## **Itamar Borges**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6459257/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                         | IF        | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|
| 1  | <i>Ab Initio</i> Modeling of Excitonic and Charge-Transfer States in Organic Semiconductors: The<br>PTB1/PCBM Low Band Gap System. Journal of the American Chemical Society, 2013, 135, 18252-18255.                                                                                            | 13.7      | 59        |
| 2  | Topological Analysis of the Molecular Charge Density and Impact Sensitivy Models of Energetic<br>Molecules. Journal of Physical Chemistry A, 2011, 115, 9055-9068.                                                                                                                              | 2.5       | 58        |
| 3  | Brazilian symposium of theoretical chemistry (SBQT2013). Journal of Molecular Modeling, 2015, 21, 1.                                                                                                                                                                                            | 1.8       | 57        |
| 4  | Density-Functional Theory Simulation of the Dissociative Chemisorption of Water Molecules on the MgO(001) Surface. Journal of Physical Chemistry C, 2012, 116, 738-744.                                                                                                                         | 3.1       | 45        |
| 5  | Intermolecular interactions and charge transfer transitions in aromatic<br>hydrocarbon–tetracyanoethylene complexes. Physical Chemistry Chemical Physics, 2014, 16,<br>20586-20597.                                                                                                             | 2.8       | 43        |
| 6  | The generality of the GUGA MRCI approach in COLUMBUS for treating complex quantum chemistry.<br>Journal of Chemical Physics, 2020, 152, 134110.                                                                                                                                                 | 3.0       | 42        |
| 7  | Theoretical Study of the Reaction between HF Molecules and Hydroxyl Layers of Mg(OH) <sub>2</sub> .<br>Journal of Physical Chemistry A, 2009, 113, 6494-6499.                                                                                                                                   | 2.5       | 34        |
| 8  | Density functional theory molecular simulation of thiophene adsorption on MoS2 including microwave effects. Computational and Theoretical Chemistry, 2007, 822, 80-88.                                                                                                                          | 1.5       | 32        |
| 9  | Sarin Degradation Using Brucite. Journal of Physical Chemistry C, 2011, 115, 24937-24944.                                                                                                                                                                                                       | 3.1       | 30        |
| 10 | The electronically excited states of RDX (hexahydroâ€1,3,5â€trinitroâ€1,3,5â€triazine): Vertical excitations.<br>International Journal of Quantum Chemistry, 2009, 109, 2348-2355.                                                                                                              | 2.0       | 27        |
| 11 | Optical and generalized oscillator strengths for theB1Σ+,C1Σ+, andE1Îvibronic bands in the CO molecule.<br>Physical Review A, 1998, 57, 4394-4400.                                                                                                                                              | 2.5       | 25        |
| 12 | Dynamics of benzene excimer formation from the parallel-displaced dimer. Physical Chemistry<br>Chemical Physics, 2019, 21, 13916-13924.                                                                                                                                                         | 2.8       | 23        |
| 13 | Absorption and Fluorescence Spectra of Poly( <i>p</i> -phenylenevinylene) (PPV) Oligomers: An <i>ab<br/>Initio</i> Simulation. Journal of Physical Chemistry A, 2015, 119, 1787-1795.                                                                                                           | 2.5       | 22        |
| 14 | Insight into the Excited State Electronic and Structural Properties of the Organic Photovoltaic<br>Donor Polymer Poly(thieno[3,4- <i>b</i> ]thiophene benzodithiophene) by Means of <i>ab Initio</i> and<br>Density Functional Theory. Journal of Physical Chemistry C, 2016, 120, 21818-21826. | 3.1       | 22        |
| 15 | Defesa quÃmica: histórico, classificação dos agentes de guerra e ação dos neurotóxicos. Quimica<br>Nova, 2012, 35, 2083-2091.                                                                                                                                                                   | 0.3       | 21        |
| 16 | Potential Energy Curves for X1Σ+ and A1Î States of CO: The A1Î(v′=1–23)â†X1Σ+(v″=0, 1) Transitions<br>Molecular Spectroscopy, 2001, 209, 24-29.                                                                                                                                                 | ournal of | 20        |
| 17 | Doubly excited states of molecular hydrogen: theoretical absorption and photodissociation cross sections. Journal of Physics B: Atomic, Molecular and Optical Physics, 2000, 33, 1713-1724.                                                                                                     | 1.5       | 19        |
| 18 | Forbidden transitions in benzene. Computational and Theoretical Chemistry, 2003, 621, 99-105.                                                                                                                                                                                                   | 1.5       | 19        |

