Christer Betsholtz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6460626/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ELTD1 deletion reduces vascular abnormality and improves T-cell recruitment after PD-1 blockade in glioma. Neuro-Oncology, 2022, 24, 398-411.	0.6	7
2	Adult-induced genetic ablation distinguishes PDGFB roles in blood-brain barrier maintenance and development. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 264-279.	2.4	25
3	An overlooked subset of Cx3cr1wt/wt microglia in the Cx3cr1CreER-Eyfp/wt mouse has a repopulation advantage over Cx3cr1CreER-Eyfp/wt microglia following microglial depletion. Journal of Neuroinflammation, 2022, 19, 20.	3.1	12
4	Proper migration of lymphatic endothelial cells requires survival and guidance cues from arterial mural cells. ELife, 2022, 11, .	2.8	6
5	Molecular insights into the early stage of glomerular injury in IgA nephropathy using single-cell RNA sequencing. Kidney International, 2022, 101, 752-765.	2.6	23
6	Specification of CNS macrophage subsets occurs postnatally in defined niches. Nature, 2022, 604, 740-748.	13.7	107
7	Microvascular stabilization via blood-brainÂbarrier regulation prevents seizure activity. Nature Communications, 2022, 13, 2003.	5.8	47
8	The SARS-CoV-2 receptor ACE2 is expressed in mouse pericytes but not endothelial cells: Implications for COVID-19 vascular research. Stem Cell Reports, 2022, 17, 1089-1104.	2.3	41
9	KCNJ8/ABCC9-containing K-ATP channel modulates brain vascular smooth muscle development and neurovascular coupling. Developmental Cell, 2022, 57, 1383-1399.e7.	3.1	16
10	Identification, discrimination and heterogeneity of fibroblasts. Nature Communications, 2022, 13, .	5.8	43
11	ADAMTS18+ villus tip telocytes maintain a polarized VEGFA signaling domain and fenestrations in nutrient-absorbing intestinal blood vessels. Nature Communications, 2022, 13, .	5.8	20
12	Mural Cell SRF Controls Pericyte Migration, Vessel Patterning and Blood Flow. Circulation Research, 2022, 131, 308-327.	2.0	15
13	Vascular PDGFR-alpha protects against BBB dysfunction after stroke in mice. Angiogenesis, 2021, 24, 35-46.	3.7	26
14	A novel podocyte protein, R3h domain containing-like, inhibits TGF-β-induced p38 MAPK and regulates the structure of podocytes and glomerular basement membrane. Journal of Molecular Medicine, 2021, 99, 859-876.	1.7	3
15	Single-Cell Analysis of Blood-Brain Barrier Response to Pericyte Loss. Circulation Research, 2021, 128, e46-e62.	2.0	98
16	The infantile myofibromatosis NOTCH3 L1519P mutation leads to hyperactivated ligand-independent Notch signaling and increased PDGFRB expression. DMM Disease Models and Mechanisms, 2021, 14, .	1.2	9
17	Lack of Evidence of Angiotensin-Converting Enzyme 2 Expression and Replicative Infection by SARS-CoV-2 in Human Endothelial Cells. Circulation, 2021, 143, 865-868.	1.6	166
18	Single-cell RNA sequencing reveals the mesangial identity and species diversity of glomerular cell transcriptomes. Nature Communications, 2021, 12, 2141.	5.8	55

#	Article	IF	CITATIONS
19	A human cell type similar to murine central nervous system perivascular fibroblasts. Experimental Cell Research, 2021, 402, 112576.	1.2	8
20	Key molecular alterations in endothelial cells in human glioblastoma uncovered through single-cell RNA sequencing. JCI Insight, 2021, 6, .	2.3	47
21	A Switch from Cell-Associated to Soluble PDGF-B Protects against Atherosclerosis, despite Driving Extramedullary Hematopoiesis. Cells, 2021, 10, 1746.	1.8	4
22	Conserved and context-dependent roles for pdgfrb signaling during zebrafish vascular mural cell development. Developmental Biology, 2021, 479, 11-22.	0.9	19
23	Astrocyte–microglial association and matrix composition are common events in the natural history of primary familial brain calcification. Brain Pathology, 2020, 30, 446-464.	2.1	18
