

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6459709/publications.pdf Version: 2024-02-01

FDIC | TEDE

#	Article	IF	CITATIONS
1	The chemical ecology of tropical forest diversity: Environmental variation, chemical similarity, herbivory, and richness. Ecology, 2022, 103, e3762.	3.2	12
2	lmportance of interaction rewiring in determining spatial and temporal turnover of tritrophic (<i>Piper</i> â€caterpillarâ€parasitoid) metanetworks in the Yucatán PenÃnsula, México. Biotropica, 2021, 53, 1071-1081.	1.6	9
3	Environmental DNA reveals arboreal cityscapes at the Ancient Maya Center of Tikal. Scientific Reports, 2021, 11, 12725.	3.3	16
4	Phytochemistry reflects different evolutionary history in traditional classes versus specialized structural motifs. Scientific Reports, 2021, 11, 17247.	3.3	9
5	Tritrophic interaction diversity in gallery forests: A biologically rich and understudied component of the Brazilian cerrado. Arthropod-Plant Interactions, 2021, 15, 773-785.	1.1	3
6	Chemical and Genotypic Variations in Aniba rosiodora from the Brazilian Amazon Forest. Molecules, 2021, 26, 69.	3.8	6
7	Evaluation of DNA markers for molecular identification of three Piper species from Brazilian Atlantic Rainforest. PLoS ONE, 2020, 15, e0239056.	2.5	5
8	Molecular genetic and geochemical assays reveal severe contamination of drinking water reservoirs at the ancient Maya city of Tikal. Scientific Reports, 2020, 10, 10316.	3.3	19
9	A series of unfortunate events: the forgotten botanist and the misattribution of a type collection. PhytoKeys, 2018, 109, 33-39.	1.0	7
10	Host conservatism, geography, and elevation in the evolution of a Neotropical moth radiation. Evolution; International Journal of Organic Evolution, 2017, 71, 2885-2900.	2.3	10
11	Intraspecific phytochemical variation shapes community and population structure for specialist caterpillars. New Phytologist, 2016, 212, 208-219.	7.3	90
12	Relationships among wild relatives of the tomato, potato, and pepino. Taxon, 2016, 65, 262-276.	0.7	13
13	Two New Species of <1>Piper 1 from the Greater Antilles. Systematic Botany, 2014, 39, 10-16.	0.5	2
14	Piper kelleyi, a hotspot of ecological interactions and aÂnew species from Ecuador and Peru. PhytoKeys, 2014, 34, 19-32.	1.0	23
15	Host conservatism, host shifts and diversification across three trophic levels in two Neotropical forests. Journal of Evolutionary Biology, 2012, 25, 532-546.	1.7	64
16	A Revision of <i>Solanum</i> Section <i>Herpystichum</i> . Systematic Botany, 2011, 36, 1068-1087.	0.5	16
17	Weighing Defensive and Nutritive Roles of Ant Mutualists Across a Tropical Altitudinal Gradient. Biotropica, 2011, 43, 343-350.	1.6	18
18	Multiple recent horizontal transfers of the cox1intron in Solanaceae and extended co-conversion of flanking exons. BMC Evolutionary Biology, 2011, 11, 277.	3.2	50

Eric J Tepe

#	Article	IF	CITATIONS
19	A 10-gene phylogeny ofSolanumsectionHerpystichum(Solanaceae) and a comparison of phylogenetic methods. American Journal of Botany, 2011, 98, 1356-1365.	1.7	23
20	The fate of <i>Robinsonia</i> (Asteraceae): sunk in <i>Senecio</i> , but still monophyletic?. Phytotaxa, 2010, 5, 31.	0.3	17
21	A molecular phylogeny of <i>Solanum</i> sect. <i>Pteroidea</i> (Solanaceae) and the utility of COSII markers in resolving relationships among closely related species. Taxon, 2010, 59, 733-743.	0.7	13
22	Patterns and causes of incongruence between plastid and nuclear Senecioneae (Asteraceae) phylogenies. American Journal of Botany, 2010, 97, 856-873.	1.7	219
23	Characterizing the Cauline Domatia of Two Newly Discovered Ecuadorian Ant Plants in <i>Piper</i> : An Example of Convergent Evolution. Journal of Insect Science, 2009, 9, 1-9.	1.5	5
24	Placing the origin of two species-rich genera in the late cretaceous with later species divergence in the tertiary: a phylogenetic, biogeographic and molecular dating analysis of Piper and Peperomia (Piperaceae). Plant Systematics and Evolution, 2008, 275, 9-30.	0.9	69
25	A Phylogeny of the Tropical Genus <l>Piper</l> Using ITS and the Chloroplast Intron <l>psbJ–petA</l> . Systematic Botany, 2008, 33, 647-660.	0.5	88
26	Stem diversity, cauline domatia, and the evolution of ant–plant associations in <i>Piper</i> sect. <i>Macrostachys</i> (Piperaceae). American Journal of Botany, 2007, 94, 1-11.	1.7	17
27	The importance of petiole structure on inhabitability by ants in Piper sect. Macrostachys (Piperaceae). Botanical Journal of the Linnean Society, 2007, 153, 181-191.	1.6	14
28	Phylogenetic Patterns, Evolutionary Trends, and the Origin of Ant—Plant Associations in Piper section Macrostachys: Burger's Hypotheses Revisited. , 2004, , 156-178.		11
29	Allozyme diversity in endemic flowering plant species of the Juan Fernandez Archipelago, Chile: ecological and historical factors with implications for conservation. American Journal of Botany, 2001, 88, 2195-2203.	1.7	87
30	Allozyme variation and the taxonomy of Wolffiella. Aquatic Botany, 1997, 58, 43-54.	1.6	23
31	Paleoecological Studies at the Ancient Maya Center of Yaxnohcah Using Analyses of Pollen, Environmental DNA, and Plant Macroremains. Frontiers in Ecology and Evolution, 0, 10, .	2.2	4