
Peter Politzer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6457472/publications.pdf Version: 2024-02-01

DETED DOLITZED

#	Article	IF	CITATIONS
1	The conceptual power of the Hellmannâ \in "Feynman theorem. Structural Chemistry, 2023, 34, 17-21.	1.0	3
2	Electronegativity: A continuing enigma. Journal of Physical Organic Chemistry, 2023, 36, .	0.9	5
3	Some molecular and crystalline factors that affect the sensitivities of explosives. Theoretical and Computational Chemistry, 2022, , 173-194.	0.2	1
4	Interpreting the variations in the kinetic and potential energies in the formation of a covalent bond. Physical Chemistry Chemical Physics, 2022, , .	1.3	1
5	Tetrel and Pnictogen Bonds Complement Hydrogen and Halogen Bonds in Framing the Interactional Landscape of Barbituric Acids. Crystal Growth and Design, 2021, 21, 642-652.	1.4	26
6	The use and misuse of van der Waals radii. Structural Chemistry, 2021, 32, 623-629.	1.0	42
7	The π-hole revisited. Physical Chemistry Chemical Physics, 2021, 23, 16458-16468.	1.3	41
8	Oxatriazoles: Potential Frameworks for Energetic Compounds?. Propellants, Explosives, Pyrotechnics, 2021, 46, 222-232.	1.0	3
9	Can Counterâ€Intuitive Halogen Bonding Be Coulombic?. ChemPhysChem, 2021, 22, 1201-1207.	1.0	33
10	Identifying the most energetic electrons in a molecule: The highest occupied molecular orbital and the average local ionization energy. Computational and Theoretical Chemistry, 2021, 1199, 113192.	1.1	41
11	The Neglected Nuclei. Molecules, 2021, 26, 2982.	1.7	16
12	The many faces of fluorine: Some noncovalent interactions of fluorine compounds. Journal of Chemical Thermodynamics, 2021, 156, 106382.	1.0	21
13	Electrostatic potentials at the nuclei of atoms and molecules. Theoretical Chemistry Accounts, 2021, 140, 1.	0.5	24
14	Are HOMO–LUMO gaps reliable indicators of explosive impact sensitivity?. Journal of Molecular Modeling, 2021, 27, 327.	0.8	8
15	Electrostatics and Polarization in σ―and Ï€â€Hole Noncovalent Interactions: An Overview. ChemPhysChem, 2020, 21, 579-588.	1.0	78
16	Hydrogen Bonding: A Coulombic σ-Hole Interaction. Journal of the Indian Institute of Science, 2020, 100, 21-30.	0.9	41
17	A general model for the solubilities of gases in liquids. Journal of Molecular Modeling, 2020, 26, 244.	0.8	2
18	Interaction and Polarization Energy Relationships in I f -Hole and I \in -Hole Bonding. Crystals, 2020, 10, 76.	1.0	58

Peter Politzer

#	Article	IF	CITATIONS
19	Explicit Inclusion of Polarizing Electric Fields in σ- and π-Hole Interactions. Journal of Physical Chemistry A, 2019, 123, 10123-10130.	1.1	24
20	A look at bonds and bonding. Structural Chemistry, 2019, 30, 1153-1157.	1.0	29
21	Ϊƒ-Holes vs. Buildups of Electronic Density on the Extensions of Bonds to Halogen Atoms. Inorganics, 2019, 7, 71.	1.2	3
22	The Kamletâ€Jacobs Parameter ï†: A Measure of Intrinsic Detonation Potential. Propellants, Explosives, Pyrotechnics, 2019, 44, 844-849.	1.0	9
23	Ïf-Holes and Si···N intramolecular interactions. Journal of Molecular Modeling, 2019, 25, 101.	0.8	23
24	An Overview of Strengths and Directionalities of Noncovalent Interactions: σ-Holes and π-Holes. Crystals, 2019, 9, 165.	1.0	94
25	The role of â€ [~] Excluded' electronic charge in noncovalent interactions. Molecular Physics, 2019, 117, 2260-2266.	0.8	9
26	Cyanine dyes: synergistic action of hydrogen, halogen and chalcogen bonds allows discrete I ₄ ^{2â^'} anions in crystals. New Journal of Chemistry, 2018, 42, 10463-10466.	1.4	8
27	Ïfâ€holes and Ï€â€holes: Similarities and differences. Journal of Computational Chemistry, 2018, 39, 464-471.	1.5	127
28	In search of the â€~impenetrable' volume of a molecule in a noncovalent complex. Molecular Physics, 2018, 116, 570-577.	0.8	8
29	A perspective on quantum mechanics and chemical concepts in describing noncovalent interactions. Physical Chemistry Chemical Physics, 2018, 20, 30076-30082.	1.3	135
30	An Occam's razor approach to chemical hardness: lex parsimoniae. Journal of Molecular Modeling, 2018, 24, 332.	0.8	26
31	The Ïfâ€Hole Coulombic Interpretation of Trihalide Anion Formation. ChemPhysChem, 2018, 19, 3044-3049.	1.0	42
32	The Hellmann-Feynman theorem: a perspective. Journal of Molecular Modeling, 2018, 24, 266.	0.8	42
33	Electronegativity—a perspective. Journal of Molecular Modeling, 2018, 24, 214.	0.8	43
34	Sensitivities of ionic explosives. Molecular Physics, 2017, 115, 497-509.	0.8	9
35	Computational analysis of polyazoles and their N-oxides. Structural Chemistry, 2017, 28, 1045-1063.	1.0	16
36	Close contacts and noncovalent interactions in crystals. Faraday Discussions, 2017, 203, 113-130.	1.6	62

