List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6458387/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plasmonic Nanoparticle Lattice Devices for White‣ight Lasing. Advanced Materials, 2023, 35, e2103262.	21.0	23
2	Long-Range Dipole–Dipole Interactions in a Plasmonic Lattice. Nano Letters, 2022, 22, 22-28.	9.1	28
3	Programmable Selfâ€Regulation with Wrinkled Hydrogels and Plasmonic Nanoparticle Lattices. Small, 2022, 18, e2103865.	10.0	10
4	M-Point Lasing in Hexagonal and Honeycomb Plasmonic Lattices. ACS Photonics, 2022, 9, 52-58.	6.6	12
5	<i>Nano Letters</i> in the Time of COVID-19. Nano Letters, 2022, 22, 1-2.	9.1	1
6	<i>Nano Letters</i> Seed Grants. Nano Letters, 2022, 22, 2163-2163.	9.1	4
7	Polariton Dynamics in Two-Dimensional Ruddlesden–Popper Perovskites Strongly Coupled with Plasmonic Lattices. ACS Nano, 2022, 16, 3917-3925.	14.6	17
8	Investigating Reaction Intermediates during the Seedless Growth of Gold Nanostars Using Electron Tomography. ACS Nano, 2022, 16, 4408-4414.	14.6	16
9	Delivery Order of Nanoconstructs Affects Intracellular Trafficking by Endosomes. Journal of the American Chemical Society, 2022, 144, 5274-5279.	13.7	4
10	Interfacial engineering of plasmonic nanoparticle metasurfaces. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	6
11	Light–Matter Interactions in Hybrid Material Metasurfaces. Chemical Reviews, 2022, 122, 15177-15203.	47.7	42
12	Ultraefficient Electrocatalytic Hydrogen Evolution from Strain-Engineered, Multilayer MoS ₂ . Nano Letters, 2022, 22, 5742-5750.	9.1	27
13	Confronting Racism in Chemistry Journals. ACS ES&T Engineering, 2021, 1, 3-5.	7.6	0
14	Confronting Racism in Chemistry Journals. ACS ES&T Water, 2021, 1, 3-5.	4.6	0
15	Plasmonic Photoelectrocatalysis in Copper–Platinum Core–Shell Nanoparticle Lattices. Nano Letters, 2021, 21, 1523-1529.	9.1	44
16	Celebrating 20 years of Nano Letters. Nano Letters, 2021, 21, 1-2.	9.1	3
17	Room-Temperature Coupling of Single Photon Emitting Quantum Dots to Localized and Delocalized Modes in a Plasmonic Nanocavity Array. ACS Photonics, 2021, 8, 576-584.	6.6	12
18	Light-Mediated Directed Placement of Different DNA Sequences on Single Gold Nanoparticles. Journal of the American Chemical Society, 2021, 143, 3671-3676.	13.7	14

#	Article	IF	CITATIONS
19	Mark Stockman: Evangelist for Plasmonics. ACS Photonics, 2021, 8, 683-698.	6.6	2
20	Identification of Brillouin Zones by In-Plane Lasing from Light-Cone Surface Lattice Resonances. ACS Nano, 2021, 15, 5567-5573.	14.6	15
21	Nanoparticle Shape Determines Dynamics of Targeting Nanoconstructs on Cell Membranes. Journal of the American Chemical Society, 2021, 143, 4550-4555.	13.7	50
22	Spontaneous Formation of Ordered Magnetic Domains by Patterning Stress. Nano Letters, 2021, 21, 5430-5437.	9.1	22
23	Ultrafast Spectroscopy of Plasmonic Titanium Nitride Nanoparticle Lattices. ACS Photonics, 2021, 8, 1556-1561.	6.6	17
24	Curvature-dependent Organic Ligand Binding on Gold Nanostars Revealed by Quantitative EELS Spectral Imaging. Microscopy and Microanalysis, 2021, 27, 3320-3322.	0.4	1
25	Surface Normal Lasing from CdSe Nanoplatelets Coupled to Aluminum Plasmonic Nanoparticle Lattices. Journal of Physical Chemistry C, 2021, 125, 19874-19879.	3.1	12
26	Strong Coupling Between Plasmons and Molecular Excitons in Metal–Organic Frameworks. Nano Letters, 2021, 21, 7775-7780.	9.1	21
27	Gold Nanoparticle Templating Increases the Catalytic Rate of an Amylase, Maltase, and Glucokinase Multienzyme Cascade through Substrate Channeling Independent of Surface Curvature. ACS Catalysis, 2021, 11, 627-638.	11.2	19
28	Soft Skin Layers Enable Area-Specific, Multiscale Graphene Wrinkles with Switchable Orientations. ACS Nano, 2020, 14, 166-174.	14.6	34
29	Strain-Dependent Nanowrinkle Confinement of Block Copolymers. Nano Letters, 2020, 20, 1433-1439.	9.1	6
30	Nano Letters 2020. Nano Letters, 2020, 20, 1-1.	9.1	3
31	Room-temperature continuous-wave upconverting micro- and nanolasing for bio-optofluidics. EPJ Web of Conferences, 2020, 238, 07005.	0.3	0
32	Confronting Racism in Chemistry Journals. ACS Pharmacology and Translational Science, 2020, 3, 559-561.	4.9	0
33	Confronting Racism in Chemistry Journals. Biochemistry, 2020, 59, 2313-2315.	2.5	0
34	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Biomaterials Science and Engineering, 2020, 6, 2707-2708.	5.2	0
35	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Central Science, 2020, 6, 589-590.	11.3	0
36	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Biology, 2020, 15, 1282-1283.	3.4	0

