Mathias Fink

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6460527/publications.pdf

Version: 2024-02-01

695 papers 48,998 citations

109 h-index 206 g-index

719 all docs

719 docs citations

719 times ranked

19093 citing authors

#	Article	IF	CITATIONS
1	Unidirectional amplification with acoustic non-Hermitian spaceâ°time varying metamaterial. Communications Physics, 2022, 5, .	5.3	27
2	Optical phase modulation by natural eye movements: application to time-domain FF-OCT image retrieval. Biomedical Optics Express, 2022, 13, 902.	2.9	4
3	Physicists in a World of Wireless Communications: A Noisy Connection? [Industry Activities]. IEEE Antennas and Propagation Magazine, 2022, 64, 89-94.	1.4	O
4	Static-to-dynamic field conversion with time-varying media. Physical Review B, 2022, 105, .	3.2	5
5	Dynamic full-field optical coherence tomography allows live imaging of retinal pigment epithelium stress model. Communications Biology, 2022, 5, .	4.4	10
6	Passive detection in water pipelines using ambient noise II: Field experiments. Mechanical Systems and Signal Processing, 2022, 181, 109524.	8.0	3
7	Manifestation of aberrations in full-field optical coherence tomography. Optics Express, 2021, 29, 22044.	3.4	14
8	Negative Transient Flux in the Near Field of a Subwavelength Source. Physical Review Applied, 2021, 16, .	3.8	1
9	Fourier transform acousto-optic imaging with off-axis holographic detection. Applied Optics, 2021, 60, 7107.	1.8	4
10	Passive imaging of water pipelines using ambient turbulence noise. Mechanical Systems and Signal Processing, 2021, 160, 107882.	8.0	6
11	Experimental Demonstration of a mmWave Passive Access Point Extender Based on a Binary Reconfigurable Intelligent Surface. Frontiers in Communications and Networks, 2021, 2, .	3.0	22
12	Detecting subcellular dynamic behaviours with dynamic full-field OCT on stressed retinal pigment epithelium cell cultures., 2021,,.		1
13	Time Reversal Precoding at SubTHz Frequencies: Experimental Results on Spatiotemporal Focusing. , 2021, , .		3
14	Experimental reconstruction of extreme sea waves by time reversal principle. Journal of Fluid Mechanics, 2020, 884, .	3.4	11
15	How a moving passive observer can perceive its environmentÂ? The Unruh effect revisited. Wave Motion, 2020, 93, 102462.	2.0	1
16	Distortion matrix concept for deep optical imaging in scattering media. Science Advances, 2020, 6, eaay7170.	10.3	37
17	Dynamic full-field optical coherence tomography: 3D live-imaging of retinal organoids. Light: Science and Applications, 2020, 9, 140.	16.6	71
18	Reflection Matrix Approach for Quantitative Imaging of Scattering Media. Physical Review X, 2020, 10, .	8.9	22

#	Article	IF	CITATIONS
19	Functional ultrasound imaging of deep visual cortex in awake nonhuman primates. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14453-14463.	7.1	44
20	Distortion matrix approach for ultrasound imaging of random scattering media. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14645-14656.	7.1	35
21	Reconfigurable Intelligent Surfaces vs. Relaying: Differences, Similarities, and Performance Comparison. IEEE Open Journal of the Communications Society, 2020, 1, 798-807.	6.9	445
22	Reversible Hardware for Acoustic Communications. IEEE Communications Magazine, 2020, 58, 55-61.	6.1	27
23	Real-time non-contact cellular imaging and angiography of human cornea and limbus with common-path full-field/SD OCT. Nature Communications, 2020, 11, 1868.	12.8	32
24	Coherence gate shaping for wide field high-resolution in vivo retinal imaging with full-field OCT. Biomedical Optics Express, 2020, 11, 4928.	2.9	14
25	Distortion matrix concept for deep imaging in optical microscopy. , 2020, , .		0
26	High resolution laser Doppler holography of retinal blood flow by spatiotemporal eigenvalue filtering and rephasing. , 2020, , .		0
27	Vascular occlusion monitoring in the eye fundus by laser Doppler holography. , 2020, , .		0
28	Adaptive Glasses Full-Field OCT with axial tracking for 3D high-resolution retinal imaging. , 2020, , .		0
29	Curved-field optical coherence tomography: large-field imaging of human corneal cells and nerves. Optica, 2020, 7, 872.	9.3	19
30	Array of time reversal transceivers: An application to acoustic focusing. , 2019, , .		1
31	Smart radio environments empowered by reconfigurable AI meta-surfaces: an idea whose time has come. Eurasip Journal on Wireless Communications and Networking, 2019, 2019, .	2.4	1,020
32	Time-Reversal by Time-Dependent Perturbations. SIAM Journal on Applied Mathematics, 2019, 79, 754-780.	1.8	6
33	Drastic slowdown of the Rayleigh-like wave in unjammed granular suspensions. Physical Review E, 2019, 99, 042902.	2.1	7
34	Phase-conjugate mirror for water waves driven by the Faraday instability. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8809-8814.	7.1	21
35	Left-handed band in an electromagnetic metamaterial induced by sub-wavelength multiple scattering. Applied Physics Letters, 2019, 114, .	3.3	14
36	Precision resonance energy scans with the PANDA experiment at FAIR. European Physical Journal A, 2019, 55, 1.	2.5	27

#	Article	IF	Citations
37	Active Control of the Spoof Plasmon Propagation in Time Varying and Non-reciprocal Metamaterial. Scientific Reports, 2019, 9, 2368.	3.3	7
38	Probing dynamic processes in the eye at multiple spatial and temporal scales with multimodal full field OCT. Biomedical Optics Express, 2019, 10, 731.	2.9	34
39	Controlling light in complex media beyond the acoustic diffraction-limit using the acousto-optic transmission matrix. Nature Communications, 2019, 10, 717.	12.8	31
40	2D airborne ultrasound piezotransducer arrays for corneal imaging. , 2019, , .		0
41	Observation of the Talbot effect with water waves. American Journal of Physics, 2019, 87, 38-43.	0.7	9
42	Optimally diverse communication channels in disordered environments with tuned randomness. Nature Electronics, 2019, 2, 36-41.	26.0	88
43	Technical design report for the $\sqrt{m\{P\}}$ mathrm $ANDA$ Barrel DIRC detector. Journal of Physics G: Nuclear and Particle Physics, 2019, 46, 045001.	3.6	28
44	Choroidal vasculature imaging with laser Doppler holography. Biomedical Optics Express, 2019, 10, 995.	2.9	27
45	Waveform analysis of human retinal and choroidal blood flow with laser Doppler holography. Biomedical Optics Express, 2019, 10, 4942.	2.9	18
46	Matrix approach of Full-Field OCT for volumetric imaging of an opaque human cornea. , 2019, , .		0
47	Ultrafast digital holography for in vivo retinal blood flow imaging and assessment of flow resistance. , 2019, , .		0
48	Analysis of retinal and choroidal images measured by laser Doppler holography., 2019,,.		0
49	Layer potential approach for fast eigenvalue characterization of the Helmholtz equation with mixed boundary conditions. Computational and Applied Mathematics, 2018, 37, 4675-4685.	1.3	2
50	Dynamic Metasurface Aperture as Smart Around-the-Corner Motion Detector. Scientific Reports, 2018, 8, 6536.	3.3	26
51	Towards anti-causal Green's function for three-dimensional sub-diffraction focusing. Nature Physics, 2018, 14, 608-612.	16.7	48
52	Effect of microstructural elongation on backscattered field: Intensity measurement and multiple scattering estimation with a linear transducer array. Ultrasonics, 2018, 82, 379-389.	3.9	5
53	Towards a quantum time mirror for non-relativistic wave packets. New Journal of Physics, 2018, 20, 033013.	2.9	4
54	Non-Contact Surface Wave Elastography Using 40 kHz Airborne Ultrasound Surface Motion Camera. , 2018, , .		1

#	Article	IF	Citations
55	Measuring Dirac Cones in a Subwavelength Metamaterial. Physical Review Letters, 2018, 121, 267601.	7.8	11
56	In vivo laser Doppler holography of the human retina. Biomedical Optics Express, 2018, 9, 4113.	2.9	26
57	In vivo high resolution human corneal imaging using full-field optical coherence tomography. Biomedical Optics Express, 2018, 9, 557.	2.9	79
58	In vivo high-resolution human retinal imaging with wavefront-correctionless full-field OCT. Optica, 2018, 5, 409.	9.3	37
59	Precise Localization of Multiple Noncooperative Objects in a Disordered Cavity by Wave Front Shaping. Physical Review Letters, 2018, 121, 063901.	7.8	51
60	Classical analog of the Unruh effect. Physical Review A, 2018, 98, .	2.5	16
61	Airborne ultrasound surface motion camera: Application to seismocardiography. Applied Physics Letters, 2018, 112, 213702.	3.3	11
62	Shaping reverberating sound fields with an actively tunable metasurface. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6638-6643.	7.1	95
63	In vivo imaging through the entire thickness of human cornea by full-field optical coherence tomography. , 2018, , .		1
64	Retinal imaging with adaptive optics full-field OCT. Proceedings of SPIE, 2017, , .	0.8	0
65	3D functional ultrasound imaging of the cerebral visual system in rodents. Neurolmage, 2017, 149, 267-274.	4.2	82
66	Non-contact full-field optical coherence tomography: a novel tool for in vivo imaging of the human cornea (Conference Presentation)., 2017,,.		0
67	High resolution imaging of intracellular dynamics in explanted retinas with dynamic full-field OCT (Conference Presentation). , 2017, , .		0
68	Time reversal of ultrasound in granular media. European Physical Journal: Special Topics, 2017, 226, 1487-1497.	2.6	5
69	Roger Maynard 1938–2015. European Physical Journal: Special Topics, 2017, 226, 1349-1352.	2.6	0
70	Non-contact and through-clothing measurement of the heart rate using ultrasound vibrocardiography. Medical Engineering and Physics, 2017, 50, 96-102.	1.7	21
71	Manipulating light at subwavelength scale by exploiting defect-guided spoof plasmon modes. Physical Review B, 2017, 96, .	3.2	3
72	Relation of short-range and long-range lithium ion dynamics in glass-ceramics: Insights from mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mmultiscripts><mml:mi>Li</mml:mi><mml:mprescripts><mml:mi>77</mml:mi></mml:mprescripts></mml:mmultiscripts> NMR field-cycling and field-gradient studies. Physical Review B, 2017, 96, .	rip t s2	23

#	Article	lF	CITATIONS
73	Experimental study of multiple scattering in anisotropic titanium alloys. AIP Conference Proceedings, 2017, , .	0.4	1
74	Crystalline metamaterials for topological properties at subwavelength scales. Nature Communications, 2017, 8, 16023.	12.8	181
75	Topological acoustic polaritons: robust sound manipulation at the subwavelength scale. New Journal of Physics, 2017, 19, 075003.	2.9	137
76	Combining FF-OCT with SD-OCT for retinal imaging. , 2017, , . Feasibility study for the measurement of mmltmath		1
77	xmins:mml="http://www.w3.org/1998/Math/Math/Math/Mc" display="inline"> <mml:mrow> display="inline"><mml:mrow><mml:mi>i\increase</mml:mi>N</mml:mrow> transition distribution amplitudes at <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:< td=""><td>4.7</td><td>21</td></mml:<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math></mml:mrow>	4.7	21
78	mathyariant= sans-serif >P <mmi:mrow><mmi:mo .<="" 2017,="" 95,="" accent="true" b,="" dirac="" mirror.="" physical="" quantum="" review="" stretchy="fals" td="" time=""><td>3.2</td><td>12</td></mmi:mo></mmi:mrow>	3.2	12
79	Soda Cans Metamaterial: Homogenization and Beyond. World Scientific Series in Nanoscience and Nanotechnology, 2017, , 205-250.	0.1	0
80	Dynamic multimodal full-field optical coherence tomography and fluorescence structured illumination microscopy. Journal of Biomedical Optics, 2017, 22, 1.	2.6	32
81	Imaging the dynamics of cardiac fiber orientation in vivo using 3D Ultrasound Backscatter Tensor Imaging. Scientific Reports, 2017, 7, 830.	3.3	57
82	From the time-reversal mirror to the instantaneous time mirror. European Physical Journal: Special Topics, 2017, 226, 1477-1486.	2.6	8
83	A resolution insensitive to geometrical aberrations by using incoherent illumination and interference imaging. European Physical Journal: Special Topics, 2017, 226, 1603-1621.	2.6	3
84	Topological spoof plasmon polaritons based on C6-symmetric crystalline metasurfaces., 2017,,.		1
85	Shaping Microwave Fields Using Nonlinear Unsolicited Feedback: Application to Enhance Energy Harvesting. Physical Review Applied, 2017, 8, .	3.8	16
86	Slow waves in locally resonant metamaterials line defect waveguides. Scientific Reports, 2017, 7, 15105.	3.3	57
87	Crystalline Soda Can Metamaterial exhibiting Graphene-like Dispersion at subwavelength scale. Scientific Reports, 2017, 7, 15359.	3.3	19
88	Multiple scattering limit in optical microscopy. Optics Express, 2017, 25, 28914.	3.4	32
89	Full-Field Optical Coherence Tomography as a Diagnosis Tool: Recent Progress with Multimodal Imaging. Applied Sciences (Switzerland), 2017, 7, 236.	2.5	29
90	Cell Motility as Contrast Agent in Retinal Explant Imaging With Full-Field Optical Coherence Tomography., 2017, 58, 4605.		33