#	Article	IF	CITATIONS
37	Molecular electrostatic potentials and noncovalent interactions. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2017, 7, e1326.	6.2	231
38	The i_f -hole revisited. Physical Chemistry Chemical Physics, 2017, 19, 32166-32178.	1.3	319
39	Fluorination promotes chalcogen bonding in crystalline solids. CrystEngComm, 2017, 19, 4955-4959.	1.3	53
40	Ïf-Hole Interactions: Perspectives and Misconceptions. Crystals, 2017, 7, 212.	1.0	145
41	Halogen bonding in hypervalent iodine and bromine derivatives: halonium salts. IUCrJ, 2017, 4, 411-419.	1.0	80
42	Nitro Groups vs. N-Oxide Linkages: Effects Upon Some Key Determinants of Detonation Performance. Central European Journal of Energetic Materials, 2017, 14, 3-25.	0.5	12
43	Electrostatic Potentials, Intralattice Attractive Forces and Crystal Densities of Nitrogen-Rich C,H,N,O Salts. Crystals, 2016, 6, 7.	1.0	24
44	High Performance, Low Sensitivity: Conflicting or Compatible?. Propellants, Explosives, Pyrotechnics, 2016, 41, 414-425.	1.0	189
45	Hydrogen Bonding between Metalâ€ion Complexes and Noncoordinated Water: Electrostatic Potentials and Interaction Energies. ChemPhysChem, 2016, 17, 2035-2042.	1.0	22
46	Comparative analysis of electrostatic potential maxima and minima on molecular surfaces, as determined by three methods and a variety of basis sets. Journal of Computational Science, 2016, 17, 273-284.	1.5	62
47	Perspectives on the crystal densities and packing coefficients of explosive compounds. Structural Chemistry, 2016, 27, 401-408.	1.0	26
48	A Unified View of Halogen Bonding, Hydrogen Bonding and Other Ï f -Hole Interactions. Challenges and Advances in Computational Chemistry and Physics, 2015, , 291-321.	0.6	21
49	Some molecular/crystalline factors that affect the sensitivities of energetic materials: molecular surface electrostatic potentials, lattice free space and maximum heat of detonation per unit volume. Journal of Molecular Modeling, 2015, 21, 25.	0.8	124
50	Mathematical modeling and physical reality in noncovalent interactions. Journal of Molecular Modeling, 2015, 21, 52.	0.8	234
51	Quantitative Analyses of Molecular Surface Electrostatic Potentials in Relation to Hydrogen Bonding and Co-Crystallization. Crystal Growth and Design, 2015, 15, 3767-3774.	1.4	74
52	Intuitive and counterintuitive noncovalent interactions of aromatic π regions with the hydrogen and the nitrogen of HCN. Journal of Computational Science, 2015, 10, 209-216.	1.5	83
53	Impact sensitivity and the maximum heat of detonation. Journal of Molecular Modeling, 2015, 21, 262.	0.8	107
54	Correct electrostatic treatment of noncovalent interactions: the importance of polarization. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2015, 5, 169-177.	6.2	97