#	Article	IF	CITATIONS
37	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Neuroscience, 2020, 11, 1196-1197.	3.5	0
38	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Earth and Space Chemistry, 2020, 4, 672-673.	2.7	0
39	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Energy Letters, 2020, 5, 1610-1611.	17.4	1
40	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Macro Letters, 2020, 9, 666-667.	4.8	0
41	Update to Our Reader, Reviewer, and Author Communities—April 2020. , 2020, 2, 563-564.		Ο
42	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Nano, 2020, 14, 5151-5152.	14.6	2
43	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Photonics, 2020, 7, 1080-1081.	6.6	Ο
44	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Pharmacology and Translational Science, 2020, 3, 455-456.	4.9	0
45	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sustainable Chemistry and Engineering, 2020, 8, 6574-6575.	6.7	Ο
46	Update to Our Reader, Reviewer, and Author Communities—April 2020. Analytical Chemistry, 2020, 92, 6187-6188.	6.5	0
47	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemistry of Materials, 2020, 32, 3678-3679.	6.7	0
48	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science and Technology Letters, 2020, 7, 280-281.	8.7	1
49	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Education, 2020, 97, 1217-1218.	2.3	1
50	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Proteome Research, 2020, 19, 1883-1884.	3.7	0
51	Confronting Racism in Chemistry Journals. Langmuir, 2020, 36, 7155-7157.	3.5	Ο
52	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Polymer Materials, 2020, 2, 1739-1740.	4.4	0
53	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Combinatorial Science, 2020, 22, 223-224.	3.8	0
54	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Medicinal Chemistry Letters, 2020, 11, 1060-1061.	2.8	0

#	Article	IF	CITATIONS
55	Soft skin layers for reconfigurable and programmable nanowrinkles. Nanoscale, 2020, 12, 23920-23928.	5.6	9
56	Editorial Confronting Racism in Chemistry Journals. , 2020, 2, 829-831.		0
57	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry Letters, 2020, 11, 5279-5281.	4.6	1
58	Endosomal Organization of CpG Constructs Correlates with Enhanced Immune Activation. Nano Letters, 2020, 20, 6170-6175.	9.1	23
59	Confronting Racism in Chemistry Journals. ACS Applied Energy Materials, 2020, 3, 6016-6018.	5.1	0
60	Confronting Racism in Chemistry Journals. ACS Central Science, 2020, 6, 1012-1014.	11.3	1
61	Confronting Racism in Chemistry Journals. Industrial & Engineering Chemistry Research, 2020, 59, 11915-11917.	3.7	0
62	Confronting Racism in Chemistry Journals. Journal of Natural Products, 2020, 83, 2057-2059.	3.0	0
63	Confronting Racism in Chemistry Journals. ACS Medicinal Chemistry Letters, 2020, 11, 1354-1356.	2.8	0
64	Confronting Racism in Chemistry Journals. Journal of the American Society for Mass Spectrometry, 2020, 31, 1321-1323.	2.8	1
65	Confronting Racism in Chemistry Journals. Energy & amp; Fuels, 2020, 34, 7771-7773.	5.1	0
66	Confronting Racism in Chemistry Journals. ACS Sensors, 2020, 5, 1858-1860.	7.8	0
67	Confronting Racism in Chemistry Journals. ACS Nano, 2020, 14, 7675-7677.	14.6	2
68	Ultranarrow plasmon resonances from annealed nanoparticle lattices. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23380-23384.	7.1	80
69	Single-Nanoparticle Orientation Sensing by Deep Learning. ACS Central Science, 2020, 6, 2339-2346.	11.3	15
70	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biochemistry, 2020, 59, 1641-1642.	2.5	0
71	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical & Engineering Data, 2020, 65, 2253-2254.	1.9	0
72	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Process Research and Development, 2020, 24, 872-873.	2.7	0

#	Article	IF	CITATIONS
73	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Omega, 2020, 5, 9624-9625.	3.5	0
74	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Electronic Materials, 2020, 2, 1184-1185.	4.3	0
75	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Materials & Interfaces, 2020, 12, 20147-20148.	8.0	5
76	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry C, 2020, 124, 9629-9630.	3.1	0
77	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry Letters, 2020, 11, 3571-3572.	4.6	0
78	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Synthetic Biology, 2020, 9, 979-980.	3.8	0
79	Room Temperature Weak-to-Strong Coupling and the Emergence of Collective Emission from Quantum Dots Coupled to Plasmonic Arrays. ACS Nano, 2020, 14, 7347-7357.	14.6	47
80	Strongly Coupled Exciton–Surface Lattice Resonances Engineer Long-Range Energy Propagation. Nano Letters, 2020, 20, 5043-5049.	9.1	30
81	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Energy Materials, 2020, 3, 4091-4092.	5.1	0
82	Challenges and Opportunities in Designing Perovskite Nanocrystal Heterostructures. ACS Energy Letters, 2020, 5, 2253-2255.	17.4	39
83	Confronting Racism in Chemistry Journals. Journal of Chemical Theory and Computation, 2020, 16, 4003-4005.	5.3	0
84	Confronting Racism in Chemistry Journals. Journal of Organic Chemistry, 2020, 85, 8297-8299.	3.2	0
85	Confronting Racism in Chemistry Journals. Analytical Chemistry, 2020, 92, 8625-8627.	6.5	0
86	Confronting Racism in Chemistry Journals. Journal of Chemical Education, 2020, 97, 1695-1697.	2.3	0
87	Confronting Racism in Chemistry Journals. Organic Process Research and Development, 2020, 24, 1215-1217.	2.7	0
88	Confronting Racism in Chemistry Journals. ACS Sustainable Chemistry and Engineering, 2020, 8, .	6.7	0
89	Confronting Racism in Chemistry Journals. Chemistry of Materials, 2020, 32, 5369-5371.	6.7	0
90	Confronting Racism in Chemistry Journals. Chemical Research in Toxicology, 2020, 33, 1511-1513.	3.3	0