24	Single-cell analysis uncovers fibroblast heterogeneity and criteria for fibroblast and mural cell identification and discrimination. Nature Communications, 2020, 11, 3953.	5.8	316
25	The Ion Channel and GPCR Toolkit of Brain Capillary Pericytes. Frontiers in Cellular Neuroscience, 2020, 14, 601324.	1.8	33
26	Specific fibroblast subpopulations and neuronal structures provide local sources of Vegfc-processing components during zebrafish lymphangiogenesis. Nature Communications, 2020, 11, 2724.	5.8	42
27	Radiation Triggers a Dynamic Sequence of Transient Microglial Alterations in Juvenile Brain. Cell Reports, 2020, 31, 107699.	2.9	23
28	Lung developmental arrest caused by PDGF-A deletion: consequences for the adult mouse lung. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L831-L843.	1.3	11
29	Platelet-Specific PDGFB Ablation Impairs Tumor Vessel Integrity and Promotes Metastasis. Cancer Research, 2020, 80, 3345-3358.	0.4	47
30	Sphingosine 1-Phosphate Receptor Signaling Establishes AP-1 Gradients to Allow for Retinal Endothelial Cell Specialization. Developmental Cell, 2020, 52, 779-793.e7.	3.1	38
31	Pericyte dysfunction due to Shb gene deficiency increases B16F10 melanoma lung metastasis. International Journal of Cancer, 2020, 147, 2634-2644.	2.3	6
32	Lack of Flvcr2 impairs brain angiogenesis without affecting the blood-brain barrier. Journal of Clinical Investigation, 2020, 130, 4055-4068.	3.9	11
33	Sphingosine 1-phosphate-regulated transcriptomes in heterogenous arterial and lymphatic endothelium of the aorta. ELife, 2020, 9, .	2.8	34
34	Integrative analysis of loss-of-function variants in clinical and genomic data reveals novel genes associated with cardiovascular traits. BMC Medical Genomics, 2019, 12, 108.	0.7	8
35	R3hdml regulates satellite cell proliferation and differentiation. EMBO Reports, 2019, 20, e47957.	2.0	9
36	Powerful Homeostatic Control of Oligodendroglial Lineage by PDGFRα in Adult Brain. Cell Reports, 2019, 27, 1073-1089.e5.	2.9	46

#	Article	IF	CITATIONS
37	PDGF-B Is Required for Development of the Glymphatic System. Cell Reports, 2019, 26, 2955-2969.e3.	2.9	89
38	CDC42 Deletion Elicits Cerebral Vascular Malformations via Increased MEKK3-Dependent KLF4 Expression. Circulation Research, 2019, 124, 1240-1252.	2.0	42
39	Emerging links between cerebrovascular and neurodegenerative diseases—a special role forÂpericytes. EMBO Reports, 2019, 20, e48070.	2.0	89
40	Sprouting and anastomosis in the Drosophila trachea and the vertebrate vasculature: Similarities and differences in cell behaviour. Vascular Pharmacology, 2019, 112, 8-16.	1.0	19
41	Peri-arterial specification of vascular mural cells from naÃ`ve mesenchyme requires Notch signaling. Development (Cambridge), 2019, 146, .	1.2	42
42	GPIHBP1 expression in gliomas promotes utilization of lipoprotein-derived nutrients. ELife, 2019, 8, .	2.8	10
43	Inverse correlation between vascular endothelial growth factor back-filtration and capillary filtration pressures. Nephrology Dialysis Transplantation, 2018, 33, 1514-1525.	0.4	7
44	PDGF-A signaling is required for secondary alveolar septation and controls epithelial proliferation in the developing lung. Development (Cambridge), 2018, 145, .	1.2	46
45	A molecular atlas of cell types and zonation in the brain vasculature. Nature, 2018, 554, 475-480.	13.7	1,310
46	Cell–cell signaling in blood vessel development and function. EMBO Molecular Medicine, 2018, 10, .	3.3	20
47	Visualization of vascular mural cells in developing brain using genetically labeled transgenic reporter mice. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 456-468.	2.4	51
48	Prolonged systemic hyperglycemia does not cause pericyte loss and permeability at the mouse blood-brain barrier. Scientific Reports, 2018, 8, 17462.	1.6	19
49	Single-Cell mRNA Sequencing of the Mouse Brain Vasculature. Methods in Molecular Biology, 2018, 1846, 309-324.	0.4	16
