
Stelios Couris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6460980/publications.pdf Version: 2024-02-01

STELLOS COLIDIS

#	Article	IF	CITATIONS
1	Structural Investigations in Electrochromic Vanadium Pentoxide Thin Films. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, 2100431.	1.8	7
2	Honey discrimination based on the bee feeding by Laser Induced Breakdown Spectroscopy. Food Control, 2022, 134, 108770.	5.5	14
3	Tailoring the Nonlinear Optical Response of Some Graphene Derivatives by Ultraviolet (UV) Irradiation. Nanomaterials, 2022, 12, 152.	4.1	3
4	Nonlinear optical response of some Boron-dipyrromethene dyes: An experimental and theoretical investigation. Materials Chemistry and Physics, 2022, 283, 126057.	4.0	2
5	Silicon Nanosheets: An Emerging 2D Photonic Material with a Large Transient Nonlinear Optical Response beyond Graphene. Nanomaterials, 2022, 12, 90.	4.1	6
6	WO3 Films Grown by Spray Pyrolysis for Smart Windows Applications. Coatings, 2022, 12, 545.	2.6	6
7	Silicon Nanosheets versus Graphene Nanosheets: A Comparison of Their Nonlinear Optical Response. Journal of Physical Chemistry Letters, 2021, 12, 815-821.	4.6	12
8	Sulfur Detection in Soil by Laser Induced Breakdown Spectroscopy Assisted by Multivariate Analysis. Materials, 2021, 14, 541.	2.9	12
9	Classification of Greek Olive Oils from Different Regions by Machine Learning-Aided Laser-Induced Breakdown Spectroscopy and Absorption Spectroscopy. Molecules, 2021, 26, 1241.	3.8	17
10	Laser-induced breakdown spectroscopy coupled with machine learning as a tool for olive oil authenticity and geographic discrimination. Scientific Reports, 2021, 11, 5360.	3.3	21
11	A Laser-Based Method for the Detection of Honey Adulteration. Applied Sciences (Switzerland), 2021, 11, 6435.	2.5	7
12	Giant Broadband (450–2300 nm) Optical Limiting and Enhancement of the Nonlinear Optical Response of Some Graphenes by Defect Engineering. Journal of Physical Chemistry C, 2021, 125, 16075-16085.	3.1	9
13	Silicon Nanosheets: A Promising 2D Material with Strong Ultrafast Nonlinear Optical Response. Journal of Physical Chemistry C, 2021, 125, 18510-18516.	3.1	4
14	Laser-Induced Breakdown Spectroscopy: An Efficient Tool for Food Science and Technology (from the) Tj ETQq0 0	0 rgBT /C 3.8	overlock 10 T 14
15	Synthesis, characterization and nonlinear optical response of polyelectrolyte-stabilized copper hydroxide and copper oxide colloidal nanohybrids. Optical Materials, 2021, 119, 111329.	3.6	3
16	Discrimination of olive oils based on the olive cultivar origin by machine learning employing the fusion of emission and absorption spectroscopic data. Food Control, 2021, 130, 108318.	5.5	10
17	Laser-based classification of olive oils assisted by machine learning. Food Chemistry, 2020, 302, 125329.	8.2	46
18	Laser-induced breakdown spectroscopy assisted by machine learning for olive oils classification: The effect of the experimental parameters. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2020, 163, 105746.	2.9	39

#	Article	IF	CITATIONS
19	Octylamineâ€Modified Fluorographenes as a Versatile Platform for the Efficient Engineering of the Nonlinear Optical Properties of Fluorinated Graphenes. Advanced Photonics Research, 2020, 1, 2000014.	3.6	4
20	Laser induced breakdown spectroscopy for elemental analysis and discrimination of honey samples. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2020, 172, 105969.	2.9	24