#	Article	IF	Citations
91	Contactless Mapping of Thoracic and Abdominal Movements: Applications for Seismocardiography. , 2017, , .		1
92	Subwavelength focusing and imaging from the far field using time reversal in subwavelength scaled resonant media. , $2017, $, .		1
93	Ambient noise correlation-based imaging with moving sensors. Inverse Problems and Imaging, 2017, 11, 477-500.	1.1	1
94	Smart optical coherence tomography for ultra-deep imaging through highly scattering media., 2017,,.		1
95	Matrix Approach of Eye Optical Imaging. , 2017, , .		0
96	Beating the Diffraction Limit with Positive Refraction: The Resonant Metalens Approach., 2017,, 33-90.		0
97	Soda Cans Metamaterial: A Subwavelength-Scaled Phononic Crystal. Crystals, 2016, 6, 82.	2.2	44
98	3D airborne ultrasound vibrometer for the detection of skin surface heterogeneities. , 2016, , .		2
99	Spatio-temporal imaging of light transport in highly scattering media under white light illumination. Optica, 2016, 3, 1160.	9.3	12
100	Time reversal and holography with spacetimeÂtransformations. Nature Physics, 2016, 12, 972-977.	16.7	169
101	A matrix approach for optical detection and imaging through highly scattering media (Conference) Tj ETQq $1\ 1\ 0$.	784314 rş	gBT/Overlo
102	Chapter 12 Time Reversal of Linear and Nonlinear Water Waves. , 2016, , 401-436.		0
103	Spatiotemporal response of rat visual cortex during moving stimuli using Functional Ultrasound (fUS) imaging., 2016,,.		1
104	Diffuse shear wave imaging: toward passive elastography using low-frame rate spectral-domain optical coherence tomography. Journal of Biomedical Optics, 2016, 21, 126013.	2.6	34
105	Spatio-temporal imaging of light transport in scattering media using white light illumination (Conference Presentation). , 2016, , .		0
106	From Loschmidt daemons to time-reversed waves. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150156.	3.4	10
107	Spatio-temporal imaging of light transport in strongly scattering media. , 2016, , .		О
108	Adaptive optics full-field optical coherence tomography. Journal of Biomedical Optics, 2016, 21, 121505.	2.6	13

#	Article	IF	Citations
109	Spatiotemporal Wave Front Shaping in a Microwave Cavity. Physical Review Letters, 2016, 117, 134302.	7.8	41
110	Full-field spatially incoherent illumination interferometry: a spatial resolution almost insensitive to aberrations. Optics Letters, 2016, 41, 3920.	3.3	41
111	Exploiting spatiotemporal degrees of freedom for far-field subwavelength focusing using time reversal in fractals. Physical Review B, 2016, 93, .	3.2	6
112	High speed optical holography of retinal blood flow. Optics Letters, 2016, 41, 3503.	3.3	10
113	Smart optical coherence tomography for ultra-deep imaging through highly scattering media. Science Advances, 2016, 2, e1600370.	10.3	130
114	Feasibility studies of time-like proton electromagnetic form factors at \$overline{m P}\$ P \hat{A}^- ANDA at FAIR. European Physical Journal A, 2016, 52, 1.	2.5	31
115	Quantitative phase imaging technologies to assess neuronal activity (Conference Presentation). , 2016, , .		0
116	Adaptive optics full-field OCT: a resolution almost insensitive to aberrations (Conference) Tj ETQq0 0 0 rgBT /Ov	erlock 10 ⁻	Tf 50 462 Td
117	Synchronous multimodal combination of full-field OCT and structured illumination fluorescence microscopy (Conference Presentation)., 2016,,.		0
118	An optical tomography PSF almost insensitive to aberrations: the benefit of a spatial incoherent illumination (Conference Presentation). , 2016 , , .		2
119	Time-reversal of nonlinear waves: Applicability and limitations. Physical Review Fluids, 2016, $1, .$	2.5	15
120	Holographic imaging of pulsatile microvascular blood flow in the cerebral cortex. , 2016, , .		0
121	Pulsatile microvascular blood flow imaging by short-time Fourier transform analysis of ultrafast laser holographic interferometry. , 2015, , .		0
122	Subwavelength focusing in bubbly media using broadband time reversal. Physical Review B, 2015, 91, .	3. 2	43
123	Acoustic imaging with time reversal methods: From medicine to NDT. AIP Conference Proceedings, 2015,	0.4	5
124	Carotid stiffness change over the cardiac cycle by ultrafast ultrasound imaging in healthy volunteers and vascular Ehlers–Danlos syndrome. Journal of Hypertension, 2015, 33, 1890-1896.	0.5	54
125	Super-resolution in time-reversal focusing on a moving source. Wave Motion, 2015, 53, 80-93.	2.0	20
126	Scanning-free imaging through a single fiber by random spatio-spectral encoding. Optics Letters, 2015, 40, 534.	3.3	37

#	Article	IF	CITATIONS
127	Retrieving Time-Dependent Green's Functions in Optics with Low-Coherence Interferometry. Physical Review Letters, 2015, 114, 023901.	7.8	19
128	Experimental access to Transition Distribution Amplitudes with the Pl,,ANDA experiment at FAIR. European Physical Journal A, 2015, 51, 1.	2.5	29
129	Wave-Field Shaping in Cavities: Waves Trapped in a Box with Controllable Boundaries. Physical Review Letters, 2015, 115, 017701.	7.8	61
130	Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials. Nature, 2015, 525, 77-81.	27.8	476
131	Retrieving time-dependent Green's functions in optics with low-coherence interferometry. , 2015, , .		1
132	Overcoming multiple scattering for detection and imaging in strongly scattering media., 2015,,.		0
133	Optical Detection and Imaging in Complex Media: How the Memory Effect Can Help Overcome Multiple Scattering. , 2015, , .		0
134	Time Reversal, Applications and Experiments. , 2015, , 1477-1486.		0
135	Transmission Glass-Like Aberrations Correction for Full-Field OCT Imaging. , 2015, , .		1
136	Shaping complex microwave fields in reverberating media with binary tunable metasurfaces. Scientific Reports, 2014, 4, 6693.	3.3	155
137	3D ultrafast ultrasound imaging (i) in vivo (i). Physics in Medicine and Biology, 2014, 59, L1-L13.	3.0	290
138	Ultrafast imaging in biomedical ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61, 102-119.	3.0	470
139	Ultrafast Doppler Reveals the Mapping of Cerebral Vascular Resistivity in Neonates. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 1009-1017.	4.3	71
140	Hybridized resonances to design tunable binary phase metasurface unit cells. Optics Express, 2014, 22, 18881.	3.4	59
141	In Vivo Evidence of Porcine Cornea Anisotropy Using Supersonic Shear Wave Imaging., 2014, 55, 7545.		54
142	Ultrafast acoustoelectric imaging. , 2014, , .		4
143	Ultrafast imaging in biomedical ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61, 102-119.	3.0	481
144	Use of shear wave elastography for monitoring enzymatic milk coagulation. Journal of Food Engineering, 2014, 136, 73-79.	5 . 2	6

#	Article	IF	Citations
145	Using Subwavelength Diffraction Gratings to Design Open Electromagnetic Cavities. Physical Review Letters, 2014, 112, 043902.	7.8	8
146	Controlling light in scattering media non-invasively using the photoacoustic transmission matrix. Nature Photonics, 2014, 8, 58-64.	31.4	215
147	Cancellation of Doppler intrinsic spectral broadening using ultrafast Doppler imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61, 1396-1408.	3.0	10
148	Image transmission through a scattering medium: Inverse problem and sparsity-based imaging. , 2014, , .		0
149	Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nature Photonics, 2014, 8, 784-790.	31.4	805
150	Nearly perfect sound absorbers. Nature Materials, 2014, 13, 848-849.	27.5	10
151	Subwavelength far-field imaging at visible and ultraviolet wavelengths using broadband surface plasmon waves. Physical Review B, 2014, 89, .	3.2	9
152	Ultrasound backscatter tensor imaging (BTI): analysis of the spatial coherence of ultrasonic speckle in anisotropic soft tissues. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61, 986-996.	3.0	40
153	Time-Reversal Generation of Rogue Waves. Physical Review Letters, 2014, 112, 124101.	7.8	87
154	High-contrast ultrafast imaging of the heart. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61, 288-301.	3.0	200
155	Non-invasive ultrasonic surgery of the brain in non-human primates. Journal of the Acoustical Society of America, 2013, 134, 1632-1639.	1.1	26
156	Increasing the modal density in plates for mono-element focusing in air. Journal of the Acoustical Society of America, 2013, 134, 1049-1054.	1.1	3
157	Technical design report for the \$overline{P}\$ ANDA (AntiProton Annihilations at Darmstadt) Straw Tube Tracker. European Physical Journal A, 2013, 49, 1.	2.5	71
158	Transverse localization of sound. Physical Review B, 2013, 88, .	3.2	1
159	Ultrasound elastography: Principles and techniques. Diagnostic and Interventional Imaging, 2013, 94, 487-495.	3.2	706
160	Influence of the pressure field distribution in transcranial ultrasonic neurostimulation. Medical Physics, 2013, 40, 082902.	3.0	162
161	In vivo achilles tendon elasticity assessment using supersonic shear imaging: A feasibility study. , 2013, , .		0
162	Wave propagation control at the deep subwavelength scale inÂmetamaterials. Nature Physics, 2013, 9, 55-60.	16.7	282

#	Article	IF	CITATIONS
163	Élastographie ultrasonoreÂ: principes et procédés. Diagnostic and Interventional Imaging, 2013, 94, 504-513.	0.0	2
164	Merging the best of two worlds. Nature Photonics, 2013, 7, 265-267.	31.4	7
165	Subwavelength focusing inside an open disordered medium by time reversal at a single point antenna. Physical Review A, 2013, 87, .	2.5	24
166	Ultra small mode volume defect cavities in spatially ordered and disordered metamaterials. Applied Physics Letters, 2013, 102, .	3.3	47
167	Subwavelength Focussing in Metamaterials Using Far Field Time Reversal. Springer Series in Materials Science, 2013, , 141-168.	0.6	1
168	Elastography: A new modality of ultrasound imaging. Diagnostic and Interventional Imaging, 2013, 94, 485.	3.2	9
169	Functional ultrasound imaging of the brain: theory and basic principles. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60, 492-506.	3.0	232
170	Using subwavelength diffraction gratings to design open microwave cavities. , 2013, , .		0
171	EFSUMB Guidelines and Recommendations on the Clinical Use of Ultrasound Elastography.Part 2: Clinical Applications. Ultraschall in Der Medizin, 2013, 34, 238-253.	1.5	780
172	Analysis of the time reversal operator for a scatterer undergoing small displacements. Journal of the Acoustical Society of America, 2013, 133, 94-107.	1.1	14
173	EFSUMB Guidelines and Recommendations on the Clinical Use of Ultrasound Elastography. Part 1: Basic Principles and Technology. Ultraschall in Der Medizin, 2013, 34, 169-184.	1.5	961
174	From supersonic shear wave imaging to full-field optical coherence shear wave elastography. Journal of Biomedical Optics, 2013, 18, 121514.	2.6	54
175	Sono-activated ultrasound localization microscopy. Applied Physics Letters, 2013, 103, .	3.3	144
176	Composite media mixing Bragg and local resonances for highly attenuating and broad bandgaps. Scientific Reports, 2013, 3, 3240.	3.3	69
177	Green's Function Retrieval and Passive Imaging from Correlations of Wideband Thermal Radiations. Physical Review Letters, 2013, 110, 203901.	7.8	29
178	Time reversal mirrors., 2013,,.		1
179	Cross validation of Supersonic Shear Wave Imaging (SSI) with classical rheometry during blood coagulation over a very large bandwidth. , 2013, , .		0
180	In vivo out-of-plane Doppler imaging based on ultrafast plane wave imaging. , 2013, , .		O