Peter Politzer

#	Article	IF	CITATIONS
55	Insights into some Diels–Alder cycloadditions via the electrostatic potential and the reaction force constant. Computational and Theoretical Chemistry, 2015, 1053, 270-280.	1.1	21
56	Ϊƒ-Hole Interactions of Covalently-Bonded Nitrogen, Phosphorus and Arsenic: A Survey of Crystal Structures. Crystals, 2014, 4, 12-31.	1.0	149
57	Role of Polarization in Halogen Bonds. Australian Journal of Chemistry, 2014, 67, 451.	0.5	66
58	Ïf-Hole Bonding: A Physical Interpretation. Topics in Current Chemistry, 2014, 358, 19-42.	4.0	133
59	Detonation Performance and Sensitivity. Advances in Quantum Chemistry, 2014, 69, 1-30.	0.4	70
60	Some Perspectives on Sensitivity to Initiation of Detonation. , 2014, , 45-62.		20
61	Revisiting the seemingly straightforward hydrogen cyanide/hydrogen isocyanide isomerisation. Molecular Physics, 2014, 112, 349-354.	0.8	17
62	Driving and retarding forces in a chemical reaction. Journal of Molecular Modeling, 2014, 20, 2351.	0.8	25
63	Complementarity of reaction force and electron localization function analyses of asynchronicity in bond formation in Diels–Alder reactions. Physical Chemistry Chemical Physics, 2014, 16, 6726.	1.3	62
64	Impact sensitivity and crystal lattice compressibility/free space. Journal of Molecular Modeling, 2014, 20, 2223.	0.8	121
65	Some interesting aspects of N-oxides. Molecular Physics, 2014, 112, 719-725.	0.8	27
66	Factors affecting the strengths of σ-hole electrostatic potentials. Journal of Computational Science, 2014, 5, 590-596.	1.5	76
67	Perspectives on the reaction force constant. Journal of Molecular Modeling, 2013, 19, 4111-4118.	0.8	45
68	Trends in σ-hole strengths and interactions of F3MX molecules (M = C, Si, Ge and X = F, Cl, Br, I). Journal of Molecular Modeling, 2013, 19, 2739-2746.	0.8	219
69	Enthalpy and entropy factors in gas phase halogen bonding: compensation and competition. CrystEngComm, 2013, 15, 3145.	1.3	42
70	Halogen Bonding: An Interim Discussion. ChemPhysChem, 2013, 14, 278-294.	1.0	620
71	Directional Noncovalent Interactions: Repulsion and Dispersion. Journal of Chemical Theory and Computation, 2013, 9, 2264-2275.	2.3	64
72	Halogen bonding and other lf -hole interactions: a perspective. Physical Chemistry Chemical Physics, 2013, 15, 11178.	1.3	1,401

#	Article	IF	CITATIONS
73	Computational analysis of relative stabilities of polyazine N-oxides. Structural Chemistry, 2013, 24, 1965-1974.	1.0	37
74	The reaction force constant as an indicator of synchronicity/nonsynchronicity in [4+2] cycloaddition processes. Physical Chemistry Chemical Physics, 2013, 15, 7311.	1.3	53
75	Fine structure in the transition region: reaction force analyses of water-assisted proton transfers. Journal of Molecular Modeling, 2013, 19, 2689-2697.	0.8	36
76	Halogen bond tunability II: the varying roles of electrostatic and dispersion contributions to attraction in halogen bonds. Journal of Molecular Modeling, 2013, 19, 4651-4659.	0.8	190
77	Definition of the halogen bond (IUPAC Recommendations 2013). Pure and Applied Chemistry, 2013, 85, 1711-1713.	0.9	1,554
78	Perspectives on the Reaction Force. Advances in Quantum Chemistry, 2012, 64, 189-209.	0.4	36
79	Hydrogenation and Fluorination of Graphene Models: Analysis via the Average Local Ionization Energy. Journal of Physical Chemistry A, 2012, 116, 8644-8652.	1.1	54
80	Perspectives on halogen bonding and other σ-hole interactions: Lex parsimoniae (Occam's Razor). Computational and Theoretical Chemistry, 2012, 998, 2-8.	1.1	333
81	The reaction force constant: an indicator of the synchronicity in double proton transfer reactions. Physical Chemistry Chemical Physics, 2012, 14, 11125.	1.3	54
82	Polarization-induced σ-holes and hydrogen bonding. Journal of Molecular Modeling, 2012, 18, 2461-2469.	0.8	121
83	Halogen bonding and beyond: factors influencing the nature of CN–R and SiN–R complexes with F–Cl and Cl2. Theoretical Chemistry Accounts, 2012, 131, 1.	0.5	102
84	σ-Holes, π-holes and electrostatically-driven interactions. Journal of Molecular Modeling, 2012, 18, 541-548.	0.8	545
85	Fluorine-Centered Halogen Bonding: A Factor in Recognition Phenomena and Reactivity. Crystal Growth and Design, 2011, 11, 4238-4246.	1.4	225
86	The fluorine atom as a halogen bond donor, viz. a positive site. CrystEngComm, 2011, 13, 6593.	1.3	217
87	Average Local Ionization Energies as a Route to Intrinsic Atomic Electronegativities. Journal of Chemical Theory and Computation, 2011, 7, 377-384.	2.3	55
88	Non-hydrogen-Bonding Intramolecular Interactions: Important but Often Overlooked. , 2011, , 479-496.		1
89	The electrostatic potential: an overview. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2011, 1, 153-163.	6.2	1,049
90	Molecular surface electrostatic potentials as guides to Si-O-N angle contraction: tunable σ-holes. Journal of Molecular Modeling, 2011, 17, 2151-2157.	0.8	27