21	Enhancing and Tuning the Nonlinear Optical Response and Wavelength-Agile Strong Optical Limiting Action of N-octylamine Modified Fluorographenes. Nanomaterials, 2020, 10, 2319.	4.1	7
22	Determination of the Nonlinear Optical Properties of Single- and Few-Layered Graphene Dispersions under Femtosecond Laser Excitation: Electronic and Thermal Origin Contributions. Journal of Physical Chemistry C, 2020, 124, 27241-27249.	3.1	17
23	Annealing Effect on the Properties of Electrochromic V2O5 Thin Films Grown by Spray Deposition Technique. Nanomaterials, 2020, 10, 2397.	4.1	12
24	Outstanding Broadband (532 nm to 2.2 μm) and Very Efficient Optical Limiting Performance of Some Defect-Engineered Graphenes. Journal of Physical Chemistry Letters, 2020, 11, 9515-9520.	4.6	11
25	Diethylaminoâ€fluorographene: A 2D material with broadband and efficient optical limiting performance (from 500 to 1800 nm) with very large nonlinear optical response. Nano Select, 2020, 1, 395-404.	3.7	4
26	Electrochromic Performance of V2O5 Thin Films Grown by Spray Pyrolysis. Materials, 2020, 13, 3859.	2.9	17
27	Engineering the NLO Response of Fluorographene by Octylamine Functionalization. , 2020, , .		0
28	UV Laser Photo-Reduction of Graphene Oxide and Graphene Fluoride for the Efficient Tuning of their Nonlinear Optical Response. , 2020, , .		1
29	Effects of Size and Oxidation on the Nonlinear Optical Response and Optical Limiting of Graphene Oxide Sheets. Journal of Physical Chemistry C, 2020, 124, 11265-11273.	3.1	8
30	Laser-induced breakdown spectroscopy analysis of the free surface of liquid secondary copper slag. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2020, 170, 105921.	2.9	3
31	On the measurement of the nonlinear optical response of graphene dispersions using fs lasers. Optics Letters, 2020, 45, 1814.	3.3	11
32	Olive Oils Classification via Laser-Induced Breakdown Spectroscopy. Applied Sciences (Switzerland), 2020, 10, 3462.	2.5	13
33	Laser-Induced Breakdown Spectroscopy Assisted by Machine Learning for Plastics/Polymers Identification. Atoms, 2019, 7, 79.	1.6	43
34	Hydrogenated Fluorographene: A Fluorographene Derivative with Remarkable Third-Order Nonlinear Response. , 2019, , .		0
35	Large Enhancement of the Nonlinear Optical Response of Fluorographene by Chemical Functionalization: The Case of Diethyl-amino-fluorographene. Journal of Physical Chemistry C, 2019, 123, 25856-25862.	3.1	12
36	Thiophenolâ€Modified Fluorographene Derivatives for Nonlinear Optical Applications. ChemPlusChem, 2019, 84, 1288-1298.	2.8	14

#	Article	IF	CITATIONS
37	Third-Order Nonlinear Optical Properties of Some Polycyclic Aromatic Hydrocarbons. , 2019, , .		0
38	Dramatic Enhancement of the Nonlinear Optical Response of Hydrogenated Fluorographene: The Effect of Midgap States. Journal of Physical Chemistry C, 2018, 122, 25573-25579.	3.1	10
39	Experimental Study of the Structural Effect on the Nanosecond Nonlinear Optical Response of O-Doped Polycyclic Aromatic Hydrocarbons. Journal of Physical Chemistry A, 2018, 122, 5142-5152.	2.5	9
40	Tailoring Colors by O Annulation of Polycyclic Aromatic Hydrocarbons. Chemistry - A European Journal, 2017, 23, 2363-2378.	3.3	55
41	Third-order optical nonlinearities of PVP/Pd nanohybrids. Optical Materials, 2017, 72, 226-232.	3.6	4