#	Article	IF	Citations
181	Assessment of the cervical stiffness in pregnant women using Shear Wave Elastography: A feasibility study., 2013,,.		О
182	In vivo transthoracic ultrafast Doppler imaging of left intraventricular blood flow pattern. , 2013, , .		2
183	Towards backscatter tensor imaging (BTI): Analysis of the spatial coherence of ultrasonic speckle in anisotropic soft tissues. , $2013, \ldots$		3
184	Shear wave dispersion for fibrosis, steatosis and activity staging. , 2013, , .		0
185	Global approach for transient shear wave inversion based on the adjoint method: a comprehensive 2D simulation study. Physics in Medicine and Biology, 2013, 58, 6765-6778.	3.0	8
186	Transcranial high intensity focused ultrasound therapy guided by 7 TESLA MRI in a rat brain tumour model: A feasibility study. International Journal of Hyperthermia, 2013, 29, 598-608.	2.5	18
187	Targeting accuracy of transcranial magnetic resonance–guided high-intensity focused ultrasound brain therapy: a fresh cadaver model. Journal of Neurosurgery, 2013, 118, 1046-1052.	1.6	62
188	Transmission matrix approach to information transfer through complex Media., 2013,,.		0
189	Monitoring the lesion formation during histotripsy treatment using shear wave imaging. , 2012, , .		0
190	Optimal spatiotemporal focusing through complex scattering media. Physical Review E, 2012, 85, 016605.	2.1	10
191	Ultrasound contrast plane wave imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59, 2676-83.	3.0	149
192	Monitoring of Cornea Elastic Properties Changes during UV-A/Riboflavin-Induced Corneal Collagen Cross-Linking using Supersonic Shear Wave Imaging: A Pilot Study., 2012, 53, 5948.		57
193	Hybridization band gap based smart antennas: Deep subwavelength yet directional and strongly decoupled MIMO antennas. , 2012, , .		6
194	Ultrafast plane wave imaging: Doppler frequency distribution. , 2012, , .		1
195	MR-guided adaptive focusing of therapeutic ultrasound beams in the human head. Medical Physics, 2012, 39, 1141-1149.	3.0	98
196	Dispersion in media containing resonant inclusions: where does it come from?. , 2012, , .		2
197	Exploiting the Time-Reversal Operator for Adaptive Optics, Selective Focusing and Scattering Pattern Analysis. , 2012, , .		0
198	Acoustic imaging device with one transducer. Journal of the Acoustical Society of America, 2012, 131, EL395-EL399.	1.1	11

#	Article	IF	Citations
199	Time-reversal method and cross-correlation techniques by normal mode theory: a three-point problem. Geophysical Journal International, 2012, 191, 637-652.	2.4	12
200	The variance of quantitative estimates in shear wave imaging: Theory and experiments. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59, 2390-410.	3.0	65
201	Aberration correction by time reversal of moving speckle noise. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59, 1575-1583.	3.0	16
202	Shear Wave Imaging of the heart using a cardiac phased array with coherent spatial compound. , 2012, , .		8
203	Time Reversal of Water Waves. Physical Review Letters, 2012, 109, 064501.	7.8	45
204	Far field subwavelength imaging of magnetic patterns. Applied Physics Letters, 2012, 101, .	3.3	20
205	Tunable time-reversal cavity for high-pressure ultrasonic pulses generation: A tradeoff between transmission and time compression. Applied Physics Letters, 2012, 101, 064104.	3.3	11
206	A polychromatic approach to far-field superlensing at visible wavelengths. Nature Communications, 2012, 3, 889.	12.8	102
207	Imaging changes in scattering media from Time Reversal of the Coda wave Difference (TRECOD). Waves in Random and Complex Media, 2012, 22, 109-120.	2.7	2
208	Controlling waves in space and time for imaging and focusing in complex media. Nature Photonics, 2012, 6, 283-292.	31.4	1,150
209	Application of 1-d transient elastography for the shear modulus assessment of thin-layered soft tissue: comparison with supersonic shear imaging technique. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59, 703-714.	3.0	19
210	Mapping Myocardial Fiber Orientation Using Echocardiography-Based Shear Wave Imaging. IEEE Transactions on Medical Imaging, 2012, 31, 554-562.	8.9	144
211	<i>In vivo</i> bubble nucleation probability in sheep brain tissue. Physics in Medicine and Biology, 2011, 56, 7001-7015.	3.0	71
212	Optimal transcostal high-intensity focused ultrasound with combined real-time 3D movement tracking and correction. Physics in Medicine and Biology, 2011, 56, 7061-7080.	3.0	59
213	Functional ultrasound imaging of the brain. Nature Methods, 2011, 8, 662-664.	19.0	589
214	Ultrafast compound doppler imaging: providing full blood flow characterization. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2011, 58, 134-147.	3.0	384
215	Combined passive detection and ultrafast active imaging of cavitation events induced by short pulses of high-intensity ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2011, 58, 517-532.	3.0	101
216	Acoustic Resonators for Far-Field Control of Sound on a Subwavelength Scale. Physical Review Letters, 2011, 107, 064301.	7.8	204

#	Article	IF	CITATIONS
217	Revisiting the wire medium: an ideal resonant metalens. Waves in Random and Complex Media, 2011, 21, 591-613.	2.7	52
218	Synchronized passive imaging of single cavitation events. AIP Conference Proceedings, 2011, , .	0.4	0
219	In Vivo Quantitative Mapping of Myocardial Stiffening and Transmural Anisotropy During the Cardiac Cycle. IEEE Transactions on Medical Imaging, 2011, 30, 295-305.	8.9	202
220	In Vivo Mapping of Brain Elasticity in Small Animals Using Shear Wave Imaging. IEEE Transactions on Medical Imaging, 2011, 30, 550-558.	8.9	63
221	Far-field sub-wavelength imaging and focusing using a wire medium based resonant metalens. Waves in Random and Complex Media, 2011, 21, 614-627.	2.7	45
222	Ultrafast imaging of the arterial pulse wave. Irbm, 2011, 32, 106-108.	5.6	56
223	Noninvasive In Vivo Liver Fibrosis Evaluation Using Supersonic Shear Imaging: A Clinical Study on 113 Hepatitis C Virus Patients. Ultrasound in Medicine and Biology, 2011, 37, 1361-1373.	1.5	382
224	Numerical prediction of frequency dependent 3D maps of mechanical index thresholds in ultrasonic brain therapy. Medical Physics, 2011, 39, 455-467.	3.0	29
225	Imaging through an opaque material., 2011,,.		0
226	Exploiting the Time-Reversal Operator for Adaptive Optics, Selective Focusing, and Scattering Pattern Analysis. Physical Review Letters, 2011, 107, 263901.	7.8	81
227	Microbubble ultrasound super-localization imaging (MUSLI). , 2011, , .		84
228	Transmission matrix in optics: Taking advantage of transmission channels for image transmission in disordered materials. , 2011 , , .		0
229	Time Reversal of Speckle Noise. Physical Review Letters, 2011, 106, 054301.	7.8	35
230	Controlling light through optical disordered media: transmission matrix approach. New Journal of Physics, 2011, 13, 123021.	2.9	224
231	Time Reversal in Subwavelength-Scaled Resonant Media: Beating the Diffraction Limit. International Journal of Microwave Science and Technology, 2011, 2011, 1-14.	0.6	7
232	Effects of nonlinear ultrasound propagation on high intensity brain therapy. Medical Physics, 2011, 38, 1207-1216.	3.0	61
233	A Multiwave Imaging Approach for Elastography. Current Medical Imaging, 2011, 7, 340-349.	0.8	8
234	Multiwave imaging and super resolution. Physics Today, 2010, 63, 28-33.	0.3	83

#	Article	IF	CITATIONS
235	Focusing and amplification of electromagnetic waves by time reversal in an leaky reverberation chamber. Comptes Rendus Physique, 2010, 11, 37-43.	0.9	34
236	Experimental validation of time reversal ultra wide-band communication system for high data rates. IET Microwaves, Antennas and Propagation, 2010, 4, 643.	1.4	25
237	Transcranial Ultrasonic Therapy Based on Time Reversal of Acoustically Induced Cavitation Bubble Signature. IEEE Transactions on Biomedical Engineering, 2010, 57, 134-144.	4.2	70
238	Realâ€time visualization of muscle stiffness distribution with ultrasound shear wave imaging during muscle contraction. Muscle and Nerve, 2010, 42, 438-441.	2.2	191
239	Ultrasons focalisés de forte intensité pour la thérapie transcrânienne du cerveau. Irbm, 2010, 31, 87-91.	5.6	8
240	Viscoelastic and Anisotropic Mechanical Properties of in vivo Muscle Tissue Assessed by Supersonic Shear Imaging. Ultrasound in Medicine and Biology, 2010, 36, 789-801.	1.5	577
241	Sharper focus by random scattering. Nature Photonics, 2010, 4, 269-271.	31.4	8
242	Quantitative Assessment of Arterial Wall Biomechanical Properties Using Shear Wave Imaging. Ultrasound in Medicine and Biology, 2010, 36, 1662-1676.	1.5	305
243	Measuring and Exploiting the Transmission Matrix in Optics. , 2010, , .		0
244	DETECTION AND IMAGING OF HUMAN BEINGS BEHIND A WALL USING THE DORT METHOD. Progress in Electromagnetics Research, 2010, 110, 353-369.	4.4	19
245	Shear wave propagation in complex sub wavelength tissue geometries: Theoretical and experimental implications in the framework of cornea and skin shear wave imaging. , 2010, , .		1
246	MR-guided adaptive focusing of ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57, 1734-1747.	3.0	43
247	Thickness or phase velocity measurements using the Green's function comparison method. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57, 18804-1812.	3.0	4
248	Evaluation of local arterial stiffness using ultrafast imaging: A comparative study using local arterial pulse wave velocity estimation and shear wave imaging. , 2010, , .		7
249	In vivo study of cerebral ischemia using Shear Wave Imaging and Ultrafast Doppler. , 2010, , .		O
250	MR Guidance, Monitoring and Control of Brain HIFU Therapy in Small Animals: In Vivo Demonstration in Rats. , 2010, , .		0
251	Non invasive transcostal focusing based on the decomposition of the time reversal operator: in vitro validation. , 2010 , , .		O
252	Energy-Based Adaptive Focusing: Optimal Ultrasonic Focusing Using Magnetic Resonance Guidance. , 2010, , .		1