#	Article	IF	CITATIONS
91	Sensitivity and the available free space per molecule in the unit cell. Journal of Molecular Modeling, 2011, 17, 2569-2574.	0.8	127
92	Halogen bond tunability I: the effects of aromatic fluorine substitution on the strengths of halogen-bonding interactions involving chlorine, bromine, and iodine. Journal of Molecular Modeling, 2011, 17, 3309-3318.	0.8	374
93	Enhanced detonation sensitivities of silicon analogs of PETN: reaction force analysis and the role of Ïf–hole interactions. Theoretical Chemistry Accounts, 2010, 127, 345-354.	0.5	30
94	A possible crystal volume factor in the impact sensitivities of some energetic compounds. Journal of Molecular Modeling, 2010, 16, 895-901.	0.8	250
95	Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. Journal of Molecular Modeling, 2010, 16, 1679-1691.	0.8	985
96	Average local ionization energy: A review. Journal of Molecular Modeling, 2010, 16, 1731-1742.	0.8	328
97	The unique role of the nitro group in intramolecular interactions: chloronitromethanes. Structural Chemistry, 2010, 21, 139-146.	1.0	37
98	The principle of maximum hardness and structural effects of nonbonded interactions in chloronitromethanes. Computational and Theoretical Chemistry, 2010, 943, 53-58.	1.5	5
99	Directional tendencies of halogen and hydrogen bonds. International Journal of Quantum Chemistry, 2010, 110, 2823-2832.	1.0	243
100	Identification of pseudodiatomic behavior in polyatomic bond dissociation: Reaction force analysis. Journal of Chemical Physics, 2010, 132, 154308.	1.2	9
101	Reactivities of Sites on (5,5) Single-Walled Carbon Nanotubes with and without a Stone-Wales Defect. Journal of Chemical Theory and Computation, 2010, 6, 1351-1357.	2.3	126
102	Reaction Force and Its Link to Diabatic Analysis: A Unifying Approach to Analyzing Chemical Reactions. Journal of Physical Chemistry Letters, 2010, 1, 2858-2862.	2.1	46
103	Directional Weak Intermolecular Interactions: σ-Hole Bonding. Australian Journal of Chemistry, 2010, 63, 1598.	0.5	235
104	Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. Physical Chemistry Chemical Physics, 2010, 12, 7748.	1.3	1,389
105	An electrostatic correction for improved crystal density predictions of energetic ionic compounds. Molecular Physics, 2010, 108, 1391-1396.	0.8	75
106	Molecular dynamics characterization of void defects in crystalline (1,3,5-trinitro-1,3,5-triazacyclohexane). Journal of Chemical Physics, 2009, 131, 204903.	1.2	29
107	Expansion of the if -hole concept. Journal of Molecular Modeling, 2009, 15, 723-729.	0.8	669
108	Analysis of diatomic bond dissociation and formation in terms of the reaction force and the position-dependent reaction force constant. Journal of Molecular Modeling, 2009, 15, 701-706.	0.8	30

#	Article	IF	CITATIONS
109	The reaction force and the transition region of a reaction. Journal of Molecular Modeling, 2009, 15, 707-710.	0.8	101
110	Reaction force analyses of nitro-aci tautomerizations of trinitromethane, the elusive trinitromethanol, picric acid and 2,4-dinitro-1H-imidazole. Theoretical Chemistry Accounts, 2009, 124, 355-363.	0.5	29
111	A comparative analysis of the electrostatic potentials of some polycyclic aromatic hydrocarbons. International Journal of Quantum Chemistry, 2009, 12, 317-325.	1.0	0
112	Epoxide-Nucleophile interactions: Acid-catalyzed reaction of ethylene oxide with water. International Journal of Quantum Chemistry, 2009, 14, 291-299.	1.0	1
113	The role of hydrogen bonding in some diol epoxides. International Journal of Quantum Chemistry, 2009, 16, 47-53.	1.0	1
114	Computed effects of electric fields upon the CNO ₂ and NNO ₂ bonds of nitromethane and dimethylnitramine. International Journal of Quantum Chemistry, 2009, 109, 3-7.	1.0	24
115	Computational determination of effects of electric fields upon "trigger linkages―of prototypical energetic molecules. International Journal of Quantum Chemistry, 2009, 109, 534-539.	1.0	31
116	Electrostatically driven complexes of SiF ₄ with amines. International Journal of Quantum Chemistry, 2009, 109, 3773-3780.	1.0	43
117	Chlorotrinitromethane and its exceptionally short carbon–chlorine bond. Nature Chemistry, 2009, 1, 229-235.	6.6	65
118	An electrostatic interaction correction for improved crystal density prediction. Molecular Physics, 2009, 107, 2095-2101.	0.8	365
119	Links between surface electrostatic potentials of energetic molecules, impact sensitivities and C–NO ₂ /N–NO ₂ bond dissociation energies. Molecular Physics, 2009, 107, 89-97.	0.8	280
120	BrÂ·Â·Ô Complexes as Probes of Factors Affecting Halogen Bonding: Interactions of Bromobenzenes and Bromopyrimidines with Acetone. Journal of Chemical Theory and Computation, 2009, 5, 155-163.	2.3	303
121	Reaction Force Analysis of Solvent Effects in the Addition of HCl to Propene. Journal of Physical Chemistry A, 2009, 113, 6500-6503.	1.1	32
122	Average Local Ionization Energies in the Hartreeâ^'Fock and Kohnâ^'Sham Theories. Journal of Physical Chemistry A, 2009, 113, 1384-1389.	1.1	32
123	An Overview of Ïf-Hole Bonding, an Important and Widely-Occurring Noncovalent Interaction. , 2009, , 149-163.		16
124	Intra- and intermolecular electrostatic interactions and their significance for the structure, acidity, and tautomerization behavior of trinitromethane. Journal of Chemical Physics, 2009, 130, 104304.	1.2	17
125	The Electrostatic Potential as a Guide to Molecular Interactive Behavior. , 2009, , .		5