42	A Twisted Bayâ€ 5 ubstituted Quaterrylene Phosphorescing in the <scp>NIR</scp> Spectral Region. Helvetica Chimica Acta, 2017, 100, e1700192.	1.6	7
43	Hydrogenated Fluorographene: A 2D Counterpart of Graphane with Enhanced Nonlinear Optical Properties. Journal of Physical Chemistry C, 2017, 121, 22567-22575.	3.1	23
44	Experimental investigation of the nonlinear refractive index of various soft glasses dedicated for development of nonlinear photonic crystal fibers. Optical Materials Express, 2017, 7, 3471.	3.0	53
45	Nonlinear optical response of some Graphene oxide and Graphene fluoride derivatives. Optofluidics, Microfluidics and Nanofluidics, 2016, 3, .	0.5	8
46	Laser-induced breakdown spectroscopy measurements of mean mixture fraction in turbulent methane flames with a novel calibration scheme. Combustion and Flame, 2016, 167, 72-85.	5.2	36
47	Ultrafast Processes in Graphene Oxide during Femtosecond Laser Excitation. Journal of Physical Chemistry C, 2016, 120, 4104-4111.	3.1	17
48	Laser-Induced Breakdown Spectroscopy (LIBS) for the Measurement of Spatial Structures and Fuel Distribution in Flames. Applied Spectroscopy, 2016, 70, 627-634.	2.2	15
49	The effect of the degree of oxidation on broadband nonlinear absorption and ferromagnetic ordering in graphene oxide. Nanoscale, 2016, 8, 2908-2917.	5.6	40
50	[60]Fullerene–porphyrin [n]pseudorotaxanes: self-assembly, photophysics and third-order NLO response. Physical Chemistry Chemical Physics, 2016, 18, 11858-11868.	2.8	18
51	Solvent Molding of Organic Morphologies Made of Supramolecular Chiral Polymers. Journal of the American Chemical Society, 2015, 137, 8150-8160.	13.7	48
52	Solution processed multi-color organic light emitting diodes for application in telecommunications. Microelectronic Engineering, 2015, 145, 21-28.	2.4	6
53	Pyrazoline derivatives with a tailored third order nonlinear optical response. RSC Advances, 2015, 5, 48363-48367.	3.6	40
54	Effect of the Composition on the Nonlinear Optical Response of Au _{<i>x</i>} Ag _{1–x} Nano-Alloys. Journal of Physical Chemistry C, 2015, 119, 6861-6872.	3.1	39

#	Article	IF	CITATIONS
55	Ultrafast third order nonlinearities of organic solvents. Optics Express, 2015, 23, 24171.	3.4	40
56	Nonlinear Optical Response of Gold-Decorated Nanodiamond Hybrids. Journal of Physical Chemistry C, 2015, 119, 24614-24620.	3.1	13
57	Green and simple route toward boron doped carbon dots with significantly enhanced non-linear optical properties. Carbon, 2015, 83, 173-179.	10.3	282
58	Third-order nonlinear optical response and optical limiting of colloidal carbon dots. Optics Express, 2014, 22, 12013.	3.4	43
59	Broadband near infrared optical power limiting of few layered graphene oxides. Applied Physics Letters, 2014, 104, 191112.	3.3	44
60	Third-order nonlinear optical properties of some novel BODIPYs. , 2014, , .		0
61	Combustion Diagnostics with Femtosecond Laser Radiation. Journal of Physics: Conference Series, 2014, 548, 012056.	0.4	8
62	Effect of metal cation complexation on the nonlinear optical response of an electroactive bisiminopyridine ligand. Dyes and Pigments, 2014, 101, 229-233.	3.7	85
63	Synthesis and Characterization of the Nonlinear Optical Properties of Novel Hybrid Organic–Inorganic Semiconductor Lead Iodide Quantum Wells and Dots. Journal of Physical Chemistry C, 2014, 118, 2766-2775.	3.1	23