#	Article	IF	Citations
253	MR-Guided Ultrasonic Brain Therapy: High Frequency Approach. , 2010, , .		O
254	Spatio-temporal invariants of the time reversal operator. Journal of the Acoustical Society of America, 2010, 127, 2904-2912.	1.1	4
255	Measurement of thickness or plate velocity using ambient vibrations. Journal of the Acoustical Society of America, 2010, 127, EL252-EL257.	1.1	1
256	MR-guided transcranial brain HIFU in small animal models. Physics in Medicine and Biology, 2010, 55, 365-388.	3.0	81
257	Resonant Metalenses for Breaking the Diffraction Barrier. Physical Review Letters, 2010, 104, 203901.	7.8	202
258	Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media. Physical Review Letters, 2010, 104, 100601.	7.8	1,283
259	Experimental Study of the Invariants of the Time-Reversal Operator for a Dielectric Cylinder Using Separate Transmit and Receive Arrays. IEEE Transactions on Antennas and Propagation, 2010, 58, 1349-1356.	5.1	6
260	Image transmission through an opaque material. Nature Communications, 2010, 1, 81.	12.8	535
261	Numerical prediction of frequency dependent 3D maps of mechanical index thresholds in ultrasonic brain therapy. , 2010, , .		1
262	Theory of Electromagnetic Time-Reversal Mirrors. IEEE Transactions on Antennas and Propagation, 2010, 58, 3139-3149.	5.1	118
263	Noninvasive assessment of myocardial anisotropy in vitro and in vivo using Supersonic Shear Wave Imaging. , 2010, , .		5
264	In vivo soft tissues elasticity during thermal therapy is linked to the thermal dose. , 2010, , .		1
265	Real time quantitative elastography using Supersonic Shear wave Imaging. , 2010, , .		5
266	High sensitivity brain angiography using Ultrafast Doppler. , 2010, , .		2
267	Comparison between 1D transient elastography and Supersonic Shear Imaging technique: Application to the arterial wall elasticity assessment. , 2010 , , .		0
268	In vivo brain elasticity mapping in small animals using ultrasound and its application to cerebral ischemia. , $2010, , .$		2
269	Temperature dependence of the shear modulus of soft tissues assessed by ultrasound. Physics in Medicine and Biology, 2010, 55, 1701-1718.	3.0	117
270	Adaptive focusing of transcranial therapeutic ultrasound using MR Acoustic Radiation Force Imaging in a clinical environment. , 2010, , .		0

#	Article	IF	Citations
271	Breast Lesions: Quantitative Elastography with Supersonic Shear Imagingâ€"Preliminary Results. Radiology, 2010, 256, 297-303.	7.3	469
272	Ultrafast compound doppler imaging: A new approach of doppler flow analysis. , 2010, , .		7
273	INFLUENCE OF NOISE ON SUBWAVELENGTH IMAGING OF TWO CLOSE SCATTERERS USING TIME REVERSAL METHOD: THEORY AND EXPERIMENTS. Progress in Electromagnetics Research, 2009, 98, 333-358.	4.4	31
274	Focusing and amplification of electromagnetic waves by time-reversal in an leaky reverberation chamber. Digest / IEEE Antennas and Propagation Society International Symposium, 2009, , .	0.0	5
275	Invariants of the time-reversal operator for a dielectric cylinder using different Tx and Rx arrays. Digest / IEEE Antennas and Propagation Society International Symposium, 2009, , .	0.0	0
276	Construction of the temporal invariants of the time-reversal operator. Journal of the Acoustical Society of America, 2009, 126, EL8-EL13.	1.1	5
277	Time-reversal focusing of therapeutic ultrasound on targeted microbubbles. Applied Physics Letters, 2009, 94, .	3.3	11
278	Quantitative imaging of myocardium elasticity using supersonic shear imaging. , 2009, , .		3
279	Ultrafast imaging of the heart using circular wave synthetic imaging with phased arrays. , 2009, , .		23
280	Energy-based adaptive focusing: Optimal ultrasonic focusing using magnetic resonance guidance. , 2009, , .		0
281	The prolate spheroidal wave functions as invariants of the time reversal operator for an extended scatterer in the Fraunhofer approximation. Journal of the Acoustical Society of America, 2009, 125, 218-226.	1.1	10
282	Photoacoustic guidance of high intensity focused ultrasound with selective optical contrasts and time-reversal. Applied Physics Letters, 2009, 94, .	3.3	20
283	Manipulating Spatiotemporal Degrees of Freedom of Waves in Random Media. Physical Review Letters, 2009, 103, 173902.	7.8	62
284	Temperature dependence of the shear modulus of soft tissues assessed by ultrasound., 2009,,.		0
285	MR-guided ultrasonic brain therapy: High frequency approach. , 2009, , .		0
286	3D in vivo brain elasticity mapping in small animals using ultrasound. , 2009, , .		1
287	MR guidance, monitoring and control of Brain HIFU therapy in small animals: In vivo demonstration in rats at 7T. , 2009, , .		1
288	Effects of nonlinearity on propagation through the skull. , 2009, , .		1

#	Article	IF	CITATIONS
289	Early Detection of Steatohepatitis in Fatty Rat Liver by Using MR Elastography. Radiology, 2009, 253, 90-97.	7.3	134
290	Non-invasive transcranial ultrasound therapy based on a 3D CT scan: protocol validation and <i>in vitro </i> i>results. Physics in Medicine and Biology, 2009, 54, 2597-2613.	3.0	189
291	Cavitation bubble generation and control for HIFU transcranial adaptive focusing. , 2009, , .		1
292	Energy-Based Adaptive Focusing of waves: Application to Ultrasonic Transcranial Therapy., 2009,,.		1
293	High-Resolution Quantitative Imaging of Cornea Elasticity Using Supersonic Shear Imaging. IEEE Transactions on Medical Imaging, 2009, 28, 1881-1893.	8.9	198
294	Application of DENSEâ€MRâ€elastography to the human heart. Magnetic Resonance in Medicine, 2009, 62, 1155-1163.	3.0	39
295	Time-reversed waves and super-resolution. Comptes Rendus Physique, 2009, 10, 447-463.	0.9	19
296	Quantitative Viscoelasticity Mapping of Human Liver Using Supersonic Shear Imaging: Preliminary In Vivo Feasability Study. Ultrasound in Medicine and Biology, 2009, 35, 219-229.	1.5	369
297	Simulation of Intracranial Acoustic Fields in Clinical Trials of Sonothrombolysis. Ultrasound in Medicine and Biology, 2009, 35, 1148-1158.	1.5	134
298	Ultrafast Imaging of Ultrasound Contrast Agents. Ultrasound in Medicine and Biology, 2009, 35, 1908-1916.	1.5	106
299	Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56, 489-506.	3.0	1,364
300	Shear Wave Spectroscopy for <i>In Vivo</i> Quantification of Human Soft Tissues Visco-Elasticity. IEEE Transactions on Medical Imaging, 2009, 28, 313-322.	8.9	355
301	Ultrasound-inducible fluorescent particles for internal tattooing. , 2009, , .		5
302	Design and characterization of bubble phononic crystals. Applied Physics Letters, 2009, 95, .	3.3	114
303	Energy-based adaptive focusing of waves: application to noninvasive aberration correction of ultrasonic wavefields. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56, 2388-2399.	3.0	31
304	Theory of the Time-Reversal Operator for a Dielectric Cylinder Using Separate Transmit and Receive Arrays. IEEE Transactions on Antennas and Propagation, 2009, 57, 2331-2340.	5.1	6
305	Ultrasonic focusing through the ribs using the DORT method. Medical Physics, 2009, 36, 3495-3503.	3.0	52
306	Time Reversing Waves For Biomedical Applications. Lecture Notes in Mathematics, 2009, , 73-97.	0.2	6

#	Article	IF	Citations
307	Quantitative Assessment of Breast Lesion Viscoelasticity: Initial Clinical Results Using Supersonic Shear Imaging. Ultrasound in Medicine and Biology, 2008, 34, 1373-1386.	1.5	654
308	Potential of MRI and Ultrasound Radiation Force in Elastography: Applications to Diagnosis and Therapy. Proceedings of the IEEE, 2008, 96, 490-499.	21.3	18
309	6. Imaging. , 2008, , 449-628.		0
310	Assessment of the mechanical properties of the musculoskeletal system using 2-D and 3-D very high frame rate ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 55, 2177-2190.	3.0	85
311	Reaching the optimal focusing and steering capabilities of transcranial HIFU arrays based on time reversal of acoustically induced cavitation bubble signature. , 2008, , .		0
312	Electrical Impedance Tomography by Elastic Deformation. SIAM Journal on Applied Mathematics, 2008, 68, 1557-1573.	1.8	136
313	Time-reversal acoustics. Journal of Physics: Conference Series, 2008, 118, 012001.	0.4	24
314	ShearWave& $\#x2122$; Elastography A new real time imaging mode for assessing quantitatively soft tissue viscoelasticity., 2008, , .		19
315	Radiation force localization of HIFU therapeutic beams coupled with magnetic resonance-elastography treatment monitoring in vivo application to the rat brain., 2008,,.		3
316	Time-reversal waves and super resolution. Journal of Physics: Conference Series, 2008, 124, 012004.	0.4	43
317	Measurement of Shear Elastic Moduli in Quasi-Incompressible Soft Solids. AIP Conference Proceedings, 2008, , .	0.4	6
318	High Resolution MR-Elastography : a Unique Tool to Study the Rheological Properties of Tissue In Vivo and the Origin of Its Multiscale Behaviour. AIP Conference Proceedings, 2008, , .	0.4	1
319	Fourth-order shear elastic constant assessment in quasi-incompressible soft solids. Applied Physics Letters, 2008, 93, .	3.3	24
320	Suppression of tissue harmonics for pulse-inversion contrast imaging using time reversal. Physics in Medicine and Biology, 2008, 53, 5469-5480.	3.0	27
321	Transcostal high-intensity-focused ultrasound: <i>ex vivo</i> adaptive focusing feasibility study. Physics in Medicine and Biology, 2008, 53, 2937-2951.	3.0	104
322	Tissue harmonics cancellation using time-reversal. , 2008, , .		2
323	Molecular focusing of high-intensity ultrasound: Time-reversal focusing applied to targeted ultrasound contrast agents., 2008,,.		2
324	Green's function estimation in speckle using the decomposition of the time reversal operator: Application to aberration correction in medical imaging. Journal of the Acoustical Society of America, 2008, 123, 866-877.	1.1	48

#	Article	IF	Citations
325	The time-reversal operator with virtual transducers: Application to far-field aberration correction. Journal of the Acoustical Society of America, 2008, 124, 3659-3668.	1.1	14
326	Characterization of an elastic target in a shallow water waveguide by decomposition of the time-reversal operator. Journal of the Acoustical Society of America, 2008, 124, 779-787.	1.1	11
327	Non-invasive quantitative imaging of arterial wall elasticity using supersonic shear imaging. , 2008, , .		3
328	Energy-based adaptive focusing of waves: Application to ultrasonic imaging and therapy. , 2008, , .		4
329	Eigenvalue distributions of correlated multichannel transfer matrices in strongly scattering systems. Physical Review B, 2008, 78, .	3.2	25
330	Characterization of an elastic cylinder and an elastic sphere with the time-reversal operator: application to the sub-resolution limit. Inverse Problems, 2008, 24, 025014.	2.0	14
331	Compensating for bone interfaces and respiratory motion in high-intensity focused ultrasound. International Journal of Hyperthermia, 2007, 23, 141-151.	2.5	96
332	In vivo transcranial brain surgery with an ultrasonic time reversal mirror. Journal of Neurosurgery, 2007, 106, 1061-1066.	1.6	155
333	Experimental detection and focusing in shallow water by decomposition of the time reversal operator. Journal of the Acoustical Society of America, 2007, 122, 761-768.	1.1	56
334	Optimal adaptive focusing through heterogeneous media with the minimally invasive inverse filter. Journal of the Acoustical Society of America, 2007, 122, 2715.	1.1	5
335	A0 mode interaction with a plate free edge: Theory and experiments at very low frequency by thickness product. Journal of the Acoustical Society of America, 2007, 122, 711-714.	1.1	3
336	Nonlinear shear wave interaction in soft solids. Journal of the Acoustical Society of America, 2007, 122, 1917-1926.	1.1	39
337	Transient optoelastography in optically diffusive media. Applied Physics Letters, 2007, 90, 174111.	3.3	39
338	The spatial focusing of a leaky time reversal chaotic cavity. Waves in Random and Complex Media, 2007, 17, 67-83.	2.7	12
339	Acoustic source localization model using in-skull reverberation and time reversal. Applied Physics Letters, 2007, 90, 063902.	3.3	19
340	8C-5 Full 3D Inversion of the Viscoelasticity Wave Propagation Problem for 3D Ultrasound Elastography in Breast Cancer Diagnosis. Proceedings IEEE Ultrasonics Symposium, 2007, , .	0.0	5
341	Focusing properties of near-field time reversal. Physical Review A, 2007, 76, .	2.5	42
342	8C-6 Anisotropic Viscoelastic Properties of the Corpus Callosum - Application of High-Resolution 3D MR-Elastography to an Alzheimer Mouse Model. Proceedings IEEE Ultrasonics Symposium, 2007, , .	0.0	7