#	Article	IF	CITATIONS
91	Confronting Racism in Chemistry Journals. Inorganic Chemistry, 2020, 59, 8639-8641.	4.0	Ο
92	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133.	5.0	0
93	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498.	4.4	Ο
94	Confronting Racism in Chemistry Journals. ACS Chemical Biology, 2020, 15, 1719-1721.	3.4	0
95	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Theory and Computation, 2020, 16, 2881-2882.	5.3	0
96	Confronting Racism in Chemistry Journals. Organic Letters, 2020, 22, 4919-4921.	4.6	4
97	Confronting Racism in Chemistry Journals. ACS Applied Materials & Interfaces, 2020, 12, 28925-28927.	8.0	13
98	Confronting Racism in Chemistry Journals. Crystal Growth and Design, 2020, 20, 4201-4203.	3.0	1
99	Confronting Racism in Chemistry Journals. Chemical Reviews, 2020, 120, 5795-5797.	47.7	2
100	Confronting Racism in Chemistry Journals. ACS Catalysis, 2020, 10, 7307-7309.	11.2	1
101	Confronting Racism in Chemistry Journals. Biomacromolecules, 2020, 21, 2543-2545.	5.4	Ο
102	Confronting Racism in Chemistry Journals. Journal of Medicinal Chemistry, 2020, 63, 6575-6577.	6.4	0
103	Confronting Racism in Chemistry Journals. Macromolecules, 2020, 53, 5015-5017.	4.8	Ο
104	Confronting Racism in Chemistry Journals. Nano Letters, 2020, 20, 4715-4717.	9.1	5
105	Confronting Racism in Chemistry Journals. Organometallics, 2020, 39, 2331-2333.	2.3	Ο
106	Confronting Racism in Chemistry Journals. Journal of the American Chemical Society, 2020, 142, 11319-11321.	13.7	1
107	Plasmonic nanostar photocathodes for optically-controlled directional currents. Nature Communications, 2020, 11, 1367.	12.8	32
108	Confronting Racism in Chemistry Journals. Accounts of Chemical Research, 2020, 53, 1257-1259.	15.6	0

#	Article	IF	CITATIONS
109	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry A, 2020, 124, 5271-5273.	2.5	Ο
110	Confronting Racism in Chemistry Journals. ACS Energy Letters, 2020, 5, 2291-2293.	17.4	0
111	Confronting Racism in Chemistry Journals. Journal of Chemical Information and Modeling, 2020, 60, 3325-3327.	5.4	0
112	Confronting Racism in Chemistry Journals. Journal of Proteome Research, 2020, 19, 2911-2913.	3.7	0
113	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry B, 2020, 124, 5335-5337.	2.6	1
114	Creation of Single-Photon Emitters in WSe ₂ Monolayers Using Nanometer-Sized Gold Tips. Nano Letters, 2020, 20, 5866-5872.	9.1	33
115	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Agricultural and Food Chemistry, 2020, 68, 5019-5020.	5.2	0
116	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry B, 2020, 124, 3603-3604.	2.6	0
117	Confronting Racism in Chemistry Journals. Bioconjugate Chemistry, 2020, 31, 1693-1695.	3.6	Ο
118	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Nano Materials, 2020, 3, 3960-3961.	5.0	0
119	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Natural Products, 2020, 83, 1357-1358.	3.0	0
120	Confronting Racism in Chemistry Journals. ACS Synthetic Biology, 2020, 9, 1487-1489.	3.8	0
121	Confronting Racism in Chemistry Journals. Journal of Chemical & Engineering Data, 2020, 65, 3403-3405.	1.9	0
122	Update to Our Reader, Reviewer, and Author Communities—April 2020. Bioconjugate Chemistry, 2020, 31, 1211-1212.	3.6	0
123	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Health and Safety, 2020, 27, 133-134.	2.1	0
124	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Research in Toxicology, 2020, 33, 1509-1510.	3.3	0
125	Update to Our Reader, Reviewer, and Author Communities—April 2020. Energy & Fuels, 2020, 34, 5107-5108.	5.1	0
126	Thermalâ€Disrupting Interface Mitigates Intercellular Cohesion Loss for Accurate Topical Antibacterial Therapy. Advanced Materials, 2020, 32, e1907030.	21.0	75

#	Article	IF	CITATIONS
127	Lasing from Finite Plasmonic Nanoparticle Lattices. ACS Photonics, 2020, 7, 630-636.	6.6	37
128	Quantum Dot-Plasmon Lasing with Controlled Polarization Patterns. ACS Nano, 2020, 14, 3426-3433.	14.6	66
129	Engineering Directionality in Quantum Dot Shell Lasing Using Plasmonic Lattices. Nano Letters, 2020, 20, 1468-1474.	9.1	48
130	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Bio Materials, 2020, 3, 2873-2874.	4.6	0
131	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Organic Chemistry, 2020, 85, 5751-5752.	3.2	0
132	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Society for Mass Spectrometry, 2020, 31, 1006-1007.	2.8	0
133	Update to Our Reader, Reviewer, and Author Communities—April 2020. Accounts of Chemical Research, 2020, 53, 1001-1002.	15.6	0
134	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biomacromolecules, 2020, 21, 1966-1967.	5.4	0
135	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Reviews, 2020, 120, 3939-3940.	47.7	0
136	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science & Technology, 2020, 54, 5307-5308.	10.0	0
137	Update to Our Reader, Reviewer, and Author Communities—April 2020. Langmuir, 2020, 36, 4565-4566.	3.5	Ο
138	Update to Our Reader, Reviewer, and Author Communities—April 2020. Molecular Pharmaceutics, 2020, 17, 1445-1446.	4.6	0
139	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Infectious Diseases, 2020, 6, 891-892.	3.8	0
140	Update to Our Reader, Reviewer, and Author Communities—April 2020. Crystal Growth and Design, 2020, 20, 2817-2818.	3.0	1
141	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Medicinal Chemistry, 2020, 63, 4409-4410.	6.4	0
142	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry A, 2020, 124, 3501-3502.	2.5	0
143	Update to Our Reader, Reviewer, and Author Communities—April 2020. Nano Letters, 2020, 20, 2935-2936.	9.1	0
144	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sensors, 2020, 5, 1251-1252.	7.8	0

