
Yangnan Gu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/64614/publications.pdf Version: 2024-02-01

YANGNAN GU

#	Article	IF	CITATIONS
1	Salicylic acid receptors activate jasmonic acid signalling through a non-canonical pathway to promote effector-triggered immunity. Nature Communications, 2016, 7, 13099.	12.8	274
2	Posttranslational Modifications of the Master Transcriptional Regulator NPR1 Enable Dynamic but Tight Control of Plant Immune Responses. Cell Host and Microbe, 2015, 18, 169-182.	11.0	199
3	Nuclear Pore Permeabilization Is a Convergent Signaling Event in Effector-Triggered Immunity. Cell, 2016, 166, 1526-1538.e11.	28.9	128
4	Membrane Trafficking in Plant Immunity. Molecular Plant, 2017, 10, 1026-1034.	8.3	117
5	The KEEP ON GOING Protein of Arabidopsis Recruits the ENHANCED DISEASE RESISTANCE1 Protein to Trans-Golgi Network/Early Endosome Vesicles Â. Plant Physiology, 2011, 155, 1827-1838.	4.8	96
6	A Noncanonical Role for the CKI-RB-E2F Cell-Cycle Signaling Pathway in Plant Effector-Triggered Immunity. Cell Host and Microbe, 2014, 16, 787-794.	11.0	93
7	The KEEP ON GOING Protein of <i>Arabidopsis</i> Regulates Intracellular Protein Trafficking and Is Degraded during Fungal Infection. Plant Cell, 2012, 24, 4717-4730.	6.6	85
8	The RING E3 Ligase KEEP ON GOING Modulates JASMONATE ZIM-DOMAIN12 Stability. Plant Physiology, 2015, 169, 1405-1417.	4.8	76
9	Global profiling of plant nuclear membrane proteome in Arabidopsis. Nature Plants, 2020, 6, 838-847.	9.3	55
10	YODA MAP3K kinase regulates plant immune responses conferring broadâ€ s pectrum disease resistance. New Phytologist, 2018, 218, 661-680.	7.3	54
11	The <i>Arabidopsis</i> EDR1 Protein Kinase Negatively Regulates the ATL1 E3 Ubiquitin Ligase to Suppress Cell Death. Plant Cell, 2014, 26, 4532-4546.	6.6	52
12	Coordination Among Lipid Droplets, Peroxisomes, and Mitochondria Regulates Energy Expenditure Through the CIDE-ATGL-PPARα Pathway in Adipocytes. Diabetes, 2018, 67, 1935-1948.	0.6	46
13	Proximity labeling proteomics reveals critical regulators for inner nuclear membrane protein degradation in plants. Nature Communications, 2020, 11, 3284.	12.8	39
14	Exportin-4 coordinates nuclear shuttling of TOPLESS family transcription corepressors to regulate plant immunity. Plant Cell, 2021, 33, 697-713.	6.6	33
15	Negative regulation of defence signalling pathways by the EDR1 protein kinase. Molecular Plant Pathology, 2011, 12, 746-758.	4.2	30
16	A glossary of plant cell structures: Current insights and future questions. Plant Cell, 2022, 34, 10-52.	6.6	27
17	The nuclear pore complex: a strategic platform for regulating cell signaling. New Phytologist, 2018, 219, 25-30.	7.3	26
18	Structural and functional insight into the nuclear pore complex and nuclear transport receptors in plant stress signaling. Current Opinion in Plant Biology, 2020, 58, 60-68.	7.1	24

Yangnan Gu

#	Article	IF	CITATIONS
19	PNET2 is a component of the plant nuclear lamina and is required for proper genome organization and activity. Developmental Cell, 2022, 57, 19-31.e6.	7.0	22
20	A karyopherin constrains nuclear activity of the NLR protein SNC1 and is essential to prevent autoimmunity in Arabidopsis. Molecular Plant, 2021, 14, 1733-1744.	8.3	18
21	The emerging role of biomolecular condensates in plant immunity. Plant Cell, 2022, 34, 1568-1572.	6.6	10
22	Stromules: Signal Conduits for Plant Immunity. Developmental Cell, 2015, 34, 3-4.	7.0	9
23	The BORDER family of negative transcription elongation factors regulates flowering time in Arabidopsis. Current Biology, 2021, 31, 5377-5384.e5.	3.9	8
24	Structural analysis of receptor-like kinase SOBIR1 reveals mechanisms that regulate its phosphorylation-dependent activation. Plant Communications, 2022, 3, 100301.	7.7	8
25	Targeted protein degradation: from small molecules to complex organelles—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2022, 1510, 79-99.	3.8	5
26	Regulation of Plant Immunity by Nuclear Membrane-Associated Mechanisms. Frontiers in Immunology, 2021, 12, 771065.	4.8	5
27	Exciting times in plant biotic interactions. Plant Cell, 2022, 34, 1421-1424.	6.6	3
28	Towards understanding inner nuclear membrane protein degradation in plants. Journal of Experimental Botany, 2022, 73, 2266-2274.	4.8	2