Itamar Borges

| #  | Article                                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | On the Conformational Memory in the Photodissociation of Formic Acid. Journal of Physical Chemistry A, 2005, 109, 2836-2839.                                                                                                                                                                   | 2.5 | 18        |
| 20 | Chemical dynamics simulations of CID of peptide ions: comparisons between<br>TIK(H <sup>+</sup> ) <sub>2</sub> and TLK(H <sup>+</sup> ) <sub>2</sub> fragmentation dynamics, and<br>with thermal simulations. Physical Chemistry Chemical Physics, 2018, 20, 3614-3629.                        | 2.8 | 18        |
| 21 | Correlation between molecular charge densities and sensitivity of nitrogen-rich heterocyclic nitroazole derivative explosives. Journal of Molecular Modeling, 2019, 25, 314.                                                                                                                   | 1.8 | 18        |
| 22 | Valence electronic excitation of the SiF4molecule: generalized oscillator strength for the 5t2→<br>6a1transition andab initiocalculation. Journal of Physics B: Atomic, Molecular and Optical Physics,<br>2001, 34, 1005-1017.                                                                 | 1.5 | 16        |
| 23 | Hydrolysis of a VX-like Organophosphorus Compound through Dissociative Chemisorption on the MgO(001) Surface. Journal of Physical Chemistry C, 2013, 117, 20791-20801.                                                                                                                         | 3.1 | 16        |
| 24 | Accurate calculation of near-critical heat capacities C P and C V of argon using molecular dynamics.<br>Journal of Molecular Liquids, 2017, 237, 65-70.                                                                                                                                        | 4.9 | 16        |
| 25 | On the molecular origin of the sensitivity to impact of cyclic nitramines. International Journal of<br>Quantum Chemistry, 2019, 119, e25868.                                                                                                                                                   | 2.0 | 16        |
| 26 | On the semiclassical dissociation yields of the doubly excited states of H2. Chemical Physics Letters, 2001, 342, 411-416.                                                                                                                                                                     | 2.6 | 15        |
| 27 | DFT conformational studies of the HI-6 molecule. International Journal of Quantum Chemistry, 2005, 105, 260-269.                                                                                                                                                                               | 2.0 | 15        |
| 28 | Excited electronic and ionized states of the nitramide molecule, H2NNO2, studied by the symmetry-adapted-cluster configuration interaction method. Theoretical Chemistry Accounts, 2008, 121, 239-246.                                                                                         | 1.4 | 15        |
| 29 | Conformations and charge distributions of diazocyclopropanes. International Journal of Quantum Chemistry, 2008, 108, 2615-2622.                                                                                                                                                                | 2.0 | 15        |
| 30 | Excited electronic and ionized states of N,N-dimethylnitramine. Chemical Physics, 2008, 349, 256-262.                                                                                                                                                                                          | 1.9 | 15        |
| 31 | Nuclear fukui functions and the deformed atoms in molecules representation of the electron density:<br>Application to gasâ€Phase RDX (hexahydroâ€1,3,5â€trinitroâ€1,3,5―triazine) electronic structure and<br>decomposition. International Journal of Quantum Chemistry, 2011, 111, 1444-1452. | 2.0 | 14        |
| 32 | Non-Franck-Condon electron-impact dissociative-excitation cross sections of molecular hydrogen<br>producingH(1s)+H(2l)throughX1Σg+(v=0)→{B1Σu+,B′1Σu+,C1Îu}. Physical Review A, 1998, 57, 1025-1032.                                                                                           | 2.5 | 13        |
| 33 | Photon and high-energy–electron-impact vibronic excitation of molecular hydrogen. Physical Review<br>A, 1999, 60, 1226-1234.                                                                                                                                                                   | 2.5 | 13        |
| 34 | Probing topological electronic effects in catalysis: thiophene adsorption on NiMoS and CoMoS clusters. Journal of the Brazilian Chemical Society, 2012, 23, 1789-1799.                                                                                                                         | 0.6 | 13        |
| 35 | Destruction cross sections for fast hydrogen molecules incident on helium, neon, and argon.<br>Physical Review A, 1995, 51, 3831-3836.                                                                                                                                                         | 2.5 | 12        |
| 36 | How to find an optimum cluster size through topological site properties:<br>MoS <i><sub>x</sub></i> model clusters. Journal of Computational Chemistry, 2011, 32, 2186-2194.                                                                                                                   | 3.3 | 12        |