#	Article	IF	Citations
343	Acoustic impact localization in plates: properties and stability to temperature variation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54, 378-385.	3.0	42
344	Non-Invasive Transcranial Brain Therapy Guided by CT Scans: an In Vivo Monkey Study. AIP Conference Proceedings, 2007, , .	0.4	2
345	Imaging of optically diffusive media by use of opto-elastography. , 2007, , .		1
346	Theory of the time reversal cavity for electromagnetic fields. Optics Letters, 2007, 32, 3107.	3.3	105
347	Focusing Beyond the Diffraction Limit with Far-Field Time Reversal. Science, 2007, 315, 1120-1122.	12.6	648
348	L'élastographie par ultrasons ou résonance magnétiqueÂ: de nouveaux outils de diagnostic en cancérologie. Medecine Nucleaire, 2007, 31, 132-141.	0.2	2
349	Acoustoelasticity in soft solids: Assessment of the nonlinear shear modulus with the acoustic radiation force. Journal of the Acoustical Society of America, 2007, 122, 3211-3219.	1.1	165
350	7B-2 Nonlinear Shear Elastic Moduli in Quasi-Incompressible Soft Solids. Proceedings IEEE Ultrasonics Symposium, 2007, , .	0.0	4
351	8C-4 Active and Passive Muscle Properties Assessed by Ultrasound Techniques. Proceedings IEEE Ultrasonics Symposium, 2007, , .	0.0	0
352	High Power Phased Array Prototype for Clinical High Intensity Focused Ultrasound: Applications to Transcostal and Transcranial Therapy. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 234-7.	0.5	7
353	New Devices and Promising approaches for Clinical H.I.F.U. Applications. AIP Conference Proceedings, 2007, , .	0.4	0
354	MR elastography of breast lesions: Understanding the solid/liquid duality can improve the specificity of contrastâ€enhanced MR mammography. Magnetic Resonance in Medicine, 2007, 58, 1135-1144.	3.0	295
355	Adaptive focusing for transcranial ultrasound imaging using dual arrays. Journal of the Acoustical Society of America, 2006, 120, 2737-2745.	1.1	69
356	Time reversal of wideband microwaves. Applied Physics Letters, 2006, 88, 154101.	3.3	107
357	Time-reversal imaging of seismic sources and application to the great Sumatra earthquake. Geophysical Research Letters, 2006, 33, .	4.0	156
358	Time-reversal acoustics in complex environments. Geophysics, 2006, 71, SI151-SI164.	2.6	105
359	In-vivo non-invasive motion tracking and correction in High Intensity Focused Ultrasound therapy. , 2006, 2006, 688-91.		18
360	Experimental investigation of time-reversal of photo-acoustic waves. , 2006, , .		0

#	Article	lF	Citations
361	Time reversal telecommunications in complex environments. Comptes Rendus Physique, 2006, 7, 816-822.	0.9	5
362	Non-invasive transcranial ultrasound therapy guided by CT-scans., 2006, 2006, 683-7.		11
363	"Ultrasonic stars―for time reversal focusing using induced cavitation bubbles. AIP Conference Proceedings, 2006, , .	0.4	3
364	Gaussian beams and Legendre polynomials as invariants of the time reversal operator for a large rigid cylinder. Journal of the Acoustical Society of America, 2006, 120, 2746-2754.	1.1	18
365	Multiple scattering between two elastic cylinders and invariants of the time-reversal operator: Theory and experiment. Journal of the Acoustical Society of America, 2006, 120, 875-883.	1.1	12
366	The Stokes relations linking time reversal and the inverse filter. Journal of the Acoustical Society of America, 2006, 119, 1335-1346.	1.1	10
367	Time reversal operator decomposition with focused transmission and robustness to speckle noise: Application to microcalcification detection. Journal of the Acoustical Society of America, 2006, 119, 3848-3859.	1.1	34
368	"Ultrasonic stars―for time-reversal focusing using induced cavitation bubbles. Applied Physics Letters, 2006, 88, 034102.	3.3	53
369	Time Reversal of Ultrasound through a Phononic Crystal. Physical Review Letters, 2006, 96, 104301.	7.8	13
370	Nonlinear viscoelastic properties of tissue assessed by ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53, 2009-2018.	3.0	28
371	Time reversal of photoacoustic waves. Applied Physics Letters, 2006, 89, 184108.	3.3	32
372	2J-5 Ultrafast Ultrasonic Imaging of In Vivo Muscle Contraction. , 2006, , .		2
373	4J-3 A New Rheological Model Based on Fractional Derivatives for Biological Tissues., 2006,,.		3
374	Ultrafast imaging of in vivo muscle contraction using ultrasound. Applied Physics Letters, 2006, 89, 184107.	3.3	51
375	P2D-5 Time-Reversal of Photo-Acoustic Waves Generated by Optical Contrasts in an Optically Diffusive Tissue Phantom. , 2006, , .		0
376	4J-5 A 3D Elastography System Based on the Concept of Ultrasound-Computed Tomography for In Vivo Breast Examination. , 2006, , .		1
377	Resonant tunneling of acoustic waves through a double barrier consisting of two phononic crystals. Europhysics Letters, 2005, 71, 63-69.	2.0	13
378	Characterization of subwavelength elastic cylinders with the decomposition of the time-reversal operator: Theory and experiment. Journal of the Acoustical Society of America, 2005, 117, 789-798.	1.1	25

#	Article	IF	CITATIONS
379	Viscoelastic shear properties of in vivo breast lesions measured by MR elastography. Magnetic Resonance Imaging, 2005, 23, 159-165.	1.8	441
380	Human muscle hardness assessment during incremental isometric contraction using transient elastography. Journal of Biomechanics, 2005, 38, 1543-1550.	2.1	160
381	Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography. Magnetic Resonance in Medicine, 2005, 53, 372-387.	3.0	329
382	Adaptive instant record signals applied to detection with time reversal operator decomposition. Journal of the Acoustical Society of America, 2005, 117, 3757-3765.	1.1	8
383	Reflection and time-reversal of ultrasonic waves in the vicinity of the Rayleigh angle at a fluid-solid interface. Journal of the Acoustical Society of America, 2005, 118, 3145-3153.	1.1	6
384	Time reversal of noise sources in a reverberation room. Journal of the Acoustical Society of America, 2005, 117, 2866-2872.	1.1	38
385	Adaptive Focusing For Ultrasonic Transcranial Brain Therapy: First In Vivo Investigation On 22 Sheep. AIP Conference Proceedings, 2005, , .	0.4	10
386	Weak Localization and Time Reversal of Ultrasound in a Rotational Flow. Physical Review Letters, 2005, 95, 074301.	7.8	17
387	First tests of the DORT method at 12 kHz in a shallow water waveguide. , 2005, , .		2
388	Time-reversal focusing in a range-dependent ocean. , 2005, , .		0
388	Time-reversal focusing in a range-dependent ocean., 2005, , . Spatio-temporal coding in complex media for optimum beamforming: the iterative time-reversal approach. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52, 220-230.	3.0	15
	Spatio-temporal coding in complex media for optimum beamforming: the iterative time-reversal	3.0	
389	Spatio-temporal coding in complex media for optimum beamforming: the iterative time-reversal approach. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52, 220-230. Building three-dimensional images using a time-reversal chaotic cavity. IEEE Transactions on		15
389 390	Spatio-temporal coding in complex media for optimum beamforming: the iterative time-reversal approach. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52, 220-230. Building three-dimensional images using a time-reversal chaotic cavity. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52, 1489-1497. Application of the DORT method to the detection and characterization of two targets in a shallow		15 53
389 390 391	Spatio-temporal coding in complex media for optimum beamforming: the iterative time-reversal approach. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52, 220-230. Building three-dimensional images using a time-reversal chaotic cavity. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52, 1489-1497. Application of the DORT method to the detection and characterization of two targets in a shallow water wave-guide., 2005,,.		15 53 4
389 390 391 392	Spatio-temporal coding in complex media for optimum beamforming: the iterative time-reversal approach. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52, 220-230. Building three-dimensional images using a time-reversal chaotic cavity. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52, 1489-1497. Application of the DORT method to the detection and characterization of two targets in a shallow water wave-guide., 2005,, Design of a time reversal mirror for medium scale experiments., 2005,,		15 53 4 3
389 390 391 392	Spatio-temporal coding in complex media for optimum beamforming: the iterative time-reversal approach. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52, 220-230. Building three-dimensional images using a time-reversal chaotic cavity. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52, 1489-1497. Application of the DORT method to the detection and characterization of two targets in a shallow water wave-guide., 2005, , . Design of a time reversal mirror for medium scale experiments., 2005, , . Time reversal and phase conjugation with acoustic waves: industrial and medical applications., 2005, , . In solid localization of finger impacts using acoustic time-reversal process. Applied Physics Letters,	3.0	15 53 4 3

#	Article	IF	CITATIONS
397	Real time inverse filter focusing through iterative time reversal. Journal of the Acoustical Society of America, 2004, 115, 768-775.	1.1	68
398	Time reversal kaleidoscope: A smart transducer for three-dimensional ultrasonic imaging. Applied Physics Letters, 2004, 84, 3879-3881.	3.3	38
399	Sonic boom in soft materials: The elastic Cerenkov effect. Applied Physics Letters, 2004, 84, 2202-2204.	3.3	78
400	The role of the coupling term in transient elastography. Journal of the Acoustical Society of America, 2004, 115, 73-83.	1.1	63
401	Revisiting iterative time reversal processing: Application to detection of multiple targets. Journal of the Acoustical Society of America, 2004, 115, 776-784.	1.1	53
402	Imaging from one-bit correlations of wideband diffuse wave fields. Journal of Applied Physics, 2004, 95, 8393-8399.	2.5	163
403	Real-time focusing using an ultrasonic one channel time-reversal mirror coupled to a solid cavity. Journal of the Acoustical Society of America, 2004, 115, 1955-1960.	1.1	32
404	Monitoring Thermally-Induced Lesions with Supersonic Shear Imaging. Ultrasonic Imaging, 2004, 26, 71-84.	2.6	115
405	Time-reversal breaking of acoustic waves in a cavity. American Journal of Physics, 2004, 72, 1308-1311.	0.7	11
406	Ultrasonic Time Reversal Mirrors. AIP Conference Proceedings, 2004, , .	0.4	1
407	Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2004, 51, 396-409.	3.0	2,047
408	Phononic crystals. Physica Status Solidi (B): Basic Research, 2004, 241, 3454-3462.	1.5	66
409	3-D real-time motion correction in high-intensity focused ultrasound therapy. Ultrasound in Medicine and Biology, 2004, 30, 1239-1249.	1.5	116
410	Temperature estimation using ultrasonic spatial compound imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2004, 51, 606-615.	3.0	118
411	Relation between time reversal focusing and coherent backscattering in multiple scattering media: A diagrammatic approach. Physical Review E, 2004, 70, 046601.	2.1	19
412	The role of viscosity in the impulse diffraction field of elastic waves induced by the acoustic radiation force. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2004, 51, 1523-1536.	3.0	215
413	Measurement of viscoelastic properties of homogeneous soft solid using transient elastography: An inverse problem approach. Journal of the Acoustical Society of America, 2004, 116, 3734-3741.	1.1	329
414	Assessment of elastic parameters of human skin using dynamic elastography. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2004, 51, 980-989.	3.0	121