#	Article	IF	CITATIONS
127	Why are dimethyl sulfoxide and dimethyl sulfone such good solvents?. Journal of Molecular Modeling, 2008, 14, 689-697.	0.8	159
128	Ïf-hole bonding between like atoms; a fallacy of atomic charges. Journal of Molecular Modeling, 2008, 14, 659-665.	0.8	368
129	Blue shifts vs red shifts in lf -hole bonding. Journal of Molecular Modeling, 2008, 14, 699-704.	0.8	231
130	Computational characterization of the hydroxylamino (NHOH) group. Journal of Physical Organic Chemistry, 2008, 21, 155-162.	0.9	9
131	Simultaneous Ïfâ€hole and hydrogen bonding by sulfur―and seleniumâ€containing heterocycles. International Journal of Quantum Chemistry, 2008, 108, 2770-2781.	1.0	172
132	Reaction force constant and projected force constants of vibrational modes along the path of an intramolecular proton transfer reaction. Chemical Physics Letters, 2008, 456, 135-140.	1.2	80
133	The Position-Dependent Reaction Force Constant in Bond Dissociation/Formation. Collection of Czechoslovak Chemical Communications, 2008, 73, 822-830.	1.0	12
134	Chapter 3 Charge delocalization in (n, 0) model carbon nanotubes. Theoretical and Computational Chemistry, 2007, 17, 82-95.	0.2	1
135	Molecular Electrostatic Potentials and Chemical Reactivity. Reviews in Computational Chemistry, 2007, , 273-312.	1.5	153
136	An Operational Definition of Relative Hardness. Collection of Czechoslovak Chemical Communications, 2007, 72, 51-63.	1.0	12
137	Chapter 8 The average local ionization energy: concepts and applications. Theoretical and Computational Chemistry, 2007, 19, 119-137.	0.2	35
138	Reaction Force Decomposition of Activation Barriers To Elucidate Solvent Effects. Journal of Physical Chemistry A, 2007, 111, 2455-2457.	1.1	71
139	A predicted new type of directional noncovalent interaction. International Journal of Quantum Chemistry, 2007, 107, 2286-2292.	1.0	341
140	A noteworthy feature of bond dissociation/formation reactions. International Journal of Quantum Chemistry, 2007, 107, 2153-2157.	1.0	30
141	Ïf-Hole bonding and hydrogen bonding: Competitive interactions. International Journal of Quantum Chemistry, 2007, 107, 3046-3052.	1.0	305
142	Halogen bonding: the i_f -hole. Journal of Molecular Modeling, 2007, 13, 291-296.	0.8	2,004
143	Molecular surface electrostatic potentials and anesthetic activity. Journal of Molecular Modeling, 2007, 13, 313-318.	0.8	62
144	An overview of halogen bonding. Journal of Molecular Modeling, 2007, 13, 305-311.	0.8	1,284