50	Multiple roles of lymphatic vessels in peripheral lymph node development. Journal of Experimental Medicine, 2018, 215, 2760-2777.	4.2	85
51	Defective endothelial cell migration in the absence of Cdc42 leads to capillary-venous malformations. Development (Cambridge), 2018, 145, .	1.2	56
52	Pharmacokinetics of pericyte involvement in small-molecular drug transport across the blood-brain barrier. European Journal of Pharmaceutical Sciences, 2018, 122, 77-84.	1.9	8
53	Extracellular retention of PDGF-B directs vascular remodeling in mouse hypoxia-induced pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 314, L593-L605.	1.3	8
54	Intravital imaging-based analysis tools for vessel identification and assessment of concurrent dynamic vascular events. Nature Communications, 2018, 9, 2746.	5.8	53

#	Article	IF	CITATIONS
55	Rate of small-molecular drug transport across the blood-brain barrier in a pericyte-deficient state. European Journal of Pharmaceutical Sciences, 2018, 124, 182-187.	1.9	4
56	Single-cell RNA sequencing of mouse brain and lung vascular and vessel-associated cell types. Scientific Data, 2018, 5, 180160.	2.4	316
57	Angiopoietin-1 deficiency increases renal capillary rarefaction and tubulointerstitial fibrosis in mice. PLoS ONE, 2018, 13, e0189433.	1.1	25
58	Systematic Evaluation of Pleiotropy Identifies 6 Further Loci Associated WithÂCoronary ArteryÂDisease. Journal of the American College of Cardiology, 2017, 69, 823-836.	1.2	214
59	Endoglin prevents vascular malformation by regulating flow-induced cell migration and specification through VEGFR2 signalling. Nature Cell Biology, 2017, 19, 639-652.	4.6	153
60	Pericytes Stimulate Oligodendrocyte Progenitor Cell Differentiation during CNS Remyelination. Cell Reports, 2017, 20, 1755-1764.	2.9	100
61	Smooth muscle cell recruitment to lymphatic vessels requires PDGFB and impacts vessel size but not identity. Development (Cambridge), 2017, 144, 3590-3601.	1.2	39
62	Expression analysis of plateletâ€derived growth factor receptor alpha and its ligands in the developing mouse lung. Physiological Reports, 2017, 5, e13092.	0.7	36
63	Transcriptomic and Proteomic Profiling Provides Insight into Mesangial Cell Function in IgA Nephropathy. Journal of the American Society of Nephrology: JASN, 2017, 28, 2961-2972.	3.0	65
64	Mice Lacking Platelet-Derived Growth Factor D Display a Mild Vascular Phenotype. PLoS ONE, 2016, 11, e0152276.	1.1	42
65	Isoform-Specific Modulation of Inflammation Induced by Adenoviral Mediated Delivery of Platelet-Derived Growth Factors in the Adult Mouse Heart. PLoS ONE, 2016, 11, e0160930.	1.1	8
66	A role for PDGF-C/PDGFRα signaling in the formation of the meningeal basement membranes surrounding the cerebral cortex. Biology Open, 2016, 5, 461-474.	0.6	26
67	Trafficking of Endogenous Immunoglobulins by Endothelial Cells at the Blood-Brain Barrier. Scientific Reports, 2016, 6, 25658.	1.6	70
68	VEGFR2 pY949 signalling regulates adherens junction integrity and metastatic spread. Nature Communications, 2016, 7, 11017.	5.8	111
69	Age-dependent modulation of vascular niches for haematopoietic stem cells. Nature, 2016, 532, 380-384.	13.7	355
70	Cardiometabolic risk loci share downstream cis- and trans-gene regulation across tissues and diseases. Science, 2016, 353, 827-830.	6.0	241
71	Integrative functional genomics identifies regulatory mechanisms at coronary artery disease loci. Nature Communications, 2016, 7, 12092.	5.8	123
72	Skin Adipocyte Stem Cell Self-Renewal Is Regulated by a PDGFA/AKT-Signaling Axis. Cell Stem Cell, 2016, 19, 738-751.	5.2	105

#	Article	IF	CITATIONS
73	PDGF-A and PDGF-B induces cardiac fibrosis in transgenic mice. Experimental Cell Research, 2016, 349, 282-290.	1.2	83
74	Analysis of the brain mural cell transcriptome. Scientific Reports, 2016, 6, 35108.	1.6	185