Itamar Borges

| #  | Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Theoretical investigations on valence vibronic transitions. Brazilian Journal of Physics, 2005, 35, 971-980.<br>Configuration interaction oscillator strengths of the H2O molecule: Transitions from the ground to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.4 | 11        |
| 38 | the <mmi:math altimg="sl13.gif" overflow="scroll&lt;br">xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema"<br/>xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd"<br/>xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/2001/XMLSchema"<br/>xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/2001/XMLSchema"<br/>xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/2001/XMLSchema"<br/>xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/2001/XMLSchema-<br/>ymlosth="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.w3.org/2001/XMLSchema-<br/>ymlosth="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.w3.org/2001/XMLSchema-<br/>ymlosth="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.w3.org/2001/XMLSchema-<br/>ymlosth="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.w3.org/2001/XMLSchema-<br/>ymlosth="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.w3.org/2001/XMLSchema-<br/>ymlosth="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.w3.org/ymlosth="http://www.w3.org/ymlosth="http://www.w3.org/ymlosth="http://www.w3.org/ymlosth="http://www.w3.org/ymlosth="http://www.w3.org/ymlosth="http://www.w3.org/ymlosth="http://www.w3.org/ymlosth="http://www.w3.org/ymlosth="http://www</mmi:math> | 1.9 | 11        |
| 39 | Molecular dynamics simulations of momentum and thermal diffusion properties of near-critical argon along isobars. Journal of Supercritical Fluids, 2016, 114, 46-54.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.2 | 11        |
| 40 | Proton Migration on Perfect, Vacant, and Doped MgO(001) Surfaces: Role of Dissociation Residual<br>Groups. Journal of Physical Chemistry C, 2018, 122, 21841-21853.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.1 | 11        |
| 41 | Electronic and spectroscopic properties of A-series nerve agents. Computational and Theoretical Chemistry, 2021, 1202, 113321.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.5 | 11        |
| 42 | Theoretical investigations on the vibronic coupling between the electronic states SO and S1 of formic acid including the photodissociation at 248nm. Chemical Physics Letters, 2005, 407, 166-170.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.6 | 10        |
| 43 | Electronic spectra of nitroethylene. International Journal of Quantum Chemistry, 2012, 112, 1225-1232.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.0 | 10        |
| 44 | Water solvent effects using continuum and discrete models: The nitromethane molecule,<br>CH <sub>3</sub> NO <sub>2</sub> . Journal of Computational Chemistry, 2015, 36, 2260-2269.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.3 | 10        |
| 45 | Discrete and continuum modeling of solvent effects in a twisted intramolecular charge transfer<br>system: The 4-N,N-dimethylaminobenzonitrile (DMABN) molecule. Spectrochimica Acta - Part A:<br>Molecular and Biomolecular Spectroscopy, 2018, 201, 73-81.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.9 | 10        |
| 46 | Theoretical NMR and conformational analysis of solvated oximes for organophosphates-inhibited acetylcholinesterase reactivation. Journal of Molecular Structure, 2018, 1152, 311-320.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.6 | 10        |
| 47 | Molecular dynamics simulation of the electron ionization mass spectrum of tabun. Journal of Mass<br>Spectrometry, 2020, 55, e4513.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.6 | 10        |
| 48 | Correlation Between Molecular Charge Properties and Impact Sensitivity of Explosives: Nitrobenzene<br>Derivatives. Propellants, Explosives, Pyrotechnics, 2021, 46, 309-321.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.6 | 10        |
| 49 | Formation reaction mechanisms of hydroxide anions from Mg(OH)2 layers. Chemical Physics, 2013, 418, 1-7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.9 | 9         |
| 50 | Microwave effects on NiMoS and CoMoS single-sheet catalysts. Journal of Molecular Modeling, 2018, 24, 128.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.8 | 9         |
| 51 | Influences on the calculation of accurate and basis set extrapolated oscillator strengths: the transition of H2O. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39, 641-650.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.5 | 8         |
| 52 | Reexamination of the Lyman-Birge-Hopfield transition ofN2: Configuration-interaction generalized oscillator strengths. Physical Review A, 2007, 75, .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.5 | 8         |
| 53 | Electronic and ionization spectra of 1,1-diamino-2,2-dinitroethylene, FOX-7. Journal of Molecular<br>Modeling, 2014, 20, 2095.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.8 | 8         |
| 54 | A Multireference Configuration Interaction Study of the Photodynamics of Nitroethylene. Journal of Physical Chemistry A, 2014, 118, 12011-12020.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.5 | 7         |