64	Palladium-based micellar nanohybrids: preparation and nonlinear optical response. RSC Advances, 2014, 4, 8779.	3.6	8
65	Nonlinear optical response of graphene derivatives. , 2014, , .		2
66	Influence of the metal atom and the substituents on the third-order nonlinear optical response of some metal dithiolenes. , 2014, , .		0
67	Nonlinear optical response of polymer/Pd nanoparticle systems. , 2014, , .		0
68	Near-infrared nonlinear optical response of some carbon-based nanomaterials. , 2014, , .		0
69	Nonlinear optical properties of colloidal carbon nanoparticles: nanodiamonds and carbon dots. RSC Advances, 2014, 4, 40152-40160.	3.6	46
70	Substitution, Environment, and Excitation Wavelength Effects on the Optical Nonlinearities of Some Novel <i>cis</i> -/ <i>trans</i> -Ï€-Conjugated Azobenzenes. Journal of Physical Chemistry C, 2014, 118, 24697-24704.	3.1	4
71	Optical limiting action of few layered graphene oxide dispersed in different solvents. Optical Materials, 2013, 36, 112-117.	3.6	60
72	NLO Response of Photoswitchable Azobenzeneâ€Based Materials. ChemPhysChem, 2013, 14, 2961-2972.	2.1	49

#	Article	IF	CITATIONS
73	Polymer photonic technologies for optical communications. , 2013, , .		2
74	Effect of the composition of Au <inf>x</inf> Ag <inf>(1−x)</inf> nanoalloys on their nonlinear optical response. , 2013, , .		0
75	Broadband optical power limiting of graphene oxide colloids in the picosecond regime. , 2013, , .		0
76	Femtosecond laser induced breakdown spectroscopy of air–methane mixtures. Chemical Physics Letters, 2013, 561-562, 36-41.	2.6	28
77	Nonlinear Optical Properties and Broadband Optical Power Limiting Action of Graphene Oxide Colloids. Journal of Physical Chemistry C, 2013, 117, 6842-6850.	3.1	163
78	Synthesis, characterization and non-linear optical response of organophilic carbon dots. Carbon, 2013, 61, 640-643.	10.3	72
79	Palladium micellar nanohybrids with tunable nonlinear optical response. Optical Materials, 2013, 36, 123-129.	3.6	5
80	Fluoro-graphene: nonlinear optical properties. Optics Express, 2013, 21, 21027.	3.4	29
81	Femtosecond laser induced breakdown for combustion diagnostics. Applied Physics Letters, 2012, 100, .	3.3	41
82	Water dispersible functionalized graphene fluoride with significant nonlinear optical response. Chemical Physics Letters, 2012, 543, 101-105.	2.6	52
83	Third-order nonlinear optical response of push–pull azobenzene polymers. Chemical Physics Letters, 2012, 554, 107-112.	2.6	95
84	Photophysics and transient nonlinear optical response of donor–[60]fullerene hybrids. Journal of Materials Chemistry, 2011, 21, 2524.	6.7	29
85	Effects of the surface coating and of the size on the nonlinear optical response of magnetic iron oxide nanoparticles. , 2011, , .		0
86	Nonlinear optical response of a symmetrical Au dithiolene complex under ps and ns laser excitation in the visible. Chemical Physics Letters, 2011, 513, 229-235.	2.6	19
87	GeS2-Ga2S3-Agl glasses with high nonlinear optical properties. , 2011, , .		2
88	Doxorubicin Nanocarriers Based on Magnetic Colloids with a Bioâ€polyelectrolyte Corona and High Nonâ€linear Optical Response: Synthesis, Characterization, and Properties. Advanced Functional Materials, 2011, 21, 1465-1475.	14.9	29
89	Preparation and nonlinear optical response of novel palladium-containing micellar nanohybrids. Optical Materials, 2011, 33, 1342-1349.	3.6	13