#	Article	IF	Citations
415	Time Reversal of Electromagnetic Waves. Physical Review Letters, 2004, 92, 193904.	7.8	547
416	Telecommunication in a disordered environment with iterative time reversal. Waves in Random and Complex Media, 2004, 14 , 287 - 302 .	1.5	27
417	Temperature estimation using ultrasonic spatial compound imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2004, 51, 606-615.	3.0	0
418	New Developments in Ultrasonic Adaptive Focusing Through the Human Skull: Application to Non Invasive Brain Therapy and Imaging. Acoustical Imaging, 2004, , 447-456.	0.2	0
419	Temperature estimation using ultrasonic spatial compound imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2004, 51, 606-15.	3.0	27
420	In vivo breast tumor detection using transient elastography. Ultrasound in Medicine and Biology, 2003, 29, 1387-1396.	1.5	314
421	High power transcranial beam steering for ultrasonic brain therapy. Physics in Medicine and Biology, 2003, 48, 2577-2589.	3.0	184
422	Experimental demonstration of noninvasive transskull adaptive focusing based on prior computed tomography scans. Journal of the Acoustical Society of America, 2003, 113, 84-93.	1.1	486
423	Measurement of elastic nonlinearity of soft solid with transient elastography. Journal of the Acoustical Society of America, 2003, 114, 3087-3091.	1.1	93
424	Auto-Focalisation, Communication and Sonoluminescence with Acoustic Time Reversal. , 2003 , , $256-280$.		1
425	Transient elastography in anisotropic medium: Application to the measurement of slow and fast shear wave speeds in muscles. Journal of the Acoustical Society of America, 2003, 114, 536-541.	1.1	236
426	Imaging in the presence of grain noise using the decomposition of the time reversal operator. Journal of the Acoustical Society of America, 2003, 113, 1230-1240.	1.1	39
427	Observation of Shock Transverse Waves in Elastic Media. Physical Review Letters, 2003, 91, 164301.	7.8	94
428	Sound focusing in rooms. II. The spatio-temporal inverse filter. Journal of the Acoustical Society of America, 2003, 114, 3044-3052.	1.1	14
429	Green's function estimation using secondary sources in a shallow water environment. Journal of the Acoustical Society of America, 2003, 113, 1406-1416.	1.1	90
430	Recovering the Green's function from field-field correlations in an open scattering medium (L). Journal of the Acoustical Society of America, 2003, 113, 2973.	1.1	312
431	Resolution enhancement and separation of reverberation from target echo with the time reversal operator decomposition. Journal of the Acoustical Society of America, 2003, 113, 3155.	1,1	30
432	Field Fluctuation Spectroscopy in a Reverberant Cavity with Moving Scatterers. Physical Review Letters, 2003, 90, 094302.	7.8	34

#	Article	IF	CITATIONS
433	How to estimate the Green's function of a heterogeneous medium between two passive sensors? Application to acoustic waves. Applied Physics Letters, 2003, 83, 3054-3056.	3.3	202
434	Taking Advantage of Multiple Scattering to Communicate with Time-Reversal Antennas. Physical Review Letters, 2003, 90, 014301.	7.8	182
435	Sound focusing in rooms: The time-reversal approach. Journal of the Acoustical Society of America, 2003, 113, 1533-1543.	1.1	82
436	Time-Reversal Acoustics in Biomedical Engineering. Annual Review of Biomedical Engineering, 2003, 5, 465-497.	12.3	179
437	Digital Communication with Time-Reversal in a Multiple Scattering Medium., 2003,, 596-605.		0
438	Boosting Sonoluminescence with a High-Intensity Ultrasonic Pulse Focused on the Bubble by an Adaptive Array. Physical Review Letters, 2002, 88, 074302.	7.8	16
439	Ultrasound shock wave generator with one-bit time reversal in a dispersive medium, application to lithotripsy. Applied Physics Letters, 2002, 80, 897-899.	3.3	45
440	Publisher's Note: Overcoming the Diffraction Limit in Wave Physics using a Time-Reversal Mirror and a Novel Acoustic Sink [Phys. Rev. Lett.89, 124301 (2002)]. Physical Review Letters, 2002, 89, .	7.8	5
441	Depth and range shifting of a focal spot using a time-reversal mirror in an acoustic waveguide. Applied Physics Letters, 2002, 80, 3647-3649.	3.3	6
442	Time-reversed acoustics in random media and in chaotic cavities. Nonlinearity, 2002, 15, R1-R18.	1.4	21
443	Comparison Between Time Reversal and Inverse Filter Focusing. , 2002, , 101-108.		0
444	Ultrasonic nondestructive testing of scattering media using the decomposition of the time-reversal operator. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2002, 49, 1103-1113.	3.0	54
445	Overcoming the Diffraction Limit in Wave Physics Using a Time-Reversal Mirror and a Novel Acoustic Sink. Physical Review Letters, 2002, 89, 124301.	7.8	223
446	Ultrafast imaging of beamformed shear waves induced by the acoustic radiation force. Application to transient elastography., 2002,,.		24
447	Time reversal techniques in ultrasonic nondestructive testing of scattering media. Inverse Problems, 2002, 18, 1761-1773.	2.0	109
448	Ultrafast compound imaging for 2-D motion vector estimation: application to transient elastography. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2002, 49, 1363-1374.	3.0	354
449	Acoustic Time-Reversal Mirrors. , 2002, , 17-43.		65
450	Shear modulus imaging with 2-D transient elastography. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2002, 49, 426-435.	3.0	354

#	Article	IF	CITATIONS
451	2D Transient Elastography. , 2002, , 485-492.		10
452	Time reversal versus phase conjugation in a multiple scattering environment. Ultrasonics, 2002, 40, 275-280.	3.9	23
453	Detection of cracks in a thin air-filled hollow cylinder by application of the DORT method to elastic components of the echo. Ultrasonics, 2002, 40, 715-720.	3.9	14
454	Shear elasticity probe for soft tissues with 1-D transient elastography. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2002, 49, 436-446.	3.0	352
455	Optimal focusing by spatio-temporal inverse filter. I. Basic principles. Journal of the Acoustical Society of America, 2001, 110, 37-47.	1.1	191
456	Ultrasonic imaging using spatio-temporal matched field (STMF) processing-applications to liquid and solid waveguides. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2001, 48, 374-386.	3.0	8
457	Optimal focusing by spatio-temporal inverse filter. II. Experiments. Application to focusing through absorbing and reverberating media. Journal of the Acoustical Society of America, 2001, 110, 48-58.	1.1	101
458	Acoustic time-reversal mirrors. Inverse Problems, 2001, 17, R1-R38.	2.0	268
459	Detection and imaging in random scattering media with the D.O.R.T. method. AIP Conference Proceedings, 2001, , .	0.4	0
460	The D.O.R.T. method applied to detection and imaging in plates using Lamb waves. AIP Conference Proceedings, $2001, \ldots$	0.4	6
461	Investigating a stretched vortex with ultrafast two-dimensional ultrasonic speckle velocimetry. Physics of Fluids, 2001, 13, 1683-1690.	4.0	16
462	Time reversed acoustics. AIP Conference Proceedings, 2001, , .	0.4	2
463	<title>Time-resolved 2D pulsed elastography: experiments on tissue-equivalent phantoms and breast in vivo</title> ., 2001,,.		5
464	<title>New method of aberration correction for ultrasonic brain imaging</title> ., 2001,,.		0
465	NUMERICAL AND EXPERIMENTAL TIME-REVERSAL OF ACOUSTIC WAVES IN RANDOM MEDIA. Journal of Computational Acoustics, 2001, 09, 993-1003.	1.0	5
466	ULTRASOUND PROPAGATION THROUGH A ROTATIONAL FLOW: NUMERICAL METHODS COMPARED TO EXPERIMENTS. Journal of Computational Acoustics, 2001, 09, 841-852.	1.0	3
467	Chaos and Time-Reversed Acoustics. Physica Scripta, 2001, T90, 268.	2.5	13
468	Random multiple scattering of ultrasound. II. Is time reversal a self-averaging process?. Physical Review E, 2001, 64, 036606.	2.1	114

#	Article	lF	CITATIONS
469	Breaking of time reversal invariance in nonlinear acoustics. Physical Review E, 2001, 64, 016602.	2.1	46
470	Ultrafast two-dimensional ultrasonic speckle velocimetry: A tool in flow imaging. Applied Physics Letters, 2001, 78, 1155-1157.	3. 3	41
471	Random multiple scattering of ultrasound. 1. Coherent and ballistic waves. Physical Review E, 2001, 64, 036605.	2.1	69
472	Observation of a coherent backscattering effect with a dipolar source for elastic waves: Highlight of the role played by the source. Physical Review E, 2001, 64, 066604.	2.1	6
473	Scattering of sound by a vorticity filament:â€fAn experimental and numerical investigation. Physical Review E, 2001, 63, 036607.	2.1	9
474	Generation of very high pressure pulses with 1-bit time reversal in a solid waveguide. Journal of the Acoustical Society of America, 2001, 110, 2849-2857.	1.1	58
475	Sensitivity to Perturbations of a Time-Reversed Acoustic Wave in a Multiple Scattering Medium. Physical Review Letters, 2001, 87, 274301.	7.8	32
476	Time-Reversed Acoustics and Chaotic Scattering. , 2001, , 187-210.		0
477	Phase conjugation and time reversal in acoustics. AIP Conference Proceedings, 2000, , .	0.4	0
478	Multiple scattering of sound. Waves in Random and Complex Media, 2000, 10, R31-R60.	1.5	79
479	Ultrasonic imaging technique in liquid and solid waveguides using spatio-temporal matched field (STMF) processing. AIP Conference Proceedings, 2000, , .	0.4	0
480	Acoustic time reversal experiments in nonlinear regime. AIP Conference Proceedings, 2000, , .	0.4	1
481	Acoustical imaging through a multiple scattering medium using a time-reversal mirror. Journal of the Acoustical Society of America, 2000, 107, L7-L12.	1.1	18
482	Limits of time-reversal focusing through multiple scattering: Long-range correlation. Journal of the Acoustical Society of America, 2000, 107, 2987-2998.	1.1	50
483	Transfer and Green functions based on modal analysis for Lamb waves generation. Journal of the Acoustical Society of America, 2000, 107, 2370-2378.	1.1	40
484	Coherent Backscattering of an Elastic Wave in a Chaotic Cavity. Physical Review Letters, 2000, 84, 1693-1695.	7.8	64
485	Transport parameters for an ultrasonic pulsed wave propagating in a multiple scattering medium. Journal of the Acoustical Society of America, 2000, 108, 503-512.	1.1	62
486	Time reversal and the inverse filter. Journal of the Acoustical Society of America, 2000, 108, 223-234.	1.1	268

#	Article	IF	Citations
487	Time-reversed acoustics. Reports on Progress in Physics, 2000, 63, 1933-1995.	20.1	566
488	Time reversal in a waveguide: Study of the temporal and spatial focusing. Journal of the Acoustical Society of America, 2000, 107, 2418-2429.	1,1	106
489	Expériences deÂrenversement duÂtemps enÂphysique. , 2000, , 227-248.		0
490	Coherent backscattering for elastic waves in a chaotic cavity., 1999,,.		0
491	One-channel time-reversal in chaotic cavities: Experimental results. Journal of the Acoustical Society of America, 1999, 105, 618-625.	1.1	121
492	Time-reversal mirrors and rough surfaces: Experiment. Journal of the Acoustical Society of America, 1999, 106, 724-732.	1.1	8
493	Ultrasonic pulse compression with one-bit time reversal through multiple scattering. Journal of Applied Physics, 1999, 85, 6343-6352.	2.5	163
494	Time-reversal mirrors and rough surfaces: Theory. Journal of the Acoustical Society of America, 1999, 106, 716-723.	1.1	12
495	Self-defocusing in ultrasonic hyperthermia: Experiment and simulation. Applied Physics Letters, 1999, 74, 3062-3064.	3.3	32
496	Highly resolved detection and selective focusing in a waveguide using the D.O.R.T. method. Journal of the Acoustical Society of America, 1999, 105, 2634-2642.	1.1	83
497	Dynamic time reversal of randomly backscattered acoustic waves. Europhysics Letters, 1999, 47, 175-181.	2.0	6
498	Time-Reversed Acoustics. Scientific American, 1999, 281, 91-97.	1.0	338
499	Characterization of a large vortex using acoustic time-reversal mirrors. European Physical Journal B, 1999, 9, 545-549.	1.5	13
500	Diffraction field of a low frequency vibrator in soft tissues using transient elastography. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1999, 46, 1013-1019.	3.0	137
501	Time-Resolved Pulsed Elastography with Ultrafast Ultrasonic Imaging. Ultrasonic Imaging, 1999, 21, 259-272.	2.6	217
502	One-channel time-reversal in chaotic cavities: Theoretical limits. Journal of the Acoustical Society of America, 1999, 105, 611-617.	1.1	137
503	A solution to diffraction biases in sonoelasticity: The acoustic impulse technique. Journal of the Acoustical Society of America, 1999, 105, 2941-2950.	1.1	246
504	Transport parameters for an ultrasonic pulsed wave propagating in a multiple scattering medium. , 1999, , .		1

