Mattias Jonsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6458041/publications.pdf

Version: 2024-02-01

109321 118850 4,545 64 35 62 h-index citations g-index papers 68 68 68 4379 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A global synthesis reveals biodiversity-mediated benefits for crop production. Science Advances, 2019, 5, eaax0121.	10.3	524
2	Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7863-E7870.	7.1	401
3	When natural habitat fails to enhance biological pest control – Five hypotheses. Biological Conservation, 2016, 204, 449-458.	4.1	388
4	The effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield: a quantitative synthesis. Ecology Letters, 2020, 23, 1488-1498.	6.4	319
5	Recent advances in conservation biological control of arthropods by arthropods. Biological Control, 2008, 45, 172-175.	3.0	228
6	Flow and stability of natural pest control services depend on complexity and crop rotation at the landscape scale. Journal of Applied Ecology, 2013, 50, 345-354.	4.0	172
7	Effects of agroforestry on pest, disease and weed control: A meta-analysis. Basic and Applied Ecology, 2015, 16, 573-582.	2.7	121
8	Agroforestry delivers a win-win solution for ecosystem services in sub-Saharan Africa. A meta-analysis. Agronomy for Sustainable Development, 2019, 39, 1.	5.3	119
9	Agroforestry boosts soil health in the humid and sub-humid tropics: A meta-analysis. Agriculture, Ecosystems and Environment, 2020, 295, 106899.	5.3	114
10	Economics and adoption of conservation biological control. Biological Control, 2008, 45, 272-280.	3.0	108
11	Contribution of trees to the conservation of biodiversity and ecosystem services in agricultural landscapes. International Journal of Biodiversity Science, Ecosystem Services & Management, 2018, 14, 1-16.	2.9	106
12	When is it biological control? A framework of definitions, mechanisms, and classifications. Journal of Pest Science, 2021, 94, 665-676.	3.7	86
13	Colonization Patterns of Insects Breeding in Wood-Decaying Fungi. Journal of Insect Conservation, 1999, 3, 145-161.	1.4	85
14	Experimental evidence that the effectiveness of conservation biological control depends on landscape complexity. Journal of Applied Ecology, 2015, 52, 1274-1282.	4.0	84
15	Agricultural intensification drives landscapeâ€context effects on host–parasitoid interactions in agroecosystems. Journal of Applied Ecology, 2012, 49, 706-714.	4.0	77
16	Relationships between natural enemy diversity and biological control. Current Opinion in Insect Science, 2017, 20, 1-6.	4.4	76
17	Diet of generalist predators reflects effects of cropping period and farming system on extra―and intraguild prey. Ecological Applications, 2017, 27, 1167-1177.	3.8	74
18	Methods to identify the prey of invertebrate predators in terrestrial field studies. Ecology and Evolution, 2017, 7, 1942-1953.	1.9	74

#	Article	IF	CITATIONS
19	Habitat manipulation to mitigate the impacts of invasive arthropod pests. Biological Invasions, 2010, 12, 2933-2945.	2.4	68
20	Solution Scanning as a Key Policy Tool: Identifying Management Interventions to Help Maintain and Enhance Regulating Ecosystem Services. Ecology and Society, 2014, 19, .	2.3	66
21	Effects of an herbivore-induced plant volatile on arthropods from three trophic levels in brassicas. Biological Control, 2010, 53, 62-67.	3.0	64
22	Ecological production functions for biological control services in agricultural landscapes. Methods in Ecology and Evolution, 2014, 5, 243-252.	5.2	60
23	Colonisation ability of the threatened tenebrionid beetle Oplocephala haemorrhoidalis and its common relative Bolitophagus reticulatus. Ecological Entomology, 2003, 28, 159-167.	2.2	55
24	Cost-effectiveness of silvicultural measures to increase substrate availability for red-listed wood-living organisms in Norway spruce forests. Biological Conservation, 2006, 127, 443-462.	4.1	54
25	Implications of floral resources for predation by an omnivorous lacewing. Basic and Applied Ecology, 2008, 9, 172-181.	2.7	54
26	Modelled impact of Norway spruce logging residue extraction on biodiversity in Sweden. Canadian Journal of Forest Research, 2011, 41, 1220-1232.	1.7	52
27	Ecosystem function in predator–prey food webs—confronting dynamic models with empirical data. Journal of Animal Ecology, 2019, 88, 196-210.	2.8	52
28	High Redundancy as well as Complementary Prey Choice Characterize Generalist Predator Food Webs in Agroecosystems. Scientific Reports, 2018, 8, 8054.	3.3	51
29	Cost-efficiency of measures to increase the amount of coarse woody debris in managed Norway spruce forests. Forest Ecology and Management, 2005, 206, 119-133.	3.2	50
30	Integrated pest and pollinator management – expanding the concept. Frontiers in Ecology and the Environment, 2021, 19, 283-291.	4.0	50
31	â€~Attract and reward': Combining a herbivore-induced plant volatile with floral resource supplementation – Multi-trophic level effects. Biological Control, 2013, 64, 106-115.	3.0	48
32	Effects of landscape complexity and habitat management on stemborer colonization, parasitism and damage to maize. Agriculture, Ecosystems and Environment, 2014, 188, 289-293.	5. 3	48
33	Diagnostic PCR assays to unravel food web interactions in cereal crops with focus on biological control of aphids. Journal of Pest Science, 2016, 89, 281-293.	3.7	48
34	Habitat heterogeneity induces rapid changes in the feeding behaviour of generalist arthropod predators. Functional Ecology, 2018, 32, 809-819.	3.6	48
35	Contrasting effects of shade level and altitude on two important coffee pests. Journal of Pest Science, 2015, 88, 281-287.	3.7	44
36	Predictive power of food web models based on body size decreases with trophic complexity. Ecology Letters, 2018, 21, 702-712.	6.4	38