#	Article	IF	CITATIONS
145	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Information and Modeling, 2020, 60, 2651-2652.	5.4	Ο
146	Update to Our Reader, Reviewer, and Author Communities—April 2020. Industrial & Engineering Chemistry Research, 2020, 59, 8509-8510.	3.7	0
147	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Chemical Society, 2020, 142, 8059-8060.	13.7	3
148	Update to Our Reader, Reviewer, and Author Communities—April 2020. Inorganic Chemistry, 2020, 59, 5796-5797.	4.0	0
149	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organometallics, 2020, 39, 1665-1666.	2.3	0
150	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Letters, 2020, 22, 3307-3308.	4.6	0
151	Confronting Racism in Chemistry Journals. ACS Biomaterials Science and Engineering, 2020, 6, 3690-3692.	5.2	1
152	Confronting Racism in Chemistry Journals. ACS Omega, 2020, 5, 14857-14859.	3.5	1
153	Confronting Racism in Chemistry Journals. ACS Applied Electronic Materials, 2020, 2, 1774-1776.	4.3	0
154	Confronting Racism in Chemistry Journals. Journal of Agricultural and Food Chemistry, 2020, 68, 6941-6943.	5.2	0
155	Confronting Racism in Chemistry Journals. ACS Earth and Space Chemistry, 2020, 4, 961-963.	2.7	0
156	Confronting Racism in Chemistry Journals. Environmental Science and Technology Letters, 2020, 7, 447-449.	8.7	0
157	Confronting Racism in Chemistry Journals. ACS Combinatorial Science, 2020, 22, 327-329.	3.8	0
158	Confronting Racism in Chemistry Journals. ACS Infectious Diseases, 2020, 6, 1529-1531.	3.8	0
159	Confronting Racism in Chemistry Journals. ACS Applied Bio Materials, 2020, 3, 3925-3927.	4.6	0
160	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry C, 2020, 124, 14069-14071.	3.1	0
161	Confronting Racism in Chemistry Journals. ACS Macro Letters, 2020, 9, 1004-1006.	4.8	0
162	Confronting Racism in Chemistry Journals. Molecular Pharmaceutics, 2020, 17, 2229-2231.	4.6	1

#	Article	IF	CITATIONS
163	Confronting Racism in Chemistry Journals. ACS Chemical Neuroscience, 2020, 11, 1852-1854.	3.5	1
164	Confronting Racism in Chemistry Journals. ACS Photonics, 2020, 7, 1586-1588.	6.6	0
165	Confronting Racism in Chemistry Journals. Environmental Science & Technology, 2020, 54, 7735-7737.	10.0	0
166	Confronting Racism in Chemistry Journals. Journal of Chemical Health and Safety, 2020, 27, 198-200.	2.1	0
167	Hierarchical Hybridization in Plasmonic Honeycomb Lattices. Nano Letters, 2019, 19, 6435-6441.	9.1	47
168	Resolving Single-Nanoconstruct Dynamics during Targeting and Nontargeting Live-Cell Membrane Interactions. ACS Nano, 2019, 13, 13637-13644.	14.6	11
169	Engineering Symmetryâ€Breaking Nanocrescent Arrays for Nanolasing. Advanced Functional Materials, 2019, 29, 1904157.	14.9	34
170	Using Good's Buffers To Control the Anisotropic Structure and Optical Properties of Spiky Gold Nanoparticles for Refractive Index Sensing. ACS Applied Nano Materials, 2019, 2, 5266-5271.	5.0	43
171	Graphene Wrinkles Enable Spatially Defined Chemistry. Nano Letters, 2019, 19, 5640-5646.	9.1	39
172	Massively Parallel Nanoparticle Synthesis in Anisotropic Nanoreactors. ACS Nano, 2019, 13, 12408-12414.	14.6	12
173	Manipulating Light–Matter Interactions in Plasmonic Nanoparticle Lattices. Accounts of Chemical Research, 2019, 52, 2997-3007.	15.6	76
174	Enhanced Fields in Mirror-Backed Low-Index Dielectric Structures. ACS Photonics, 2019, 6, 2612-2617.	6.6	17
175	Tunable Lattice Plasmon Resonances in 1D Nanogratings. ACS Photonics, 2019, 6, 322-326.	6.6	44
176	Manipulating Immune Activation of Macrophages by Tuning the Oligonucleotide Composition of Gold Nanoparticles. Bioconjugate Chemistry, 2019, 30, 2032-2037.	3.6	36
177	Ultrafast Dynamics of Lattice Plasmon Lasers. Journal of Physical Chemistry Letters, 2019, 10, 3301-3306.	4.6	22
178	Designing Hierarchical Nanostructures from Conformable and Deformable Thin Materials. ACS Nano, 2019, 13, 6170-6177.	14.6	31
179	Lattice-Resonance Metalenses for Fully Reconfigurable Imaging. ACS Nano, 2019, 13, 4613-4620.	14.6	55
180	Spatially defined molecular emitters coupled to plasmonic nanoparticle arrays. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5925-5930.	7.1	24

