Gastroenterology and Hepatology, 2022, 19, 95-111.	17.8	9
3	CXCR4 peptide-based fluorescence endoscopy in a mouse model of Barrett's esophagus. EJNMMI Research, 2022, 12, 2.	2.5	6
4	Precision oncology for upper GI cancers – Where are we heading?. Translational Oncology, 2022, 16, 101319.	3.7	1
5	Endoscopic R1 / Rx resection of T1 colorectal cancer – What next?. American Journal of Gastroenterology, 2022, Publish Ahead of Print, .	0.4	O
6	Targeted Hsp70 fluorescence molecular endoscopy detects dysplasia in Barrett's esophagus. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 2049-2063.	6.4	10
7	Telomere shortening accelerates tumor initiation in the L2-IL1B mouse model of Barrett esophagus and emerges as a possible biomarker. Oncotarget, 2022, 13, 347-359.	1.8	4
8	Gut bacterial dysbiosis and instability is associated with the onset of complications and mortality in COVID-19. Gut Microbes, 2022, 14, 2031840.	9.8	52
9	Analysis of Fecal, Salivary, and Tissue Microbiome in Barrett's Esophagus, Dysplasia, and Esophageal Adenocarcinoma., 2022, 1, 755-766.		2
10	Impact of the Tumor Microenvironment for Esophageal Tumor Development—An Opportunity for Prevention?. Cancers, 2022, 14, 2246.	3.7	4
11	Elimination of NF-κB signaling in Vimentin+ stromal cells attenuates tumorigenesis in a mouse model of Barrett's Esophagus. Carcinogenesis, 2021, 42, 405-413.	2.8	9
12	Notch signaling drives development of Barrett's metaplasia from Dclk1-positive epithelial tuft cells in the murine gastric mucosa. Scientific Reports, 2021, 11, 4509.	3.3	12
13	Mucosal-Associated Invariant T (MAIT) Cells Are Highly Activated and Functionally Impaired in COVID-19 Patients. Viruses, 2021, 13, 241.	3.3	31
14	PALLD mutation in a European family conveys a stromal predisposition for familial pancreatic cancer. JCI Insight, 2021, 6, .	5.0	7
15	The complexity of cancer origins at the gastro-oesophageal junction. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2021, 50-51, 101729.	2.4	7
16	Anti-inflammatory chemoprevention attenuates the phenotype in a mouse model of esophageal adenocarcinoma. Carcinogenesis, 2021, 42, 1068-1078.	2.8	4
17	Identification of TLR2 Signalling Mechanisms Which Contribute to Barrett's and Oesophageal Adenocarcinoma Disease Progression. Cancers, 2021, 13, 2065.	3.7	4
18	COVID-19 in Patients Receiving CD20-depleting Immunochemotherapy for B-cell Lymphoma. HemaSphere, 2021, 5, e603.	2.7	35

#	Article	IF	Citations
19	[18F]FDG PET/MRI enables early chemotherapy response prediction in pancreatic ductal adenocarcinoma. EJNMMI Research, 2021, 11, 70.	2.5	11
20	Differences in Gut Virome Related to Barrett Esophagus and Esophageal Adenocarcinoma. Microorganisms, 2021, 9, 1701.	3.6	11
21	Microbiota alteration at different stages in gastric lesion progression: a population-based study in Linqu, China. American Journal of Cancer Research, 2021, 11, 561-575.	1.4	3
22	High-Fructose Diet Alters Intestinal Microbial Profile and Correlates with Early Tumorigenesis in a Mouse Model of Barrett's Esophagus. Microorganisms, 2021, 9, 2432.	3.6	7
23	Gastric Cancer; Epidemiology and Diagnosis. , 2020, , 553-564.		0
24	Prox1-positive cells monitor and sustain the murine intestinal epithelial cholinergic niche. Nature Communications, 2020, 11, 111.	12.8	40
25	Effect of <i>Helicobacter pylori</i> on gastrointestinal microbiota: a population-based study in Linqu, a high-risk area of gastric cancer. Gut, 2020, 69, 1598-1607.	12.1	179
26	Epidemiologic Risk Factors in a Comparison of a Barrett Esophagus Registry (BarrettNET) and a Case–Control Population in Germany. Cancer Prevention Research, 2020, 13, 377-384.	1.5	12
27	Characterizing caspase-1 involvement during esophageal disease progression. Cancer Immunology, Immunotherapy, 2020, 69, 2635-2649.	4.2	11
28	Notch Signaling Mediates Differentiation in Barrett's Esophagus and Promotes Progression to Adenocarcinoma. Gastroenterology, 2020, 159, 575-590.	1.3	49
29	High-Fat Diet Accelerates Carcinogenesis in a Mouse Model of Barrett's Esophagus via Interleukin 8 and Alterations to the Gut Microbiome. Gastroenterology, 2019, 157, 492-506.e2.	1.3	100
30	BarrettNETâ€"a prospective registry for risk estimation of patients with Barrett's esophagus to progress to adenocarcinoma. Ecological Management and Restoration, 2019, 32, .	0.4	7
31	Community-driven development of a modified progression-free survival ratio for precision oncology. ESMO Open, 2019, 4, e000583.	4.5	22
32	Genetic Biopsy for Prediction of Surveillance Intervals after Endoscopic Resection of Colonic Polyps: Results of the GENESIS Study. United European Gastroenterology Journal, 2018, 6, 290-299.	3.8	8
33	The metaplastic mosaic of Barrett's oesophagus. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2018, 472, 43-54.	2.8	16
34	Insights Into the Pathophysiology of Esophageal Adenocarcinoma. Gastroenterology, 2018, 154, 406-420.	1.3	58
35	<i>CXCR4</i> Is a Potential Target for Diagnostic PET/CT Imaging in Barrett's Dysplasia and Esophageal Adenocarcinoma. Clinical Cancer Research, 2018, 24, 1048-1061.	7.0	34
36	Origins of Metaplasia in the Esophagus: Is This a GE Junction Stem Cell Disease?. Digestive Diseases and Sciences, 2018, 63, 2013-2021.	2.3	9