#	Article	IF	Citations
505	Vortex dynamics investigation using an acoustic technique. Physics of Fluids, 1999, 11, 3380-3389.	4.0	28
506	Time-reversed Lamb waves. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1998, 45, 1032-1043.	3.0	188
507	Time reversal in multiply scattering media. Ultrasonics, 1998, 36, 443-447.	3.9	14
508	Self-focusing and time recompression of Lamb waves using a time reversal mirror. Ultrasonics, 1998, 36, 179-186.	3.9	38
509	Acoustic time reversal with mode conversion at a solid-fluid interface. Applied Physics Letters, 1998, 72, 1567-1569.	3.3	15
510	Focusing and steering through absorbing and aberrating layers: Application to ultrasonic propagation through the skull. Journal of the Acoustical Society of America, 1998, 103, 2403-2410.	1.1	250
511	Influence of boundary conditions on time-reversal focusing through heterogeneous media. Applied Physics Letters, 1998, 72, 2511-2513.	3.3	10
512	Separation of interfering acoustic scattered signals using the invariants of the time-reversal operator. Application to Lamb waves characterization. Journal of the Acoustical Society of America, 1998, 104, 801-807.	1.1	80
513	Correlation length of ultrasonic speckle in anisotropic random media: Application to coherent echo detection. Journal of the Acoustical Society of America, 1998, 103, 73-82.	1.1	10
514	Ultrasound puts materials to the test. Physics World, 1998, 11, 41-46.	0.0	24
515	Ultrasonic focusing and steering through the skull: Toward brain imaging. Journal of the Acoustical Society of America, 1998, 103, 2792-2792.	1.1	2
516	Theory of the time-reversal process in solids. Journal of the Acoustical Society of America, 1997, 102, 1289-1295.	1.1	55
517	Time-Dependent Coherent Backscattering of Acoustic Waves. Physical Review Letters, 1997, 79, 3637-3639.	7.8	117
518	The Aharonov-Bohm Effect Revisited by an Acoustic Time-Reversal Mirror. Physical Review Letters, 1997, 79, 3170-3173.	7.8	53
519	Partial coherence of transient ultrasonic fields in anisotropic random media: Application to coherent echo detection. Journal of the Acoustical Society of America, 1997, 101, 690-704.	1.1	15
520	Time-reversal in an ultrasonic waveguide. Applied Physics Letters, 1997, 70, 1811-1813.	3.3	84
521	One-Channel Time Reversal of Elastic Waves in a Chaotic 2D-Silicon Cavity. Physical Review Letters, 1997, 79, 407-410.	7.8	233
522	Time Reversed Acoustics. Physics Today, 1997, 50, 34-40.	0.3	726

#	Article	IF	Citations
523	Aberration correction in ultrasonic medical imaging with time-reversal techniques. International Journal of Imaging Systems and Technology, 1997, 8, 110-125.	4.1	1
524	Time reversal in acoustics. Contemporary Physics, 1996, 37, 95-109.	1.8	56
525	Ultrasonic beam focusing through tissue inhomogeneities with a time reversal mirror: application to transskull therapy. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1996, 43, 1122-1129.	3.0	268
526	Ultrasonic beam steering through inhomogeneous layers with a time reversal mirror. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1996, 43, 167-175.	3.0	42
527	Time Reversal Focusing Applied to Lithotripsy. Ultrasonic Imaging, 1996, 18, 106-121.	2.6	90
528	Time Reversal Focusing Applied to Lithotripsy. Ultrasonic Imaging, 1996, 18, 106-121.	2.6	55
529	Decomposition of the time reversal operator: Detection and selective focusing on two scatterers. Journal of the Acoustical Society of America, 1996, 99, 2067-2076.	1.1	356
530	Selfâ€focusing Rayleigh wave using a time reversal mirror. Applied Physics Letters, 1996, 68, 161-163.	3.3	20
531	Matched Filter Imaging Through Inhomogeneous Media. Acoustical Imaging, 1996, , 1-8.	0.2	1
532	Improvement of Time Reversal Processing in Titanium Inspections. , 1996, , 757-764.		1
533	Ultrasonic Focusing with Time Reversal Mirrors. , 1996, , 219-251.		7
534	Robust Acoustic Time Reversal with High-Order Multiple Scattering. Physical Review Letters, 1995, 75, 4206-4209.	7.8	384
535	Focusing in transmit–receive mode through inhomogeneous media: The time reversal matched filter approach. Journal of the Acoustical Society of America, 1995, 98, 1155-1162.	1.1	56
536	Experimental Evidence in Acoustics of the Violation of Time-Reversal Invariance Induced by Vorticity. Europhysics Letters, 1995, 32, 25-29.	2.0	32
537	Basic Principles of Ultrasonic Time Reversal Processing in Non-Destructive Testing. , 1995, , 937-943.		0
538	Optical imaging of transient acoustic fields generated by piezocomposite transducers. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1995, 42, 135-143.	3.0	11
539	Shear-wave focusing with a laser-ultrasound phased-array. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1995, 42, 981-988.	3.0	16
540	Time reversal processing in ultrasonic nondestructive testing. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1995, 42, 1087-1098.	3.0	95

#	Article	IF	CITATIONS
541	The iterative time reversal process: Analysis of the convergence. Journal of the Acoustical Society of America, 1995, 97, 62-71.	1.1	198
542	Time Reversal Mirrors. Acoustical Imaging, 1995, , 1-15.	0.2	10
543	Theoretical Study of Focusing Techniques through Plane Interfaces: Comparison between Time-Reversal Methods and Fermat's Surface Techniques. Acoustical Imaging, 1995, , 17-22.	0.2	0
544	Ultrasonic Inspection of Titanium Alloys with a Time Reversal Mirror., 1995,, 2105-2112.		1
545	Optical generation and detection of elastic waves in solids. European Physical Journal Special Topics, 1994, 04, C7-673-C7-684.	0.2	8
546	ProblÃ"mes inverses en diffusion acoustique avec des miroirs à retournement temporel. European Physical Journal Special Topics, 1994, 04, C5-889-C5-892.	0.2	0
547	Détection et focalisation en milieu multi-cibles : méthode de la matrice de transfert. European Physical Journal Special Topics, 1994, 04, C5-1281-C5-1284.	0.2	0
548	Theoretical and experimental analysis of focusing techniques through liquid-solid interfaces. , 1994, , .		0
549	Decomposition of the time reversal operator: Application to dispersion curve measurements., 1994,,.		2
550	Inverse scattering analysis with an acoustic time-reversal mirror. Physical Review Letters, 1994, 72, 637-640.	7.8	40
551	Adaptive focusing in scattering media through soundâ€speed inhomogeneities: The van Cittert Zernike approach and focusing criterion. Journal of the Acoustical Society of America, 1994, 96, 3721-3732.	1.1	207
552	Eigenmodes of the time reversal operator: A solution to selective focusing in multiple-target media. Wave Motion, 1994, 20, 151-163.	2.0	334
553	Timeâ€reversal focusing through a plane interface separating two fluids. Journal of the Acoustical Society of America, 1994, 96, 3145-3154.	1.1	21
554	The notion of coherence in optics and its application to acoustics. European Journal of Physics, 1994, 15, 81-90.	0.6	10
555	Phase aberration correction with ultrasonic time reversal mirrors. , 1994, , .		5
556	Self focusing on extended objects with time reversal mirror, applications to lithotripsy. , 1994, , .		5
557	Anisotropie et cohérence spatiale du speckle ultrasonore dans les composites. European Physical Journal Special Topics, 1994, 04, C5-1165-C5-1168.	0.2	0
558	Focalisation à travers une interface plane : comparaison entre la méthode de retournement temporel et la technique des surfaces de Fermat. European Physical Journal Special Topics, 1994, 04, C5-893-C5-896.	0.2	O

#	Article	IF	Citations
559	Focalisation en émission-réception en milieu inhomogÃ"ne : le concept de filtre adapté. European Physical Journal Special Topics, 1994, 04, C5-897-C5-900.	0.2	O
560	Application du retournement temporel au contrÃ1e non destructif. European Physical Journal Special Topics, 1994, 04, C5-1161-C5-1164.	0.2	0
561	Le réseau multi-source thermoélastique : une solution au contrÃ1e par ultrasons sans contact. European Physical Journal Special Topics, 1994, 04, C5-1181-C5-1184.	0.2	0
562	Improvement of time reversal mirror in detection of small cracks and metallurgical defects in sample with high ultrasonic speckle noise level. , 1993, , .		3
563	Selective focusing in multiple-target media: the transfer matrix method., 1993,,.		5
564	Spatial coherence of ultrasonic speckle in composites. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1993, 40, 666-675.	3.0	22
565	Visualization of surface displacement and transmitted field of piezocomposite transducers by optical probing. , 1993, , .		4
566	Laser-generated elastic waves in carbon-epoxy composite. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1993, 40, 710-716.	3.0	20
567	The laserâ€generated ultrasonic phased array: Analysis and experiments. Journal of the Acoustical Society of America, 1993, 94, 1934-1943.	1.1	62
568	Time-reversal mirrors. Journal Physics D: Applied Physics, 1993, 26, 1333-1350.	2.8	164
569	Focusing with plane timeâ&eversal mirrors: An efficient alternative to closed cavities. Journal of the Acoustical Society of America, 1993, 94, 2373-2386.	1.1	48
570	Transient elastic wave generation by an array of thermoelastic sources. Applied Physics Letters, 1993, 63, 3276-3278.	3.3	11
571	Improvement in contactless generation of ultrasound with an array of thermoelastic sources. , 1993, , .		4
572	Inverse problem in wave scattering with an acoustic time-reversal mirror. , 1993, , .		3
573	<title>Object detection and imaging with acoustic time reversal mirrors</title> ., 1993, 1942, 256.		0
574	Autofocusing ultrasonic propagation in composite media based on laser generated ultrasound. , 1993, , 217-220.		0
575	Sectorial Beam Scanning in Solids by a Laser Ultrasonic Source Array. , 1993, , 783-786.		0
576	<title>Improved imaging rate through simultaneous transmission of several ultrasound beams</title> ., 1992, 1733, 120.		59

#	Article	IF	CITATIONS
577	Optical probing of pulsed, focused ultrasonic fields using a heterodyne interferometer. Applied Physics Letters, 1992, 61, 153-155.	3.3	28
578	<title>Focusing and steering of ultrasonic waves generated by a sixteen-laser source array</title> ., 1992, 1733, 239.		2
579	<title>Ultrasonic nondestructive testing with time reversal mirrors</title> ., 1992, 1733, 191.		1
580	Directivity patterns of a moving thermoelastic source in solid media. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1992, 39, 285-292.	3.0	17
581	Time-reversal of ultrasonic fields. III. Theory of the closed time-reversal cavity. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1992, 39, 579-592.	3.0	302
582	Time reversal of ultrasonic fields. II. Experimental results. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1992, 39, 567-578.	3.0	238
583	Time reversal of ultrasonic fields. I. Basic principles. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1992, 39, 555-566.	3.0	1,246
584	RETOURNEMENT TEMPOREL ITÉRATIF : CONVERGENCE DU PROCESSUS. European Physical Journal Special Topics, 1992, 02, C1-625-C1-628.	0.2	0
585	Theoretical Modelisation of Time-Reversal Cavities, Application to Self-Focussing in Inhomogeneous Media. Acoustical Imaging, 1992, , 141-147.	0.2	2
586	Sound Speed Fluctuations in Medical Ultrasound Imaging Comparison between Different Correction Algorithms. Acoustical Imaging, 1992, , 213-218.	0.2	9
587	Experimental Progress of Ultrasonic Time Reversal Mirrors. Acoustical Imaging, 1992, , 237-242.	0.2	1
588	INFLUENCE DE LA DIFFUSION MULTIPLE DANS LE CONTRÃ"LE ULTRASONORE DES ACIERS AUSTÉNITIQUES À GROS GRAINS. European Physical Journal Special Topics, 1992, 02, C1-839-C1-843.	0.2	0
589	APPLICATION DES RÉSEAUX LACUNAIRES À LA FOCALISATION ULTRASONORE PAR RETOURNEMENT TEMPOREL. European Physical Journal Special Topics, 1992, 02, C1-661-C1-664.	0.2	0
590	The van Cittert–Zernike theorem in pulse echo measurements. Journal of the Acoustical Society of America, 1991, 90, 2718-2727.	1.1	262
591	Echographic diffraction filters and the diffraction function for random media through an instantaneous timeâ€frequency approach. Journal of the Acoustical Society of America, 1991, 90, 1074-1084.	1.1	6
592	The iterative time reversal mirror: A solution to selfâ€focusing in the pulse echo mode. Journal of the Acoustical Society of America, 1991, 90, 1119-1129.	1.1	165
593	Partially coherent transducers: The random phase transducer approach. Ultrasonic Imaging, 1990, 12, 205-228.	2.6	5
594	The random phase transducer: a new technique for incoherent processing-basic principles and theory. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1990, 37, 54-69.	3.0	25