ITAMAR BORGES

| #  | Article                                                                                                                                                                                                                         | IF     | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|
| 55 | The CH3POF2 molecule: ab initio studies of structure, vibrational spectrum and methyl rotational barrier. Computational and Theoretical Chemistry, 2004, 712, 187-195.                                                          | 1.5    | 6         |
| 56 | Accurate non-asymptotic thermodynamic properties of near-critical N2 and O2 computed from molecular dynamics simulations. Journal of Supercritical Fluids, 2018, 135, 225-233.                                                  | 3.2    | 6         |
| 57 | Quantifying bond strengths via a Coulombic force model: application to the impact sensitivity of nitrobenzene, nitrogen-rich nitroazole, and non-aromatic nitramine molecules. Journal of Molecular Modeling, 2021, 27, 69.     | 1.8    | 6         |
| 58 | Photon and electron-impact dissociation cross sections of HCl. Journal of Physics B: Atomic,<br>Molecular and Optical Physics, 1998, 31, 3703-3711.                                                                             | 1.5    | 5         |
| 59 | Rate constants for the CH3Oâ€+â€NO → CH3ONO reaction by classical trajectory and canonical variational transition state theory calculations. Journal of Physical Organic Chemistry, 2002, 15, 123-129.                          | 1.9    | 5         |
| 60 | Elucidating the mass spectrum of the retronecine alkaloid using DFT calculations. Journal of Mass<br>Spectrometry, 2018, 53, 934-941.                                                                                           | 1.6    | 5         |
| 61 | Theoretical analysis of the stabilization of graphene nanosheets by means of strongly polarized pyrene derivatives. Chemical Physics, 2019, 527, 110468.                                                                        | 1.9    | 5         |
| 62 | Pronounced changes in atomistic mechanisms for the Cl <sup>â^'</sup> + CH <sub>3</sub> 1<br>S <sub>N</sub> 2 reaction with increasing collision energy. Physical Chemistry Chemical Physics, 2019,<br>21, 2039-2045.            | 2.8    | 5         |
| 63 | Simulation of the electron ionization mass spectra of the Novichok nerve agent. Journal of Mass Spectrometry, 2021, 56, e4779.                                                                                                  | 1.6    | 5         |
| 64 | Theoretical Chemistry at the Service of the Chemical Defense: Degradation of Nerve Agents in<br>Magnesium Oxide and Hydroxide Surface. Revista Virtual De Quimica, 2014, 6, .                                                   | 0.4    | 4         |
| 65 | Properties of molecular charge distributions affecting the sensitivity of energetic materials.<br>Theoretical and Computational Chemistry, 2022, , 81-105.                                                                      | 0.4    | 4         |
| 66 | collisional destruction by He, Ne and Ar. Journal of Physics B: Atomic, Molecular and Optical Physics, 1996, 29, 733-739.                                                                                                       | 1.5    | 3         |
| 67 | Collisional fragmentation of fastHeH+ions: TheHe2++Hâ^channel. Physical Review A, 1999, 59, 1988-1993.                                                                                                                          | 2.5    | 3         |
| 68 | Configuration interaction and relaxation effects on generalized and optical oscillator strengths of<br>the H2O molecule: The X1A1→A1B1 transition. Journal of Electron Spectroscopy and Related Phenomena,<br>2007, 155, 40-46. | 1.7    | 3         |
| 69 | Molecular Electronic Topology and Fragmentation Onset via Charge Partition Methods and Nuclear<br>Fukui Functions: 1,1-Diamino-2,2-dinitroethylene. Journal of the Brazilian Chemical Society, 2015, , .                        | 0.6    | 3         |
| 70 | Adsorption of Trinitrotoluene on a MgO(001) Surface Including Surface Relaxation Effects. Journal of Chemistry, 2013, 2013, 1-8.                                                                                                | 1.9    | 2         |
| 71 | Electronic structure theory gives insights into the higher efficiency of the PTB electron-donor<br>polymers for organic photovoltaics in comparison with prototypical P3HT. Journal of Chemical<br>Physics, 2018, 149, 184905.  | 3.0    | 2         |
| 72 | COMPARAÇÃO ENTRE MÉTODOS PARA DETERMINAÇÃO DE CARGAS ATÔMICAS EM SISTEMAS MOLECU<br>A MOLÉCULA N-{N-(PTERINA-7-IL)CARBONILGLICIL}-L-TIROSINA (NNPT). Quimica Nova, 2020, , .                                                    | LARES: | 2         |

5

ITAMAR BORGES

| #  | Article                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Nonradiative relaxation mechanisms of the elusive silole molecule. Physical Chemistry Chemical Physics, 2021, 23, 26561-26574.                                                                                                                                 | 2.8 | 2         |
| 74 | An ab initio study of the structure and methyl rotational barriers of methylphosphonic dihalides.<br>Computational and Theoretical Chemistry, 2005, 718, 105-109.                                                                                              | 1.5 | 1         |
| 75 | On the interaction of two conical intersections: the H6 system. Chemical Physics Letters, 2000, 331, 285-289.                                                                                                                                                  | 2.6 | Ο         |
| 76 | Prioritization of potential agreements between science, technology and innovation institutions:<br>Prospective analysis for sorting countries according to interest areas of Brazilian army from the<br>scientific and technological perspectives. , 2017, , . |     | 0         |
| 77 | Resenha do Livro "Neither Physics nor Chemistry: a History of Quantum Chemistry". Revista Virtual De<br>Quimica, 2012, 4, .                                                                                                                                    | 0.4 | 0         |
| 78 | Photoionization Spectra and Ionization Potentials of Energetic Molecules. Progress in Theoretical Chemistry and Physics, 2015, , 147-158.                                                                                                                      | 0.2 | 0         |