75	A novel podocyte gene, semaphorin 3G, protects glomerular podocyte from lipopolysaccharide-induced inflammation. Scientific Reports, 2016, 6, 25955.	1.6	18
76	An Endothelial Gene Signature Score Predicts Poor Outcome in Patients with Endocrine-Treated, Low Genomic Grade Breast Tumors. Clinical Cancer Research, 2016, 22, 2417-2426.	3.2	8
77	Oligodendrocytes follow blood vessel trails in the brain. Science, 2016, 351, 341-342.	6.0	6
78	Knockdown of Tmem234 in zebrafish results in proteinuria. American Journal of Physiology - Renal Physiology, 2015, 309, F955-F966.	1.3	5
79	Schip1 Is a Novel Podocyte Foot Process Protein that Mediates Actin Cytoskeleton Rearrangements and Forms a Complex with Nherf2 and Ezrin. PLoS ONE, 2015, 10, e0122067.	1.1	14
80	Gpr116 Receptor Regulates Distinctive Functions in Pneumocytes and Vascular Endothelium. PLoS ONE, 2015, 10, e0137949.	1.1	37
81	cKit Lineage Hemogenic Endothelium-Derived Cells Contribute to Mesenteric Lymphatic Vessels. Cell Reports, 2015, 10, 1708-1721.	2.9	207
82	Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science, 2015, 347, 1138-1142.	6.0	2,779
83	Increased flux of the plant sterols campesterol and sitosterol across a disrupted blood brain barrier. Steroids, 2015, 99, 183-188.	0.8	14
84	Lipid transport and human brain development. Nature Genetics, 2015, 47, 699-701.	9.4	30
85	Establishment and Dysfunction of the Blood-Brain Barrier. Cell, 2015, 163, 1064-1078.	13.5	1,146
86	Notch3 Is Necessary for Blood Vessel Integrity in the Central Nervous System. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 409-420.	1.1	106
87	Functional Characterization of Germline Mutations in PDGFB and PDGFRB in Primary Familial Brain Calcification. PLoS ONE, 2015, 10, e0143407.	1.1	77
88	Characterization of Platelet-Derived Growth Factor-A Expression in Mouse Tissues Using a lacZ Knock-In Approach. PLoS ONE, 2014, 9, e105477.	1.1	25
89	Effects of a Disrupted Blood-Brain Barrier on Cholesterol Homeostasis in the Brain. Journal of Biological Chemistry, 2014, 289, 23712-23722.	1.6	78
90	Double function at the blood–brain barrier. Nature, 2014, 509, 432-433.	13.7	47

#	Article	IF	CITATIONS
91	Excessive vascular sprouting underlies cerebral hemorrhage in mice lacking αVβ8-TGFβ signaling in the brain. Development (Cambridge), 2014, 141, 4489-4499.	1.2	84
92	Lmx1b and FoxC Combinatorially Regulate Podocin Expression in Podocytes. Journal of the American Society of Nephrology: JASN, 2014, 25, 2764-2777.	3.0	30
93	Lim Domain Binding 2. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 2068-2077.	1.1	17
94	Clonal culturing of human embryonic stem cells on laminin-521/E-cadherin matrix in defined and xeno-free environment. Nature Communications, 2014, 5, 3195.	5.8	248
95	<scp>PDGF</scp> , Pericytes and the Pathogenesis of Idiopathic Basal Ganglia Calcification (<scp>IBGC</scp>). Brain Pathology, 2014, 24, 387-395.	2.1	42
96	The importance of microglia in the development of the vasculature in the central nervous system. Vascular Cell, 2013, 5, 4.	0.2	106
97	Mutations in the gene encoding PDGF-B cause brain calcifications in humans and mice. Nature Genetics, 2013, 45, 1077-1082.	9.4	273
98	Development of renal renin-expressing cells does not involve PDGF-B-PDGFR- <i>β</i> signaling. Physiological Reports, 2013, 1, e00132.	0.7	7
99	Analysis of Mice Lacking the Heparin-Binding Splice Isoform of Platelet-Derived Growth Factor A. Molecular and Cellular Biology, 2013, 33, 4030-4040.	1.1	8
100	Wtip- and Gadd45a-Interacting Protein Dendrin Is Not Crucial for the Development or Maintenance of the Glomerular Filtration Barrier. PLoS ONE, 2013, 8, e83133.	1.1	7
101	Platelet-Derived Growth Factor C Deficiency in C57BL/6 Mice Leads to Abnormal Cerebral Vascularization, Loss of Neuroependymal Integrity, and Ventricular Abnormalities. American Journal of Pathology, 2012, 180, 1136-1144.	1.9	34