#	Article	IF	CITATIONS
37	The impact of floral resources and omnivory on a four trophic level food web. Bulletin of Entomological Research, 2009, 99, 275-285.	1.0	36
38	Trees in agricultural landscapes enhance provision of ecosystem services in Sub-Saharan Africa. International Journal of Biodiversity Science, Ecosystem Services & Management, 0, , 1-19.	2.9	36
39	Assessing the resilience of biodiversity-driven functions in agroecosystems under environmental change. Advances in Ecological Research, 2019, , 59-123.	2.7	32
40	Resilience of ecosystem processes: a new approach shows that functional redundancy of biological control services is reduced by landscape simplification. Ecology Letters, 2019, 22, 1568-1577.	6.4	26
41	Additive effects of predator diversity on pest control caused by few interactions among predator species. Ecological Entomology, 2015, 40, 362-371.	2.2	25
42	Insect Colonisation of Fruiting Bodies of the Wood-decaying Fungus Fomitopsis pinicola at Different Distances from an Old-growth Forest. Biodiversity and Conservation, 2006, 15, 295-309.	2.6	24
43	Theoretical expectations for thresholds in the relationship between number of wood-living species and amount of coarse woody debris: A study case in spruce forests. Journal for Nature Conservation, 2007, 15, 120-130.	1.8	23
44	Models of natural pest control: Towards predictions across agricultural landscapes. Biological Control, 2021, 163, 104761.	3.0	22
45	Title is missing!. Journal of Insect Conservation, 2003, 7, 111-124.	1.4	20
46	Cost-effectiveness of silvicultural measures to increase substrate availability for wood-dwelling species: A comparison among boreal tree species. Scandinavian Journal of Forest Research, 2010, 25, 46-60.	1.4	20
47	Introduction: Special issue on species interactions, ecological networks and community dynamics – Untangling the entangled bank using molecular techniques. Molecular Ecology, 2019, 28, 157-164.	3.9	20
48	Shade trees decrease pest abundances on brassica crops in Kenya. Agroforestry Systems, 2019, 93, 641-652.	2.0	17
49	Pheromones affecting flying beetles colonizing the polypores <i>Fomes fomentarius </i> and <i>Fomitopsis pinicola </i> . Entomologica Fennica, 1997, 8, 161-165.	0.6	15
50	Relating shading levels and distance from natural vegetation with hemipteran pests and predators occurrence on coffee. Journal of Applied Entomology, 2015, 139, 669-678.	1.8	13
51	High agricultural intensity at the landscape scale benefits pests, but low intensity practices at the local scale can mitigate these effects. Agriculture, Ecosystems and Environment, 2021, 306, 107199.	5.3	13
52	The role of trees and livestock in ecosystem service provision and farm priorities on smallholder farms in the Rift Valley, Kenya. Agricultural Systems, 2020, 181, 102815.	6.1	12
53	Modelling mating success of saproxylic beetles in relation to search behaviour, population density and substrate abundance. Animal Behaviour, 2003, 65, 1069-1076.	1.9	11
54	Archetype models upscale understanding of natural pest control response to landâ€use change. Ecological Applications, 2022, 32, .	3.8	11

#	Article	IF	CITATIONS
55	Effects of Agroforestry and Other Sustainable Practices in the Kenya Agricultural Carbon Project (KACP). Land, 2020, 9, 389.	2.9	10
56	Factors affecting smallholder adoption of adaptation and coping measures to deal with rainfall variability. International Journal of Agricultural Sustainability, 2021, 19, 175-198.	3.5	10
57	Landscape complexity promotes resilience of biological pest control to climate change. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210547.	2.6	10
58	Least-cost allocation of measures to increase the amount of coarse woody debris in forest estates. Journal of Forest Economics, 2013, 19, 267-285.	0.2	6
59	Seed predation is key to preventing population growth of the weed <i>Alopecurus myosuroides</i> Journal of Applied Ecology, 2022, 59, 471-482.	4.0	6
60	Suctionâ€trap catches partially predict infestations of the grain aphid <i>Sitobion avenae</i> in winter wheat fields. Journal of Applied Entomology, 2016, 140, 553-557.	1.8	5
61	Effects of management practices on legume productivity in smallholder farming systems in subâ \in Saharan Africa. Food and Energy Security, 2022, 11, .	4.3	4
62	Insect colonisation of fruiting bodies of the wood-decaying fungus Fomitopsis pinicola at different distances from an old-growth forest., 2006,, 281-295.		3
63	A meta-analysis of biocontrol potential and herbivore pressure in olive crops: does integrated pest management make a difference?. Basic and Applied Ecology, 2022, , .	2.7	2
64	Influence of drought on interactions between Rhopalosiphum padi and ground dwelling predators – A mesocosm study. Journal of Applied Entomology, 0, , .	1.8	1