#	Article	IF	CITATIONS
145	Halogen bonding and the design of new materials: organic bromides, chlorides and perhaps even fluorides as donors. Journal of Molecular Modeling, 2007, 13, 643-650.	0.8	342
146	σ-hole bonding: molecules containing group VI atoms. Journal of Molecular Modeling, 2007, 13, 1033-1038.	0.8	475
147	The Remarkable Capacities of (6,0) Carbon and Carbon/Boron/Nitrogen Model Nanotubes for Transmission of Electronic Effects. Challenges and Advances in Computational Chemistry and Physics, 2007, , 487-504.	0.6	1
148	Analysis of the Reaction Force for a Gas Phase SN2 Process: CH3Cl + H2O → CH3OH + HClâ€. Journal of Physical Chemistry A, 2006, 110, 756-761.	1.1	59
149	Computational determination of the relative polarizabilities of molecular components. International Journal of Quantum Chemistry, 2006, 106, 2347-2355.	1.0	12
150	Electrostatic potential as a measure of gas phase carbocation stability. International Journal of Quantum Chemistry, 2006, 106, 2904-2909.	1.0	15
151	A link between the ionization energy ratios of an atom and its electronegativity and hardness. Chemical Physics Letters, 2006, 431, 195-198.	1.2	23
152	Quantitative Approaches to Solute-Solvent Interactions. , 2006, , 1-63.		6
153	The Use of the Molecular Electrostatic Potential in Medicinal Chemistry. Methods and Principles in Medicinal Chemistry, 2005, , 233-254.	0.3	5
154	Effects of different caps on model nanotube surface properties. Microelectronic Engineering, 2005, 81, 485-493.	1.1	14
155	Connection between the average local ionization energy and the Fukui function. Chemical Physics Letters, 2005, 407, 143-146.	1.2	34
156	Comparative analysis of surface electrostatic potentials of carbon, boron/nitrogen and carbon/boron/nitrogen model nanotubes. Journal of Molecular Modeling, 2005, 11, 1-7.	0.8	57
157	An unusual feature of end-substituted model carbon (6,0) nanotubes. Journal of Molecular Modeling, 2005, 11, 258-264.	0.8	25
158	The reaction force: Three key points along an intrinsic reaction coordinate. Journal of Chemical Sciences, 2005, 117, 467-472.	0.7	122
159	Computational prediction of standard gas, liquid, and solid-phase heats of formation and heats of vaporization and sublimation. International Journal of Quantum Chemistry, 2005, 105, 341-347.	1.0	119
160	Atomic energies from electrostatic potentials at nuclei: direct evaluation. Molecular Physics, 2005, 103, 2105-2108.	0.8	3
161	Electronegativity and Average Local Ionization Energy. Collection of Czechoslovak Chemical Communications, 2005, 70, 550-558.	1.0	20
162	Electronic Density Approaches to the Energetics of Noncovalent Interactions. International Journal of Molecular Sciences, 2004, 5, 130-140.	1.8	4

#	Article	IF	CITATIONS
163	Computational Determination of Nitroaromatic Solid Phase Heats of Formation. Structural Chemistry, 2004, 15, 469-478.	1.0	32
164	Local ionization energy and local polarizability. International Journal of Quantum Chemistry, 2004, 96, 394-401.	1.0	43
165	Noncovalent intermolecular energetics: RDX crystal. International Journal of Quantum Chemistry, 2004, 100, 733-739.	1.0	13
166	Calculation of electrostatic and polarization energies from electron densities. Journal of Chemical Physics, 2004, 120, 3152-3157.	1.2	12
167	Analysis of two intramolecular proton transfer processes in terms of the reaction force. Journal of Chemical Physics, 2004, 121, 4570-4576.	1.2	78
168	Nitroacetylene:Â Computed Heats of Formation and Analysis of Reaction Mechanisms with Vinyl Ethers. Journal of Physical Chemistry A, 2004, 108, 3493-3498.	1.1	2
169	Density Functional Tight-Binding Studies of Carbon Nanotube Structures. Structural Chemistry, 2003, 14, 431-443.	1.0	44
170	Segmental analysis of molecular surface electrostatic potentials: application to enzyme inhibition. Journal of Molecular Modeling, 2003, 9, 77-83.	0.8	20
171	Electrostatic potentials and covalent radii. Journal of Computational Chemistry, 2003, 24, 505-511.	1.5	34
172	Computational prediction of relative group polarizabilities. International Journal of Quantum Chemistry, 2003, 95, 632-637.	1.0	19
173	Characterization of Surface Electrostatic Potentials of some (5,5) and (n,1) Carbon and Boron/Nitrogen Model Nanotubes. Nano Letters, 2003, 3, 21-28.	4.5	124
174	Computational approaches to heats of formation. Theoretical and Computational Chemistry, 2003, 12, 247-277.	0.2	4
175	Sensitivity Correlations. Theoretical and Computational Chemistry, 2003, , 5-23.	0.2	18
176	Some Exact Energy Relationships. , 2003, , 631-638.		2
177	Molecular Electrostatic Potentials. , 2003, , .		1
178	THE FUNDAMENTAL SIGNIFICANCE OF ELECTROSTATIC POTENTIALS AT NUCLEI. , 2002, , 63-84.		3
179	Atomic polarizability, volume and ionization energy. Journal of Chemical Physics, 2002, 117, 8197-8202.	1.2	82
180	The fundamental nature and role of the electrostatic potential in atoms and molecules. Theoretical Chemistry Accounts, 2002, 108, 134-142.	0.5	965