90 NLO properties of a new Au-dithiolene complex. , 2010, , .

#	Article	IF	CITATIONS
91	Synthesis and non-linear optical properties of some novel nickel derivatives. Chemical Physics, 2010, 372, 33-45.	1.9	21
92	Comparison of electrical and laser spark emission spectroscopy for fuel concentration measurements. Experimental Thermal and Fluid Science, 2010, 34, 338-345.	2.7	27
93	Nonlinear optical properties of aqueous dispersions of ferromagnetic Î ³ -Fe2O3 nanoparticles. Chemical Physics Letters, 2010, 493, 314-318.	2.6	21
94	Transient nonlinear optical response of some symmetrical nickel dithiolene complexes. Chemical Physics Letters, 2010, 495, 245-250.	2.6	15
95	The Effect of Charge Transfer on the NLO Response of Some Porphyrin-[60]fullerene Dyads. , 2010, , .		4
96	Nonlinear Optical Properties of Au and Ag Nanoparticles Embedded into Hybrid-block Copolymer Micelles. , 2010, , .		3
97	Linear and nonlinear optical properties of triphenylamine-functionalized C60: insights from theory and experiment. Physical Chemistry Chemical Physics, 2010, 12, 373-381.	2.8	42
98	Development and Nonlinear Optical Properties of Block Copolymers Micelles Encapsulating Metal Nanoparticles. , 2010, , .		1
99	Nonlinear optical response of titanium oxide nanostructured thin films. Thin Solid Films, 2009, 518, 1174-1176.	1.8	26
100	One pot direct hydrothermal growth of photoactive TiO2 films on glass. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 202, 81-85.	3.9	27
101	Optical features of calcium neodymium oxyborate Ca4NdO(BO3)3 doped by Yb3+. Journal of Alloys and Compounds, 2009, 481, 14-16.	5.5	14
102	Nonlinear optical response of water dispersions of iron oxide nanoparticles. , 2009, , .		1
103	Nonlinear optical properties of Au nanoclusters encapsulated into hybrid block copolymer micelles. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 2635-2638.	1.8	7
104	Thirdâ€Order Nonlinear Optical Response of Goldâ€Island Films. Advanced Functional Materials, 2008, 18, 1281-1289.	14.9	39
105	Optically Active Spherical Polyelectrolyte Brushes with a Nanocrystalline Magnetic Core. Advanced Functional Materials, 2008, 18, 1694-1706.	14.9	23
106	Efficient Modulation of the Third Order Nonlinear Optical Properties of Fullerene Derivatives. Journal of the American Chemical Society, 2008, 130, 1534-1535.	13.7	59
107	X-ray photoelectron spectra and the electronic band structure for non-centrosymmetric Bi2ZnB2O7 nonlinear single crystal. Current Opinion in Solid State and Materials Science, 2008, 12, 26-31.	11.5	26
108	Laser-induced breakdown spectroscopy in reactive flows of hydrocarbon-air mixtures. Applied Physics Letters, 2008, 92, .	3.3	53

#	Article	IF	CITATIONS
109	Investigation of the Parameters Influencing the Accuracy of Rapid Steelmaking Slag Analysis with Laserâ€Induced Breakdown Spectroscopy. Steel Research International, 2007, 78, 693-703.	1.8	13
110	Unsymmetrical Single-Component Nickel 1,2-Dithiolene Complexes with Extended Tetrachalcogenafulvalenedithiolato Ligands. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2007, 62, 200-204.	0.7	10
111	Synthesis of one-dimensional structured metal phthalocyanine in an ionic liquid. Journal of Porphyrins and Phthalocyanines, 2007, 11, 713-718.	0.8	7
112	Nonlinear optical properties of some Au nanostructures. , 2007, , .		0
113	Aqueous Dispersions of C60Fullerene by Use of Amphiphilic Block Copolymers:Â Preparation and Nonlinear Optical Properties. Journal of Physical Chemistry B, 2007, 111, 4315-4319.	2.6	33
114	Nonlinear Optical Properties of Ferrocene- and Porphyrin–[60]Fullerene Dyads. ChemPhysChem, 2007, 8, 1056-1064.	2.1	64
115	pH effect on the morphology of ZnO nanostructures grown with aqueous chemical growth. Thin Solid Films, 2007, 515, 8764-8767.	1.8	90