#	Article	IF	CITATIONS
595	Partially Coherent Transducers: The Random Phase Transducer Approach. Ultrasonic Imaging, 1990, 12, 205-228.	2.6	6
596	The random phase transducer: a new technique for incoherent processing-experimental results. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1990, 37, 70-78.	3.0	7
597	ULTRASONIC SPECTROSCOPY IN CROSS-PLY FIBER REINFORCED COMPOSITES APPLIED TO DISPERSION EFFECTS CHARACTERIZATION OF ELASTIC SHEAR WAVE. Journal De Physique Colloque, 1990, 51, C2-1265-C2-1268.	0.2	3
598	LES TRANSDUCTEURS À COHÉRENCE SPATIALE CONTRÔLABLE : UNE SOLUTION POUR LA RÉDUCTION DI "SPECKLE" ACOUSTIQUE. Journal De Physique Colloque, 1990, 51, C2-1303-C2-1306.	J _{0.2}	0
599	ULTRASONIC NON-DESTRUCTIVE TESTING AND CHARACTERIZATION OF GRAPHITE-EPOXY COMPOSITES WITH A NEW RANDOM PHASE TRANSDUCER. , 1989, , 637-642.		0
600	Characterization of modified lead titanate piezoceramics. Application to the design of array transducers. Sensors and Actuators, 1988, 13, 351-363.	1.7	2
601	Attenuation estimation with random phase transducers. Ultrasonic Imaging, 1988, 10, 56.	2.6	2
602	Time deconvolution of diffraction effectsâ€"Application to calibration and prediction of transducer waveforms. Journal of the Acoustical Society of America, 1988, 84, 1073-1085.	1.1	21
603	Mechanical displacement induced in a piezoelectric structure: Experimental measurement by laser interferometry and simulation by a finite element method. Journal of the Acoustical Society of America, 1988, 84, 11-19.	1.1	8
604	High resolution ultrasonic attenuation estimation with a random phase screen. , 1988, , .		0
605	Displacements induced in piezoelectric structures. , 1988, , .		0
606	Diffraction Correction for Focused Transducers in Attenuation Measurements in Vivo. Ultrasonic Imaging, 1987, 9, 248-259.	2.6	8
607	Optimal Precision in Ultrasound Attenuation Estimation and Application to the Detection of Duchenne Muscular Dystrophy Carriers. Ultrasonic Imaging, 1987, 9, 1-17.	2.6	34
608	Attenuation Estimation and Speckle Reduction with Random Phase Transducers., 1987,,.		6
609	Optimal precision in ultrasound attenuation estimation and application to the detection of Duchenne Muscular Dystrophy carriers. Ultrasonic Imaging, 1987, 9, 1-17.	2.6	17
610	A universal diffraction correction curve. Ultrasonic Imaging, 1987, 9, 67.	2.6	0
611	Diffraction correction for focused transducers in attenuation measurements? Ultrasonic Imaging, 1987, 9, 248-259.	2.6	15
612	Preparation and Characterization of Lead Titanate and Lead Metaniobate Piezoceramics for Ultrasonic Transducer Design. , 1986, , .		2

#	Article	IF	CITATIONS
613	Diffraction Effects on the Measurement of Phased Array Element Acousto-Electric Response. , 1986, , .		О
614	Specular reflector noise: Effect and correction for in vivo attenuation estimation. Ultrasonic lmaging, 1985, 7, 277-292.	2.6	19
615	Influence of specular reflectors on attenuation measurements in muscles. Ultrasonic Imaging, 1985, 7, 84-85.	2.6	2
616	Specular Reflector Noise: Effect and Correction for in Vivo Attenuation Estimation. Ultrasonic Imaging, 1985, 7, 277-292.	2.6	24
617	Diffraction Impulse Response of Non-Planar Transducers. Acoustical Imaging, 1985, , 533-546.	0.2	2
618	Perspectives on Attenuation Estimation from Pulse-Echo Signals. IEEE Transactions on Sonics and Ultrasonics, 1984, 31, 352-361.	0.9	24
619	Diffraction Effects in Pulse-Echo Measurement. IEEE Transactions on Sonics and Ultrasonics, 1984, 31, 313-329.	0.9	120
620	Ultrasonic signal processing for ? attenuation measurement: Short time Fourier analysis. Ultrasonic Imaging, 1983, 5, 117-135.	2.6	49
621	Acoustical Displacement Reconstruction of Axisymmetric Transducers., 1983,,.		0
622	Diffraction Correction in Pulse-Echo Attenuation Measurements. , 1983, , .		10
623	Ultrasonic Signal Processing for <u>in Vivo</u> Attenuation Measurement: Short Time Fourier Analysis. Ultrasonic Imaging, 1983, 5, 117-135.	2.6	147
624	L'imagerie ultrasonore. Revue De Physique Appliquée, 1983, 18, 527-556.	0.4	4
625	An Annular Transducer with a Non Electronically Achieved Depth of Focus Ranging from 20 mm to 140 mm. , 1982, , .		О
626	Short Time Fourier Analysis and Diffraction Effect in Biological Tissue Characterization. Acoustical Imaging, 1982, , 493-503.	0.2	13
627	Theoretical Study of Pulsed Echographic Focusing Procedures. Acoustical Imaging, 1982, , 437-453.	0.2	10
628	New Arrangements for Fresnel Focusing. Acoustical Imaging, 1980, , 65-73.	0.2	8
629	Wideband Fresnel Focusing Array Response. , 1979, , .		3
630	Fresnel Zone Focusing of Linear Arrays Applied to B and C Echography., 1977,, 509-522.		5

#	Article	IF	CITATIONS
631	Experimental and theoretical limits of random phase transducers. , 0, , .		3
632	Attenuation measurement and flaw detection in graphite epoxy composites with random phase transducers. , 0, , .		3
633	Focusing and beamsteering of laser generated ultrasound. , 0, , .		5
634	Self focusing in inhomogeneous media with time reversal acoustic mirrors. , 0, , .		222
635	A quantitative approach to partially coherent processing of ultrasonic data via the random phase transducer. , 0, , .		O
636	Experimental approach of the diffraction effect with random phase transducers. , 0, , .		0
637	Spatial anisotropy of the backscattered acoustic field from fiber reinforced composites. , 0, , .		3
638	Limits of self-focusing using closed time-reversal cavities and mirrors-theory and experiment., 0,,.		14
639	The van Cittert-Zernike theorem in pulsed ultrasound-implications for ultrasonic imaging. , 0, , .		5
640	A multi-piezoelectric structure: the stacked transducer. , 0, , .		5
641	Optimal focusing through aberrating media: a comparison between time reversal mirror and time delay correction techniques. , 0, , .		14
642	The influence of multiple scattering in incoherent ultrasonic inspection of coarse grain stainless steel. , 0 , , .		6
643	Ultrasonic nondestructive testing with time reversal mirrors. , 0, , .		7
644	Experimental study of anisotropic and dispersive effects on carbon-epoxy composite using laser generated ultrasound. , 0 , , .		3
645	The random phase transducer in ultrasonic nondestructive testing of coarse grain stainless steel: An original tool to characterize multiple scattering effect. , 0, , .		O
646	Focusing in transmit-receive mode through inhomogeneous media: The matched filter approach. , 0, , .		6
647	Quantitative ultrasonic assessment of tissue macroscopic heterogeneity., 0, , .		2
648	Synthesis of a specific wavefront using 2D full and sparse arrays. , 0, , .		1

#	Article	IF	CITATIONS
649	Spatial correlation of the backscattered acoustic field from fiber reinforced composites., 0,,.		1
650	Defect detection by surface acoustic waves generated by a multiple beam laser., 0,,.		0
651	Surface and sub-surface flaws detection using Rayleigh wave time reversal mirrors. , 0, , .		2
652	Selective focusing through inhomogeneous media: the DORT method. , 0, , .		7
653	Time reversal in solids: theory and experiment. , 0, , .		0
654	Acoustic time-reversal through high-order multiple scattering. , 0, , .		9
655	Optimisation of time reversal processing in titanium inspections. , 0, , .		7
656	Vorticity measurements with an acoustic time-reversal mirror. , 0, , .		1
657	Characterization of extended objects with the D.O.R.T. method. , 0, , .		6
658	Focusing through skull with time reversal mirrors. Application to hyperthermia. , 0, , .		7
659	Dynamic coherent backscattering of ultrasonic pulsed waves. , 0, , .		1
660	Flaw detection in solid with the D.O.R.T. method. , 0, , .		5
661	Comparison between time reversal focusing in absorbing medium and inverse filtering. , 0, , .		3
662	Ultrasonic mapping of temperature in hyperthermia: the thermal lens effect. , 0, , .		5
663	Ultrasonic imaging using two dimensional cross-correlation function. , 0, , .		0
664	Time reversal invariance of nonlinear acoustic wave propagation in weakly viscous media. , 0, , .		2
665	Detection and imaging in complex media with the D.O.R.T. method. , 0, , .		2
666	Towards ultrasonic brain imaging. , 0, , .		0

#	Article	IF	CITATIONS
667	Ultrasound-based noninvasive shear elasticity probe for soft tissues. , 0, , .		6
668	The phased array technology-application to time reversal in acoustics. , 0, , .		0
669	Experimental validation of 3D finite differences simulations of ultrasonic wave propagation through the skull. , 0, , .		8
670	Pulse echo imaging through a human skull: in vitro experiments. , 0, , .		2
671	Skull surface detection algorithm to optimize time reversal focusing through a human skull. , 0, , .		0
672	Reduction of the thermo-acoustic lens effect during ultrasound-based temperature estimation. , 0, , .		4
673	Ultra high speed imaging of elasticity., 0,,.		19
674	3D spatial resolution enhancement through environmental effects with the time reversal operator decomposition. , 0, , .		0
675	Complex pulsing schemes for high frame rate imaging. , 0, , .		3
676	Study of viscous and elastic properties of soft tissues using supersonic shear imaging., 0,,.		13
677	Feasibility of real-time motion correction for H.I.F.U applications. , 0, , .		O
678	Ultrasonically induced necrosis through the rib cage based on adaptive focusing: ex vivo experiments. , 0, , .		2
679	The time reversal kaleidoscope: a new concept of smart transducers for 3D imaging. , 0, , .		3
680	Local inversion of transient shear wave propagation for elasticity and viscosity mapping in soft tissues: theoretical and experimental analysis., 0,,.		3
681	Nonlinearity studies in soft tissues with the supersonic shear imaging system. , 0, , .		2
682	2D pseudo-array using an ultrasonic one channel time-reversal mirror., 0,,.		2
683	3D ultrasound-based dynamic and transient elastography : first in vitro results. , 0, , .		6
684	Time reversal acoustics. , 0, , .		30

#	Article	IF	CITATIONS
685	High resolution ultrasonic brain imaging: noninvasive adaptive focusing based on twin arrays. , 0, , .		2
686	Ultrasonic transcranial brain therapy: first in vivo clinical investigation on 22 sheep using adaptive focusing. , 0, , .		7
687	The stokes relations linking time reversal and the inverse filter. , 0, , .		1
688	Prediction of the skull overheating during high intensity focused ultrasound transcranial brain therapy. , 0, , .		5
689	High resolution ultrasonic brain imaging: adaptive focusing based on twin-arrays. , 0, , .		1
690	Dual-arrays brain imaging prototype: experimental in vitro results., 0,,.		17
691	Decomposition of the time-reversal operator applied to quantitative characterization of small elastic cylinders. , 0, , .		4
692	Tactile time reversal interactivity: experiment and modelization. , 0, , .		1
693	Time-Reversal of Waves. , 0, , 399-412.		O
694	Time-Reversed Waves in Complex Media., 0,, 146-168.		0
695	Use of Time-reversal. , 0, , 827-839.		O