#	Article	IF	CITATIONS
181	Atomic and molecular energies in terms of electrostatic potentials at nuclei. International Journal of Quantum Chemistry, 2002, 90, 459-463.	1.0	23
182	The complementary roles of molecular surface electrostatic potentials and average local ionization energies with respect to electrophilic processes. International Journal of Quantum Chemistry, 2002, 88, 19-27.	1.0	166
183	Molecular Dynamics Simulations of Energetic Solids. Structural Chemistry, 2002, 13, 105-113.	1.0	38
184	Energetics of Aluminum Combustion. Journal of Physical Chemistry A, 2001, 105, 7473-7480.	1.1	56
185	Comparison of Quantum Chemical Parameters and Hammett Constants in Correlating pKaValues of Substituted Anilines. Journal of Organic Chemistry, 2001, 66, 6919-6925.	1.7	158
186	Computational prediction of condensed phase properties from statistical characterization of molecular surface electrostatic potentials. Fluid Phase Equilibria, 2001, 185, 129-137.	1.4	89
187	Computed molecular surface electrostatic potentials of two groups of reverse transcriptase inhibitors: Relationships to anti-HIV-1 activities. International Journal of Quantum Chemistry, 2001, 83, 115-121.	1.0	16
188	Computational characterization of nucleotide bases: Molecular surface electrostatic potentials and local ionization energies, and local polarization energies. International Journal of Quantum Chemistry, 2001, 83, 245-254.	1.0	50
189	Molecular surface electrostatic potentials in relation to noncovalent interactions in biological systems. International Journal of Quantum Chemistry, 2001, 85, 676-684.	1.0	217
190	Electronegativities, electrostatic potentials and covalent radii. Computational and Theoretical Chemistry, 2001, 549, 69-76.	1.5	32
191	Computational characterization of energetic materials. Computational and Theoretical Chemistry, 2001, 573, 1-10.	1.5	93
192	Variation of parameters in Becke-3 hybrid exchange-correlation functional. Journal of Computational Chemistry, 2000, 21, 227-238.	1.5	39
193	Prediction of solvation free energies from computed properties of solute molecular surfaces. International Journal of Quantum Chemistry, 2000, 76, 643-647.	1.0	17
194	Molecular dynamics simulations of the temperature-dependent behavior of aluminum, copper, and platinum. International Journal of Quantum Chemistry, 2000, 76, 670-676.	1.0	14
195	Density functional study of dimers of dimethylnitramine. International Journal of Quantum Chemistry, 2000, 80, 184-192.	1.0	62
196	Computed molecular surface electrostatic potentials of the nonionic and zwitterionic forms of glycine, histidine, and tetracycline. International Journal of Quantum Chemistry, 2000, 80, 1216-1223.	1.0	28
197	Kohn-Sham studies of oxygen systems. International Journal of Quantum Chemistry, 2000, 77, 336-340.	1.0	12
198	Two potential energetic compounds: Ammonium superoxide and ammonium ozonide. Journal of Energetic Materials, 2000, 18, 89-95.	1.0	1

#	Article	IF	CITATIONS
199	Conformational dependence of molecular surface electrostatic potentials. International Journal of Quantum Chemistry, 1999, 75, 267-273.	1.0	29
200	Computational Determination of the Energetics of Boron Ignition/Combustion Reactions. Journal of Physical Chemistry A, 1999, 103, 1419-1425.	1.1	19
201	Prediction of Aqueous Solvation Free Energies from Properties of Solute Molecular Surface Electrostatic Potentials. Journal of Physical Chemistry A, 1999, 103, 1853-1856.	1.1	64
202	Molecular Dynamics Simulations of Liquid Nitromethane. Journal of Physical Chemistry B, 1999, 103, 9738-9742.	1.2	35
203	Detonation Initiation and Sensitivity in Energetic Compounds: Some Computational Treatments. Computational Chemistry - Reviews of Current Trends, 1999, , 271-286.	0.4	21
204	Statistical analysis of the molecular surface electrostatic potential: an approach to describing noncovalent interactions in condensed phases. Computational and Theoretical Chemistry, 1998, 425, 107-114.	1.5	255
205	Energetics of ammonium dinitramide decomposition steps. Computational and Theoretical Chemistry, 1998, 427, 123-129.	1.5	39
206	Computational investigation of the structures and relative stabilities of amino/nitro derivatives of ethylene. Computational and Theoretical Chemistry, 1998, 452, 75-83.	1.5	107
207	Energetics of ammonium perchlorate decomposition steps. Computational and Theoretical Chemistry, 1998, 454, 229-235.	1.5	37
208	Comparison of density functional and Hartree-Fock average local ionization energies on molecular surfaces. International Journal of Quantum Chemistry, 1998, 69, 607-613.	1.0	152
209	Molecular surface electrostatic potentials of anticonvulsant drugs. International Journal of Quantum Chemistry, 1998, 70, 1137-1143.	1.0	17
210	A comparative analysis of Hartree-Fock and Kohn-Sham orbital energies. Theoretical Chemistry Accounts, 1998, 99, 83-87.	0.5	237
211	Use of Density Functional Methods To Compute Heats of Reactions. ACS Symposium Series, 1998, , 359-368.	0.5	1
212	Câ^'H and Câ^'NO2 Dissociation Energies in Some Azines and Nitroazines. Journal of Physical Chemistry A, 1998, 102, 6697-6701.	1.1	19
213	Relationships between Lattice Energies and Surface Electrostatic Potentials and Areas of Anions. Journal of Physical Chemistry A, 1998, 102, 1018-1020.	1.1	47
214	Density Functional Calculations Of Reaction Energetics: Application To Alkyl Azide Decomposition. Advances in Quantum Chemistry, 1998, 33, 293-302.	0.4	3
215	Some approximate Kohn—Sham molecular energy formulas. Molecular Physics, 1998, 95, 681-688.	0.8	7
216	Effects of strongly electron-attracting components on molecular surface electrostatic potentials: application to predicting impact sensitivities of energetic molecules. Molecular Physics, 1998, 93, 187-194.	0.8	151