116	Nonlinear optical response of water soluble C70 dendrimers. Chemical Physics Letters, 2007, 448, 243-247.	2.6	9
117	Third-order nonlinear optical properties of thin sputtered gold films. Optics Communications, 2007, 275, 217-222.	2.1	55
118	Nonlinear optical response of silicon nanocrystals. Optical Materials, 2007, 30, 260-263.	3.6	13
119	The effect of growth time on the morphology of ZnO structures deposited on Si (100) by the aqueous chemical growth technique. Journal of Crystal Growth, 2007, 308, 105-109.	1.5	36
120	Ultrafast third-order nonlinear optical response of C84, C84–D2 (IV) and C84–D2d (II). Chemical Physics Letters, 2006, 425, 110-113.	2.6	5
121	Transient nonlinear optical response of novel neutral unsymmetrical nickel dithiolene complexes. Chemical Physics Letters, 2006, 428, 109-113.	2.6	38
122	Optical nonlinearities of C84 fullerenes. Chemical Physics Letters, 2006, 432, 497-501.	2.6	6
123	Stable aqueous dispersions of C60fullerene by the use of a block copolymer. Journal of Physics: Conference Series, 2005, 10, 163-166.	0.4	2
124	Laser-induced breakdown spectroscopy as an analytical tool for equivalence ratio measurement in methane–air premixed flames. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2005, 60, 1092-1097.	2.9	69
125	Quantitative local equivalence ratio determination in laminar premixed methane–air flames by laser induced breakdown spectroscopy (LIBS). Chemical Physics Letters, 2005, 404, 309-314.	2.6	70
126	Calibration Measurements in laser-induced breakdown spectroscopy using nanosecond and picosecond lasers. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2004, 59, 1885-1892.	2.9	84

#	Article	IF	CITATIONS
127	Nonlinear optical response of some isomerically pure higher fullerenes and their corresponding endohedral metallofullerene derivatives: C82–C2î½, Dy@C82 (I), Dy2@C82 (I), C92–C2 and Er2@C92 (IV). Chemical Physics Letters, 2004, 394, 14-18.	2.6	23
128	Large Enhancement of the Nonlinear Optical Response of Reduced Fullerene Derivatives. Chemistry - A European Journal, 2003, 9, 1529-1534.	3.3	39
129	An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques. Chemical Physics Letters, 2003, 369, 318-324.	2.6	124
130	Influence of the experimental conditions on the determination of nonlinear optical parameters of a medium using the Z-scan technique. , 2003, , .		1
131	Ultrafast nonlinear optical response of higher fullerenes. , 2003, , .		0
132	<title>Nonlinear optical response of silicon nanocomposites</title> ., 2002, 4762, 297.		2
133	Anisotropic Distributions of Ion Fragments Produced by Dissociative Ionization of Halogenated Ethylenes in Intense Laser Fields. Journal of Physical Chemistry A, 2002, 106, 2838-2843.	2.5	9
134	Dissociative ionization of halogenated ethylenes in intense femtosecond laser pulses. Chemical Physics Letters, 2002, 353, 295-303.	2.6	15
135	Onion-like carbon and diamond nanoparticles for optical limiting. Chemical Physics Letters, 2002, 357, 336-340.	2.6	112
136	Optical limiting and nonlinear optical absorption properties of C60–polystyrene star polymer films: C60 concentration dependence. Journal of Materials Chemistry, 2002, 12, 2071-2076.	6.7	68
137	Transient and instantaneous third-order nonlinear optical response of C60and the higher fullerenes C70, C76and C84. Journal of Physics B: Atomic, Molecular and Optical Physics, 2001, 34, 4983-4996.	1.5	37
138	Substantial Non-linear Optical Response of New Polyads Based on Ru and Os Complexes of Modified Terpyridines. Journal of Physical Chemistry B, 2001, 105, 10797-10804.	2.6	40
139	Photophysical properties of a series of blue-emitting rigid–flexible polyethers in solution and in thin films. Journal of Luminescence, 2001, 93, 223-227.	3.1	11
140	Single-photon photolysis of C60,C70,C76, and C84 in solutions. Chemical Physics Letters, 2001, 335, 539-544.	2.6	21