#	Article	IF	CITATIONS
181	Label Free Particle-by-Particle Quantification of DNA Loading on Sorted Gold Nanostars. Analytical Chemistry, 2019, 91, 5566-5572.	6.5	16
182	Polarization-Dependent Lasing Behavior from Low-Symmetry Nanocavity Arrays. ACS Nano, 2019, 13, 7435-7441.	14.6	45
183	Ultralow-threshold, continuous-wave upconverting lasing from subwavelength plasmons. Nature Materials, 2019, 18, 1172-1176.	27.5	160
184	Second Harmonic Spectroscopy of Surface Lattice Resonances. Nano Letters, 2019, 19, 165-172.	9.1	73
185	Plasmon nanolasing with aluminum nanoparticle arrays [Invited]. Journal of the Optical Society of America B: Optical Physics, 2019, 36, E104.	2.1	28
186	Detecting and Visualizing Reaction Intermediates of Anisotropic Nanoparticle Growth. Journal of the American Chemical Society, 2018, 140, 3219-3222.	13.7	16
187	Roadmap on plasmonics. Journal of Optics (United Kingdom), 2018, 20, 043001.	2.2	240
188	Correlating Nanoscopic Energy Transfer and Far-Field Emission to Unravel Lasing Dynamics in Plasmonic Nanocavity Arrays. Nano Letters, 2018, 18, 1454-1459.	9.1	28
189	The rich photonic world of plasmonic nanoparticle arrays. Materials Today, 2018, 21, 303-314.	14.2	326
190	Structural Engineering in Plasmon Nanolasers. Chemical Reviews, 2018, 118, 2865-2881.	47.7	130
191	Universal Method for Creating Hierarchical Wrinkles on Thin-Film Surfaces. ACS Applied Materials & Interfaces, 2018, 10, 1347-1355.	8.0	49
192	Mechanics Modeling of Hierarchical Wrinkle Structures from the Sequential Release of Prestrain. Langmuir, 2018, 34, 15749-15753.	3.5	15
193	Wavelength-Dependent Differential Interference Contrast Inversion of Anisotropic Gold Nanoparticles. Journal of Physical Chemistry C, 2018, 122, 27024-27031.	3.1	14
194	<i>In Situ</i> Identification of Nanoparticle Structural Information Using Optical Microscopy. Journal of Physical Chemistry Letters, 2018, 9, 2886-2892.	4.6	16
195	Monolithic Polymer Nanoridges with Programmable Wetting Transitions. Advanced Materials, 2018, 30, e1706657.	21.0	45
196	Smaller CpG-Conjugated Gold Nanoconstructs Achieve Higher Targeting Specificity of Immune Activation. ACS Applied Materials & amp; Interfaces, 2018, 10, 21920-21926.	8.0	54
197	Stretchable Nanolasing from Hybrid Quadrupole Plasmons. Nano Letters, 2018, 18, 4549-4555.	9.1	102
198	Evolutionary Design and Prototyping of Single Crystalline Titanium Nitride Lattice Optics. ACS Photonics, 2017, 4, 606-612.	6.6	40

#	Article	IF	CITATIONS
199	Coherent Light Sources at the Nanoscale. Annual Review of Physical Chemistry, 2017, 68, 83-99.	10.8	31
200	Wrinkles in Polytetrafluoroethylene on Polystyrene: Persistence Lengths and the Effect of Nanoinclusions. ACS Applied Materials & amp; Interfaces, 2017, 9, 9079-9088.	8.0	14
201	Nanoscience and Nanotechnology Cross Borders. ACS Nano, 2017, 11, 1123-1126.	14.6	4
202	Crackâ€Free, Soft Wrinkles Enable Switchable Anisotropic Wetting. Angewandte Chemie, 2017, 129, 6623-6627.	2.0	11
203	Characterization and Design of Functional Quasi-Random Nanostructured Materials Using Spectral Density Function. Journal of Mechanical Design, Transactions of the ASME, 2017, 139, .	2.9	36
204	Crackâ€Free, Soft Wrinkles Enable Switchable Anisotropic Wetting. Angewandte Chemie - International Edition, 2017, 56, 6523-6527.	13.8	61
205	Cold Nanoparticle Size and Shape Effects on Cellular Uptake and Intracellular Distribution of siRNA Nanoconstructs. Bioconjugate Chemistry, 2017, 28, 1791-1800.	3.6	119
206	Deterministic Coupling of Quantum Emitters in 2D Materials to Plasmonic Nanocavity Arrays. Nano Letters, 2017, 17, 2634-2639.	9.1	163
207	Millimeter-Scale Spatial Coherence from a Plasmon Laser. Nano Letters, 2017, 17, 6690-6695.	9.1	40
208	Separation of Stabilized MOPS Gold Nanostars by Density Gradient Centrifugation. ACS Omega, 2017, 2, 4878-4884.	3.5	29
209	Sequential Feature-Density Doubling for Ultraviolet Plasmonics. ACS Applied Materials & Interfaces, 2017, 9, 33554-33558.	8.0	1
210	Micro- and nano-patterned elastin-like polypeptide hydrogels for stem cell culture. Soft Matter, 2017, 13, 5665-5675.	2.7	23
211	Concurrent design of quasi-random photonic nanostructures. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8734-8739.	7.1	54
212	Model for describing plasmonic nanolasers using Maxwell-Liouville equations with finite-difference time-domain calculations. Physical Review A, 2017, 96, .	2.5	13
213	Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices. Nature Nanotechnology, 2017, 12, 889-894.	31.5	167
214	Programmable and reversible plasmon mode engineering. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14201-14206.	7.1	129
215	Stretchable Superhydrophobicity from Monolithic, Three-Dimensional Hierarchical Wrinkles. Nano Letters, 2016, 16, 3774-3779.	9.1	127
216	Manipulating the Anisotropic Structure of Gold Nanostars using Good's Buffers. Chemistry of Materials, 2016, 28, 6763-6769.	6.7	105