102	The Sphingosine-1-Phosphate Receptor S1PR1 Restricts Sprouting Angiogenesis by Regulating the Interplay between VE-Cadherin and VEGFR2. Developmental Cell, 2012, 23, 587-599.	3.1	287
103	Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature, 2012, 485, 512-516.	13.7	1,019
104	Pericytes: Developmental, Physiological, and Pathological Perspectives, Problems, and Promises. Developmental Cell, 2011, 21, 193-215.	3.1	2,123
105	A Two-Way Communication between Microglial Cells and Angiogenic Sprouts Regulates Angiogenesis in Aortic Ring Cultures. PLoS ONE, 2011, 6, e15846.	1.1	200
106	Pericytes regulate the blood–brain barrier. Nature, 2010, 468, 557-561.	13.7	2,214
107	A reverse genetic screen in the zebrafish identifies crb2b as a regulator of the glomerular filtration barrier. Developmental Biology, 2009, 334, 1-9.	0.9	66
108	PDGFâ€B signaling is important for murine cardiac development: Its role in developing atrioventricular valves, coronaries, and cardiac innervation. Developmental Dynamics, 2008, 237, 494-503.	0.8	78

#	Article	IF	CITATIONS
109	Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature, 2008, 454, 656-660.	13.7	731
110	Generation and Characterization of <i>rgs5</i> Mutant Mice. Molecular and Cellular Biology, 2008, 28, 2324-2331.	1.1	78
111	Identification of a Core Set of 58 Gene Transcripts With Broad and Specific Expression in the Microvasculature. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1469-1476.	1.1	95
112	Role of platelet-derived growth factors in physiology and medicine. Genes and Development, 2008, 22, 1276-1312.	2.7	1,904
113	Expression and Subcellular Distribution of Novel Glomerulus-Associated Proteins Dendrin, Ehd3, Sh2d4a, Plekhh2, and 2310066E14Rik. Journal of the American Society of Nephrology: JASN, 2007, 18, 689-697.	3.0	72
114	The Glomerular Transcriptome and Proteome. Nephron Experimental Nephrology, 2007, 106, e32-e36.	2.4	12
115	Chair's Introduction. Novartis Foundation Symposium, 2007, , 1-3.	1.2	0
116	Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature, 2007, 445, 776-780.	13.7	1,515
117	Endothelial guidance in vascular patterning. FASEB Journal, 2007, 21, A133.	0.2	0
118	Pericytes and vascular stability. Experimental Cell Research, 2006, 312, 623-629.	1.2	435
119	Large-scale identification of genes implicated in kidney glomerulus development and function. EMBO Journal, 2006, 25, 1160-1174.	3.5	196
120	Microarray analysis of blood microvessels from PDGFâ€B and PDGFâ€Rβ mutant mice identifies novel markers for brain pericytes. FASEB Journal, 2006, 20, 1703-1705.	0.2	172
121	Endothelial/Pericyte Interactions. Circulation Research, 2005, 97, 512-523.	2.0	1,748
122	Role of pericytes in vascular morphogenesis. , 2005, , 115-125.		103
123	Endothelium-specific ablation of PDGFB leads to pericyte loss and glomerular, cardiac and placental abnormalities. Development (Cambridge), 2004, 131, 1847-1857.	1.2	301
124	Platelet-Derived Growth Factor Production by B16 Melanoma Cells Leads to Increased Pericyte Abundance in Tumors and an Associated Increase in Tumor Growth Rate. Cancer Research, 2004, 64, 2725-2733.	0.4	174
125	Insight into the physiological functions of PDGF through genetic studies in mice. Cytokine and Growth Factor Reviews, 2004, 15, 215-228.	3.2	355
126	Role of platelet-derived growth factor in mesangium development and vasculopathies: lessons from platelet-derived growth factor and platelet-derived growth factor receptor mutations in mice. Current Opinion in Nephrology and Hypertension, 2004, 13, 45-52.	1.0	57

#	Article	IF	CITATIONS
127	Endothelial-pericyte interactions in angiogenesis. Cell and Tissue Research, 2003, 314, 15-23.	1.5	931
128	Biology of platelet-derived growth factors in development. Birth Defects Research Part C: Embryo Today Reviews, 2003, 69, 272-285.	3.6	71