141	Ultrafast nonlinear optical response of C60–polystyrene star polymers. Chemical Physics Letters, 2001, 335, 533-538.	2.6	31
142	Nonlinear absorption in silicon nanocrystals. Quantum Electronics, 2001, 31, 817-820.	1.0	13
143	Optical limiting behaviour of the water-soluble C60/γ-cyclodextrin complex. Chemical Physics Letters, 2000, 318, 488-495.	2.6	20
144	Induced HSiCl emission in the UV photodissociation of 2-chloroethenylsilane. Chemical Physics Letters, 2000, 316, 449-454.	2.6	11

#	Article	IF	CITATIONS
145	The Role of the Oxygen Molecule in the Photolysis of Fullerenes. Fullerenes, Nanotubes, and Carbon Nanostructures, 2000, 8, 289-318.	0.6	9
146	Near-Infrared Laser-Induced Decomposition of C60Dissolved in Toluene. Fullerenes, Nanotubes, and Carbon Nanostructures, 2000, 8, 319-336.	0.6	0
147	<title>Optical properties of metal-coated silicon nanocrystals</title> ., 2000, 4070, 465.		3
148	Multiphoton Ionization and Fragmentation of CS ₂ Under Intense Short Pulse Laser Radiation. Laser Chemistry, 1999, 18, 129-142.	0.5	2
149	Polarization effects on the ionization of molecules under picosecond and femtosecond laser excitation. Journal of Physics B: Atomic, Molecular and Optical Physics, 1999, 32, L439-L450.	1.5	22
150	Spectral narrowing in a rhodamine-doped layered TiO2/surfactant thin film. Applied Physics Letters, 1999, 75, 319-321.	3.3	9
151	Study of poly(methyl methacrylate) thin films doped with laser dyes. Journal of Luminescence, 1999, 81, 285-291.	3.1	47
152	Ionization and fragmentation of aromatic and single-bonded hydrocarbons with 50 fs laser pulses at 800 nm. Chemical Physics Letters, 1999, 308, 373-380.	2.6	61
153	Fullerene decomposition induced by near-infrared laser radiation studied by real-time turbidimetry. Chemical Physics Letters, 1999, 313, 431-436.	2.6	1
154	Third-Order Susceptibility of Li@C60. Advanced Materials, 1999, 11, 405-408.	21.0	27
155	Subpicosecond ionization and dissociation of benzene and cyclic alkanes at 800 and 400 nm. Chemical Physics Letters, 1998, 289, 303-310.	2.6	54
156	Laser photodissociation of ketene at 230 nm. Chemical Physics, 1998, 232, 353-360.	1.9	12
157	Laser-Induced Breakdown Spectroscopy for Polymer Identification. Applied Spectroscopy, 1998, 52, 456-461.	2.2	188
158	Laser-induced breakdown spectroscopy (LIBS): a tool for rapid in-situ elemental analysis. , 1998, 3423, 228.		2
159	Spectral narrowing in the emission of rhodamine 6G incorporated in thin surfactant films. , 1998, 3423, 224.		0
160	Optical nonlinearities of fullerenes and their implications in optoelectronics. , 1998, , .		1
161	Sub-picosecond resonant third-order nonlinear optical response of azobenzene-doped polymer film. Journal of Applied Physics, 1997, 81, 7073-7075.	2.5	24
162	An experimental investigation of the nf Rydberg states of carbon disulfide. Journal of Chemical Physics, 1997, 107, 8866-8873.	3.0	10

#	Article	IF	CITATIONS
163	Spectroscopy and dynamics of the Rydberg states of C 2 H 2 and their relevance to astrophysical photochemistry. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 1997, 355, 1637-1658.	3.4	21
164	Laser Diagnostics of Painted Artworks: Laser-Induced Breakdown Spectroscopy in Pigment Identification. Applied Spectroscopy, 1997, 51, 1025-1030.	2.2	191
165	High order nonlinear optical response of fullerene solutions in the nanosecond regime. Optics Communications, 1997, 138, 301-304.	2.1	18
166	<title>Laser-induced breakdown spectroscopy (LIBS): applications in environmental issues</title> . , 1996, , .		2
167	Sub-picosecond studies of the third-order optical nonlinearities of - toluene solutions. Journal of Physics B: Atomic, Molecular and Optical Physics, 1996, 29, 5033-5041.	1.5	52
168	A multiphoton polarization study of the Rydberg states of OCS in the 70 500–74 500 cmâ^1energy re Journal of Chemical Physics, 1996, 105, 6147-6153.	gion. 3.0	9