#	Article	IF	CITATIONS
217	Multiscale, Hierarchical Patterning of Graphene by Conformal Wrinkling. Nano Letters, 2016, 16, 7121-7127.	9.1	96
218	Shape-Dependent Relaxivity of Nanoparticle-Based <i>T</i> ₁ Magnetic Resonance Imaging Contrast Agents. Journal of Physical Chemistry C, 2016, 120, 22103-22109.	3.1	33
219	Interfacial Effects on Nanoscale Wrinkling in Gold-Covered Polystyrene. ACS Applied Materials & Interfaces, 2016, 8, 24339-24344.	8.0	17
220	Plasmonic Lattice Lenses for Multiwavelength Achromatic Focusing. ACS Nano, 2016, 10, 10275-10282.	14.6	80
221	Shrinkable and Stretchable Nanomanufacturing. , 2016, , 3652-3659.		0
222	Controlling ligand density on nanoparticles as a means to enhance biological activity. Nanomedicine, 2015, 10, 177-180.	3.3	12
223	Breakthroughs in Photonics 2014: Advances in Plasmonic Nanolasers. IEEE Photonics Journal, 2015, 7, 1-6.	2.0	14
224	Tunable Loading of Oligonucleotides with Secondary Structure on Gold Nanoparticles through a pH-Driven Method. Bioconjugate Chemistry, 2015, 26, 279-285.	3.6	26
225	Controlled Three-Dimensional Hierarchical Structuring by Memory-Based, Sequential Wrinkling. Nano Letters, 2015, 15, 5624-5629.	9.1	111
226	Real-time tunable lasing from plasmonic nanocavity arrays. Nature Communications, 2015, 6, 6939.	12.8	356
227	High Relaxivity Gd(III)–DNA Gold Nanostars: Investigation of Shape Effects on Proton Relaxation. ACS Nano, 2015, 9, 3385-3396.	14.6	108
228	Unidirectional Lasing from Template-Stripped Two-Dimensional Plasmonic Crystals. ACS Nano, 2015, 9, 11582-11588.	14.6	95
229	Enhanced Human Epidermal Growth Factor Receptor 2 Degradation in Breast Cancer Cells by Lysosome-Targeting Gold Nanoconstructs. ACS Nano, 2015, 9, 9859-9867.	14.6	98
230	Shape-Dependent Nonlinear Optical Properties of Anisotropic Gold Nanoparticles. Journal of Physical Chemistry Letters, 2015, 6, 4904-4908.	4.6	108
231	Superlattice Plasmons in Hierarchical Au Nanoparticle Arrays. ACS Photonics, 2015, 2, 1789-1794.	6.6	80
232	Biodistribution and in vivo toxicity of aptamer-loaded gold nanostars. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 671-679.	3.3	70
233	Subwavelength Lattice Optics by Evolutionary Design. Nano Letters, 2014, 14, 7195-7200.	9.1	73
234	Directed Growth of Electroactive Metalâ€Organic Framework Thin Films Using Electrophoretic Deposition. Advanced Materials, 2014, 26, 6295-6300.	21.0	265

#	Article	IF	CITATIONS
235	Improved in Vitro Efficacy of Gold Nanoconstructs by Increased Loading of G-quadruplex Aptamer. Nano Letters, 2014, 14, 2843-2848.	9.1	87
236	Hetero-oligomer Nanoparticle Arrays for Plasmon-Enhanced Hydrogen Sensing. ACS Nano, 2014, 8, 7639-7647.	14.6	60
237	Plasmonic–Photonic Mode Coupling in Indium-Tin-Oxide Nanorod Arrays. ACS Photonics, 2014, 1, 163-172.	6.6	37
238	Controlling the Orientation of Nanowrinkles and Nanofolds by Patterning Strain in a Thin Skin Layer on a Polymer Substrate. Angewandte Chemie - International Edition, 2014, 53, 8117-8121.	13.8	41
239	Grafting Aptamers onto Gold Nanostars Increases <i>in Vitro</i> Efficacy in a Wide Range of Cancer Cell Types. Molecular Pharmaceutics, 2014, 11, 580-587.	4.6	78
240	Nonlinear properties of nanoscale antennas. Nano Today, 2013, 8, 469-479.	11.9	37
241	Quasiperiodic Moiré Plasmonic Crystals. ACS Nano, 2013, 7, 11035-11042.	14.6	32
242	The same, but better. Nature, 2013, 496, 40-41.	27.8	0
243	Nanopatterned Substrates Increase Surface Sensitivity for Real-Time Biosensing. Journal of Physical Chemistry C, 2013, 117, 5286-5292.	3.1	16
244	Lasing action in strongly coupled plasmonic nanocavity arrays. Nature Nanotechnology, 2013, 8, 506-511.	31.5	657
245	Polymer Nanowrinkles with Continuously Tunable Wavelengths. ACS Applied Materials & Interfaces, 2013, 5, 6438-6442.	8.0	75
246	Hybridization of Localized and Guided Modes in 2D Metal–Insulator–Metal Nanocavity Arrays. Journal of Physical Chemistry C, 2013, 117, 2541-2546.	3.1	44
247	Talbot effect beyond the paraxial limit at optical frequencies. Optics Express, 2012, 20, 14284.	3.4	35
248	Research Spotlight: Shining light on nuclear-targeted therapy using gold nanostar constructs. Therapeutic Delivery, 2012, 3, 1263-1267.	2.2	22
249	Polarization-Dependent Multipolar Plasmon Resonances in Anisotropic Multiscale Au Particles. ACS Nano, 2012, 6, 1786-1794.	14.6	29
250	Eutectic Liquid Alloys for Plasmonics: Theory and Experiment. Nano Letters, 2012, 12, 5275-5280.	9.1	38
251	Liquid Plasmonics: Manipulating Surface Plasmon Polaritons via Phase Transitions. Nano Letters, 2012, 12, 4324-4328.	9.1	64
252	High-Rotational Symmetry Lattices Fabricated by Moiré Nanolithography. Nano Letters, 2012, 12, 4948-4952.	9.1	50