129	Transcription Profiling of Platelet-Derived Growth Factor-B-Deficient Mouse Embryos Identifies RGS5 as a Novel Marker for Pericytes and Vascular Smooth Muscle Cells. American Journal of Pathology, 2003, 162, 721-729.	1.9	215
130	Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes and Development, 2003, 17, 1835-1840.	2.7	557
131	Pericyteâ€specific expression ofRgs5:implications for PDCF and EDG receptor signaling during vascular maturation. FASEB Journal, 2003, 17, 1-17.	0.2	170
132	VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. Journal of Cell Biology, 2003, 161, 1163-1177.	2.3	2,483
133	Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors. Journal of Clinical Investigation, 2003, 112, 1142-1151.	3.9	251
134	Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors. Journal of Clinical Investigation, 2003, 112, 1142-1151.	3.9	414
135	Analysis of Mural Cell Recruitment to Tumor Vessels. Circulation, 2002, 105, 112-117.	1.6	172
136	A New Method for Large Scale Isolation of Kidney Glomeruli from Mice. American Journal of Pathology, 2002, 161, 799-805.	1.9	457
137	Pericytes and the Pathogenesis of Diabetic Retinopathy. Diabetes, 2002, 51, 3107-3112.	0.3	519
138	PDGF-a/PDGF alpha-receptor signaling is required for lung growth and the formation of alveoli but not for early lung branching morphogenesis. Developmental Dynamics, 2002, 223, 155-162.	0.8	119
139	Endothelium-specific platelet-derived growth factor-B ablation mimics diabetic retinopathy. EMBO Journal, 2002, 21, 4307-4316.	3.5	339
140	Developmental roles of platelet-derived growth factors. BioEssays, 2001, 23, 494-507.	1.2	333
141	Lack of Pericytes Leads to Endothelial Hyperplasia and Abnormal Vascular Morphogenesis. Journal of Cell Biology, 2001, 153, 543-554.	2.3	949
142	PDGF-C is a new protease-activated ligand for the PDGF α-receptor. Nature Cell Biology, 2000, 2, 302-309.	4.6	548
143	Leydig Cell Loss and Spermatogenic Arrest in Platelet-Derived Growth Factor (Pdgf)-a–Deficient Mice. Journal of Cell Biology, 2000, 149, 1019-1026.	2.3	210
144	Absence of Epithelial Immunoglobulin a Transport, with Increased Mucosal Leakiness, in Polymeric Immunoglobulin Receptor/Secretory Component–Deficient Mice. Journal of Experimental Medicine, 1999, 190, 915-922.	4.2	377

#	Article	IF	CITATIONS
145	Abnormal Reaction to Central Nervous System Injury in Mice Lacking Glial Fibrillary Acidic Protein and Vimentin. Journal of Cell Biology, 1999, 145, 503-514.	2.3	360
146	EPS8 and E3B1 transduce signals from Ras to Rac. Nature, 1999, 401, 290-293.	13.7	312
147	Impaired induction of blood-brain barrier properties in aortic endothelial cells by astrocytes from GFAB-deficient mice. Glia, 1998, 22, 390-400.	2.5	105
148	Targeted disruption of the mouse phospholipase C β3 gene results in early embryonic lethality. FEBS Letters, 1998, 441, 261-265.	1.3	47
149	Impaired induction of blood-brain barrier properties in aortic endothelial cells by astrocytes from GFAB-deficient mice. , 1998, 22, 390.		1
150	Pericyte Loss and Microaneurysm Formation in PDGF-B-Deficient Mice. Science, 1997, 277, 242-245.	6.0	1,953
151	PDGF-A Signaling Is a Critical Event in Lung Alveolar Myofibroblast Development and Alveogenesis. Cell, 1996, 85, 863-873.	13.5	787
152	Islet Amyloid Polypeptide—Hen or EGG in Type 2 Diabetes Pathogenesis?. Acta Oncológica, 1993, 32, 149-154.	0.8	8
153	Analogous alternative splicing. Nature, 1990, 344, 299-299.	13.7	33
154	Antibodies against platelet-derived growth factor inhibit acute transformation by simian sarcoma virus. Nature, 1985, 317, 438-440.	13.7	190
155	Growth factor-induced proliferation of human fibroblasts in serum-free culture depends on cell density and extracellular calcium concentration. Journal of Cellular Physiology, 1984, 118, 203-210.	2.0	96
156	The role of Dendrin in IgA Nephropathy. Nephrology Dialysis Transplantation, 0, , .	0.4	3