169	The 1550–1460 à region of CS2. Journal of Chemical Physics, 1996, 104, 6130-6137.	3.0	9
170	A (1+1′)+1 multiphoton ionization study of CS2 in the 68 500–73 000 cmâ^'1 energy region. The 3 Rydberg states. Journal of Chemical Physics, 1996, 105, 62-67.	d ₃ .gd 5s	14
171	High-order nonlinear optical response of -toluene solutions in the sub-picosecond regime. Journal of Physics B: Atomic, Molecular and Optical Physics, 1996, 29, L773-L778.	1.5	11
172	A comparison of the femto-, pico- and nano-second multiphoton ionization and dissociation processes of NO2 at 248 and 496 nm. Chemical Physics Letters, 1995, 247, 555-563.	2.6	42
173	Concentration and wavelength dependence of the effective third-order susceptibility and optical limiting of C60in toluene solution. Journal of Physics B: Atomic, Molecular and Optical Physics, 1995, 28, 4537-4554.	1.5	273
174	A two olor (1+1′)+1 multiphoton ionization study of CS2 in the 61 000–65 600 cmâ~'1 energy r Journal of Chemical Physics, 1995, 103, 4847-4854.	egion.	16
175	A resonance enhanced multiphoton ionization study of the CS2 molecule: The 4p Rydberg states. Journal of Chemical Physics, 1995, 103, 2436-2444.	3.0	26
176	Fullerene Cages Breakdown Induced in Solution by Ultraviolet Radiation: Experimental Support for the "Window" Formation in Fullerenes?. The Journal of Physical Chemistry, 1995, 99, 8200-8201.	2.9	9
177	Multiphoton ionisation spectroscopy of ethyl iodide and deuteriated ethyl iodide in the region of the 6s Rydberg transitions. Evidence of molecular field splitting of spin–orbit degenerate states. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 3083-3088.	1.7	1
178	The (2+1) multiphoton ionization spectrum of jet ooled CS2 between 54 000 and 58 000 cmâ^'1. Jou Chemical Physics, 1994, 100, 3514-3519.	rnal of	21
179	Rotational dependence of the quenching of electronically excited CH(A 2Δ) and CH (B 2Σâ^') produced by laser photolysis of acetone at 193 nm. Chemical Physics Letters, 1994, 223, 561-566.	2.6	17
180	Comparison of the efficiency of the laser photolysis of C60 and C70 fullerenes in solution. Chemical Physics Letters, 1994, 231, 314-318.	2.6	8

#	Article	IF	CITATIONS
181	Fragments in the UV photolysis of the CH3 and CH3O2 radicals. Chemical Physics Letters, 1993, 208, 27-31.	2.6	9
182	A 2+1 REMPI study of the E-X transition in CO. Indirect predissociations in the E 1Î state. Chemical Physics, 1993, 178, 569-579.	1.9	37
183	2+1 (2+2) Rempi-Tof Study of the Lowest Rydberg States (6s, 6s') of Methyl and Propyl Iodides. Laser Chemistry, 1993, 13, 151-157.	0.5	4
184	Stark broadening of the 690.7 nm mercury line in highâ€pressure mercury discharges. Journal of Applied Physics, 1992, 72, 3341-3343.	2.5	5
185	Multiphoton ionisation spectroscopy of the 3s(2 + 2, 1) and 4s(3 + 1) Rydberg states of acetone: evidence for a molecular valence state at 153 nm. Journal of the Chemical Society, Faraday Transactions, 1991, 87, 2891.	1.7	26
186	Arc pressure effect on the population of the Hg 63Plevels. Journal of Applied Physics, 1989, 66, 1084-1088.	2.5	2
187	Deviations from equilibrium in the 6 3P levels of mercury in an ac arc plasma. Optics Communications, 1988, 67, 214-217.	2.1	5
188	Time dependence of nonequilibrium in the Hg resonance level in an AC arc plasma. Optics Communications, 1988, 65, 22-25.	2.1	5
189	Determination of transition probability for the 655-nm Tl line. Journal of Quantitative Spectroscopy and Radiative Transfer, 1987, 38, 303-310.	2.3	2
190	Determination of the Partial Pressure of Thallium in High-Pressure Lamp Arcs: A Comparative Study. IEEE Transactions on Plasma Science, 1986, 14, 325-332.	1.3	3
191	Operating pressure of thallium in a mercuryâ€ŧhallium iodide discharge using the line Tlâ€5350 à Journal of Applied Physics, 1985, 58, 2786-2788.	2.5	6