#	Article	IF	CITATIONS
253	Extraordinary Nonlinear Absorption in 3D Bowtie Nanoantennas. Nano Letters, 2012, 12, 269-274.	9.1	54
254	Plasmonic Bowtie Nanolaser Arrays. Nano Letters, 2012, 12, 5769-5774.	9.1	232
255	Direct Observation of Nanoparticle–Cancer Cell Nucleus Interactions. ACS Nano, 2012, 6, 3318-3326.	14.6	251
256	Multiscale Plasmonic Nanoparticles and the Inverse Problem. Journal of Physical Chemistry Letters, 2012, 3, 2611-2616.	4.6	8
257	Delocalized Lattice Plasmon Resonances Show Dispersive Quality Factors. Journal of Physical Chemistry Letters, 2012, 3, 1381-1385.	4.6	53
258	Printable stained glass. Nature Nanotechnology, 2012, 7, 550-551.	31.5	10
259	Nanoparticle SERS substrates with 3D Raman-active volumes. Chemical Science, 2011, 2, 1435.	7.4	68
260	Infrared Plasmonics with Indium–Tin-Oxide Nanorod Arrays. ACS Nano, 2011, 5, 9161-9170.	14.6	140
261	Programmable Soft Lithography: Solvent-Assisted Nanoscale Embossing. Nano Letters, 2011, 11, 311-315.	9.1	145
262	Three-Channel Spectrometer for Wide-Field Imaging of Anisotropic Plasmonic Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 15933-15937.	3.1	8
263	Chemistry in Microfluidic Channels. Journal of Chemical Education, 2011, 88, 461-464.	2.3	29
264	Tunable subradiant lattice plasmons by out-of-plane dipolar interactions. Nature Nanotechnology, 2011, 6, 423-427.	31.5	354
265	Introduction to Plasmonics. Chemical Reviews, 2011, 111, 3667-3668.	47.7	130
266	Optical Properties of Tipless Gold Nanopyramids. Small, 2011, 7, 2032-2036.	10.0	15
267	A Portable, Benchtop Photolithography System Based on a Solid‣tate Light Source. Small, 2011, 7, 3144-3147.	10.0	35
268	SURFACE PLASMON BIOSENSING WITH 3D PLASMONIC CRYSTALS. World Scientific Series in Nanoscience and Nanotechnology, 2011, , 231-253.	0.1	0
269	Benchtop Nanoscale Patterning Experiments. ACS Symposium Series, 2010, , 177-188.	0.5	0
270	Plasmonic Crystals: A Platform to Catalog Resonances from Ultraviolet to Nearâ€Infrared Wavelengths in a Plasmonic Library. Advanced Functional Materials, 2010, 20, 529-539.	14.9	58

#	Article	IF	CITATIONS
271	Largeâ€Area Nanocontact Printing with Metallic Nanostencil Masks. Angewandte Chemie - International Edition, 2010, 49, 3057-3060.	13.8	25
272	Synthesis of TaS ₂ Nanotubes From Ta ₂ O ₅ Nanotube Templates. Small, 2010, 6, 1096-1099.	10.0	15
273	Materials Screening and Applications of Plasmonic Crystals. MRS Bulletin, 2010, 35, 66-73.	3.5	6
274	Enhanced Optical Transmission Mediated by Localized Plasmons in Anisotropic, Three-Dimensional Nanohole Arrays. Nano Letters, 2010, 10, 3173-3178.	9.1	70
275	Broadband Plasmonic Microlenses Based on Patches of Nanoholes. Nano Letters, 2010, 10, 4111-4116.	9.1	120
276	Optical Properties of Nested Pyramidal Nanoshells. Journal of Physical Chemistry C, 2010, 114, 7432-7435.	3.1	7
277	Screening Nanopyramid Assemblies to Optimize Surface Enhanced Raman Scattering. Journal of Physical Chemistry Letters, 2010, 1, 1046-1050.	4.6	34
278	Using the Angle-Dependent Resonances of Molded Plasmonic Crystals To Improve the Sensitivities of Biosensors. Nano Letters, 2010, 10, 2549-2554.	9.1	78
279	Toward Broadband Plasmonics: Tuning Dispersion in Rhombic Plasmonic Crystals. ACS Nano, 2010, 4, 1241-1247.	14.6	30
280	Modelling of surface plasmon polaritons in a 2D superlattice. , 2009, , .		0
281	Plasmonic superlattices: Hierarchical subwavelength hole arrays. Chemical Physics Letters, 2009, 483, 187-192.	2.6	30
282	Nanofabrication of Plasmonic Structures. Annual Review of Physical Chemistry, 2009, 60, 147-165.	10.8	270
283	Confining Standing Waves in Optical Corrals. ACS Nano, 2009, 3, 615-620.	14.6	66
284	Size Control of Arsenic Trioxide Nanocrystals Grown in Nanowells. Journal of the American Chemical Society, 2009, 131, 10863-10865.	13.7	10
285	Structural control of anodized tantalum oxide nanotubes. Journal of Materials Chemistry, 2009, 19, 4896.	6.7	32
286	Rayleigh anomaly-surface plasmon polariton resonances in palladium and gold subwavelength hole arrays. Optics Express, 2009, 17, 2334.	3.4	159
287	Optical Properties of Anisotropic Coreâ^'Shell Pyramidal Particles. Journal of Physical Chemistry A, 2009, 113, 4265-4268.	2.5	11
288	Tuning the Thickness and Orientation of Single Au Pyramids for Improved Refractive Index Sensitivities. Journal of Physical Chemistry C, 2009, 113, 2205-2207.	3.1	26

#	Article	IF	CITATIONS
289	Refractive Index Sensing Using Quasi One-Dimensional Nanoslit Arrays. Nano Letters, 2009, 9, 2584-2588.	9.1	60
290	Solid-state chemistry on a surface and in a beaker: Unconventional routes to transition metal chalcogenide nanomaterials. Journal of Solid State Chemistry, 2008, 181, 1621-1627.	2.9	17
291	Pyramids: A Platform for Designing Multifunctional Plasmonic Particles. Accounts of Chemical Research, 2008, 41, 1762-1771.	15.6	55
292	Nanoscience. Accounts of Chemical Research, 2008, 41, 1565-1565.	15.6	22
293	Optical Properties of Gold Pyramidal Shells. Journal of Physical Chemistry C, 2008, 112, 6662-6666.	3.1	32
294	Shape-Control of Protein Crystals in Patterned Microwells. Journal of the American Chemical Society, 2008, 130, 2142-2143.	13.7	29
295	How Gold Nanoparticles Have Stayed in the Light: The 3M's Principle. ACS Nano, 2008, 2, 612-616.	14.6	62
296	Screening plasmonic materials using pyramidal gratings. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20146-20151.	7.1	88
297	Multiscale Fabrication and Properties of Photonic Nanostructures. , 2008, , .		0
298	Tailoring the sensing capabilities of nanohole arrays in gold films with Rayleigh anomaly-surface plasmon polaritons. Optics Express, 2007, 15, 18119.	3.4	179
299	Chemical nanofabrication: a general route to surface-patterned and free-standing transition metal chalcogenide nanostructures. Journal of Materials Chemistry, 2007, 17, 1866.	6.7	17
300	Benchtop Nanoscale Patterning Using Soft Lithography. Journal of Chemical Education, 2007, 84, 1795.	2.3	34
301	Selective Functionalization and Spectral Identification of Gold Nanopyramids. Journal of Physical Chemistry C, 2007, 111, 17176-17179.	3.1	20
302	Addressable, Large-Area Nanoscale Organic Light-Emitting Diodes. Small, 2007, 3, 372-374.	10.0	27
303	Microscale Arrays of Nanoscale Holes. Small, 2007, 3, 2029-2033.	10.0	26
304	Multiscale patterning of plasmonic metamaterials. Nature Nanotechnology, 2007, 2, 549-554.	31.5	557
305	Large-Area Nanoscale Patterning:  Chemistry Meets Fabrication. Accounts of Chemical Research, 2006, 39, 249-257.	15.6	211
306	Tetrahedral Zinc Blende Tin Sulfide Nano- and Microcrystals. Small, 2006, 2, 368-371.	10.0	174