#	Article	IF	Citations
37	Goblet Cell Ratio in Combination with Differentiation and Stem Cell Markers in Barrett Esophagus Allow Distinction of Patients with and without Esophageal Adenocarcinoma. Cancer Prevention Research, 2017, 10, 55-66.	1.5	17
38	Nerve Growth Factor Promotes Gastric Tumorigenesis through Aberrant Cholinergic Signaling. Cancer Cell, 2017, 31, 21-34.	16.8	332
39	Dclk1-expressing tuft cells: critical modulators of the intestinal niche?. American Journal of Physiology - Renal Physiology, 2017, 313, G285-G299.	3.4	76
40	Functional implication of Dclk1 and Dclk1-expressing cells in cancer. Small GTPases, 2017, 8, 164-171.	1.6	56
41	Gastrin stimulates a cholecystokinin-2-receptor-expressing cardia progenitor cell and promotes progression of Barrett's-like esophagus. Oncotarget, 2017, 8, 203-214.	1.8	53
42	Epithelial Dclk1+ cells are not neural crest derived. Stem Cell Investigation, 2016, 3, 60-60.	3.0	1
43	Three-Dimensional Gastrointestinal Organoid Culture in Combination with Nerves or Fibroblasts: A Method to Characterize the Gastrointestinal Stem Cell Niche. Stem Cells International, 2016, 2016, 1-16.	2.5	93
44	Dclk1 Defines Quiescent Pancreatic Progenitors that Promote Injury-Induced Regeneration and Tumorigenesis. Cell Stem Cell, 2016, 18, 441-455.	11.1	196
45	Risk prediction in Barrett's esophagus – aspects of a combination of molecular and epidemiologic biomarkers reflecting alterations of the microenvironment. Scandinavian Journal of Clinical and Laboratory Investigation, 2016, 76, S63-S69.	1.2	1
46	Denervation suppresses gastric tumorigenesis. Science Translational Medicine, 2014, 6, 250ra115.	12.4	427
47	Long-lived intestinal tuft cells serve as colon cancer–initiating cells. Journal of Clinical Investigation, 2014, 124, 1283-1295.	8.2	324
48	Stromal cell-derived factor-1 overexpression induces gastric dysplasia through expansion of stromal myofibroblasts and epithelial progenitors. Gut, 2013, 62, 192-200.	12.1	61
49	The Rapid Rise in Gastroesophageal Junction Tumors: Is Inflammation of the Gastric Cardia the Underwater Iceberg?. Gastroenterology, 2013, 145, 708-711.	1.3	15
50	The Gastrointestinal Tumor Microenvironment. Gastroenterology, 2013, 145, 63-78.	1.3	123
51	Barrett esophagus. Cell Cycle, 2012, 11, 4328-4338.	2.6	36
52	Bile Acid and Inflammation Activate Gastric Cardia Stem Cells in a Mouse Model of Barrett-Like Metaplasia. Cancer Cell, 2012, 21, 36-51.	16.8	395
53	IFN- \hat{l}^3 Inhibits Gastric Carcinogenesis by Inducing Epithelial Cell Autophagy and T-Cell Apoptosis. Cancer Research, 2011, 71, 4247-4259.	0.9	104
54	Bone Marrow-Derived Myofibroblasts Contribute to the Mesenchymal Stem Cell Niche and Promote Tumor Growth. Cancer Cell, 2011, 19, 257-272.	16.8	867

#	Article	IF	CITATIONS
55	TFF2 mRNA Transcript Expression Marks a Gland Progenitor Cell of the Gastric Oxyntic Mucosa. Gastroenterology, 2010, 139, 2018-2027.e2.	1.3	122
56	Stem cells in gastroenterology and hepatology. Nature Reviews Gastroenterology and Hepatology, 2009, 6, 724-737.	17.8	112
57	Inactivating cholecystokinin-2 receptor inhibits progastrin-dependent colonic crypt fission, proliferation, and colorectal cancer in mice. Journal of Clinical Investigation, 2009, 119, 2691-701.	8.2	74
58	Inflammation and Stem Cells in Gastrointestinal Carcinogenesis. Physiology, 2008, 23, 350-359.	3.1	58