#	Article	IF	CITATIONS
307	Direct Evidence for Surface Plasmon-Mediated Enhanced Light Transmission through Metallic Nanohole Arrays. Nano Letters, 2006, 6, 2104-2108.	9.1	251
308	Manipulating the Optical Properties of Pyramidal Nanoparticle Arrays. Journal of Physical Chemistry B, 2006, 110, 14028-14031.	2.6	40
309	Local photocurrent mapping as a probe of contact effects and charge carrier transport in semiconductor nanowire devices. Journal of Vacuum Science & Technology B, 2006, 24, 2172.	1.3	36
310	Measurement of Minority Carrier Diffusion Lengths in Semiconductor Nanowires. , 2006, , .		1
311	Surface Plasmon Standing Waves in Large-Area Subwavelength Hole Arrays. Nano Letters, 2005, 5, 1963-1967.	9.1	100
312	Patterned MoS2 Nanostructures Over Centimeter-Square Areas. Advanced Materials, 2005, 17, 2837-2841.	21.0	36
313	Near-field scanning photocurrent microscopy of a nanowire photodetector. Applied Physics Letters, 2005, 87, 043111.	3.3	196
314	Mesoscale Metallic Pyramids with Nanoscale Tips. Nano Letters, 2005, 5, 1199-1202.	9.1	75
315	Composite ferromagnetic photoresist for the fabrication of microelectromechanical systems. Journal of Micromechanics and Microengineering, 2005, 15, 29-34.	2.6	113
316	Optical properties of surface-patterned nanostructures. Talanta, 2005, 67, 507-513.	5.5	8
317	Synthesis of Nanoscale NbSe2Materials from Molecular Precursors. Journal of the American Chemical Society, 2005, 127, 2054-2055.	13.7	51
318	Directed Growth of Ordered Arrays of Small-Diameter ZnO Nanowires. Advanced Materials, 2004, 16, 1348-1352.	21.0	198
319	Mass-Limited Growth in Zeptoliter Beakers:  A General Approach for the Synthesis of Nanocrystals. Nano Letters, 2004, 4, 1525-1528.	9.1	75
320	Fabrication of Complex Three-Dimensional Microchannel Systems in PDMS. Journal of the American Chemical Society, 2003, 125, 554-559.	13.7	240
321	Connectivity of Features in Microlens Array Reduction Photolithography:  Generation of Various Patterns with a Single Photomask. Journal of the American Chemical Society, 2002, 124, 7288-7289.	13.7	42
322	Reduction Photolithography Using Microlens Arrays:Â Applications in Gray Scale Photolithography. Analytical Chemistry, 2002, 74, 3267-3273.	6.5	85
323	Improved Pattern Transfer in Soft Lithography Using Composite Stamps. Langmuir, 2002, 18, 5314-5320.	3.5	688
324	Generation of 30â^'50 nm Structures Using Easily Fabricated, Composite PDMS Masks. Journal of the American Chemical Society, 2002, 124, 12112-12113.	13.7	173

#	Article	IF	CITATIONS
325	STM studies of single-walled carbon nanotubes. Journal of Physics Condensed Matter, 2002, 14, R145-R167.	1.8	41
326	Singleâ€Walled Carbon Nanotubes. Annals of the New York Academy of Sciences, 2002, 960, 203-215.	3.8	41
327	Single-walled carbon nanotubes: from fundamental studies to new device concepts. Annals of the New York Academy of Sciences, 2002, 960, 203-15.	3.8	6
328	Scanning Probe Microscopy Studies of Carbon Nanotubes. , 2001, , 173-211.		32
329	STM study of single-walled carbon nanotubes. Carbon, 2000, 38, 1741-1744.	10.3	39
330	Growth and fabrication with single-walled carbon nanotube probe microscopy tips. Applied Physics Letters, 2000, 76, 3136-3138.	3.3	132
331	Magnetic Clusters on Single-Walled Carbon Nanotubes: The Kondo Effect in a One-Dimensional Host. , 2000, 290, 1549-1552.		110
332	Structure and Electronic Properties of Carbon Nanotubes. Journal of Physical Chemistry B, 2000, 104, 2794-2809.	2.6	646
333	Chemistry and Physics in One Dimension:  Synthesis and Properties of Nanowires and Nanotubes. Accounts of Chemical Research, 1999, 32, 435-445.	15.6	3,276
334	Electronic Density of States of Atomically Resolved Single-Walled Carbon Nanotubes: Van Hove Singularities and End States. Physical Review Letters, 1999, 82, 1225-1228.	7.8	343
335	Atomic structure and electronic properties of single-walled carbon nanotubes. Nature, 1998, 391, 62-64.	27.8	2,355
336	Scanning Tunneling Microscopy and Spectroscopy Studies of Single Wall Carbon Nanotubes. Journal of Materials Research, 1998, 13, 2380-2388.	2.6	48
337	Single-walled carbon nanotube probes for high-resolution nanostructure imaging. Applied Physics Letters, 1998, 73, 3465-3467.	3.3	169