#	Article	IF	CITATIONS
217	Calculation of heats of sublimation and solid phase heats of formation. Molecular Physics, 1997, 91, 923-928.	0.8	222
218	Density functional analysis of a decomposition of 4-nitro-1,2,3-triazole through the evolution of N2. International Journal of Quantum Chemistry, 1997, 61, 389-392.	1.0	31
219	Density-functional investigation of some decomposition routes of methyl nitrate. International Journal of Quantum Chemistry, 1997, 64, 205-210.	1.0	5
220	Computational studies of structures and properties of energetic difluoramines. Advances in Molecular Structure Research, 1997, , 269-285.	0.3	13
221	Molecular electrostatic potentials as indicators of covalent radii. Journal of Chemical Physics, 1996, 104, 5109-5111.	1.2	32
222	Relationships of Electrostatic Potentials to Intrinsic Molecular Properties. Theoretical and Computational Chemistry, 1996, 3, 649-660.	0.2	26
223	Relationship between Measured Diffusion Coefficients and Calculated Molecular Surface Properties. The Journal of Physical Chemistry, 1996, 100, 5538-5540.	2.9	30
224	Energetics of HF elimination and Nî—,F bond cleavage in some difluoramines and gem-nitro/difluoramines. Computational and Theoretical Chemistry, 1996, 365, 89-92.	1.5	9
225	Structures and molecular surface electrostatic potentials of high-density C, N, H systems. Structural Chemistry, 1996, 7, 273-280.	1.0	9
226	Reaction energetics of tetrahedrane and other hydrocarbons: Ab initio and density functional treatments. International Journal of Quantum Chemistry, 1996, 60, 1351-1360.	1.0	3
227	Relationships of molecular surface electrostatic potentials to some macroscopic properties. Chemical Physics, 1996, 204, 289-299.	0.9	85
228	Relationships between dissociation energies and electrostatic potentials of Cî—,NO2 bonds: applications to impact sensitivities. Journal of Molecular Structure, 1996, 376, 419-424.	1.8	190
229	Density functional study of amine sensitization of nitromethane. Molecular Physics, 1996, 89, 1511-1520.	0.8	17
230	Computational Determination of Heats of Formation of Energetic Compounds. Materials Research Society Symposia Proceedings, 1995, 418, 55.	0.1	12
231	Use of molecular stoichiometry to estimate vibrational energy. Chemical Physics Letters, 1995, 244, 295-298.	1.2	26
232	Nonlocal density functional calculation of gas phase heats of formation. Journal of Computational Chemistry, 1995, 16, 654-658.	1.5	59
233	Calculated structures and heats of formation of some predicted C, N, O, F molecules. Structural Chemistry, 1995, 6, 217-223.	1.0	12
234	Molecular dynamics simulation of liquid nitromethane shocked to 143 kbar. International Journal of Quantum Chemistry, 1995, 56, 621-625.	1.0	9

#	Article	IF	CITATIONS
235	Comparative computational analysis of some nitramine and difluoramine structures, dissociation energies and heats of formation. Computational and Theoretical Chemistry, 1995, 338, 249-256.	1.5	32
236	Heats of formation, structures and relative stabilities of some tetraazapentalene-related molecules. Computational and Theoretical Chemistry, 1995, 358, 63-69.	1.5	17
237	Representation of C60 Solubilities in Terms of Computed Molecular Surface Electrostatic Potentials and Areas. The Journal of Physical Chemistry, 1995, 99, 12081-12083.	2.9	36
238	Analytical Representation and Prediction of Macroscopic Properties. ACS Symposium Series, 1995, , 109-118.	0.5	6
239	A density functional/molecular dynamics study of the structure of liquid nitromethane. Journal of Chemical Physics, 1995, 102, 8281-8282.	1.2	56
240	Relationships between impact sensitivities and molecular surface electrostatic potentials of nitroaromatic and nitroheterocyclic molecules. Molecular Physics, 1995, 85, 1-8.	0.8	157
241	C-NO2dissociation energies and surface electrostatic potential maxima in relation to the impact sensitivities of some nitroheterocyclic molecules. Molecular Physics, 1995, 86, 251-255.	0.8	79
242	Family-independent relationships between computed molecular surface quantities and solute hydrogen bond acidity/basicity and solute-induced methanol O–H infrared frequency shifts. Canadian Journal of Chemistry, 1995, 73, 483-488.	0.6	164
243	Calculated structure, heat of formation and decomposition energetics of 1,3â€dinitroâ€1,3â€diazacyclobutane. Journal of Chemical Physics, 1994, 100, 4706-4707.	1.2	21
244	Does antiaromaticity imply net destabilization?. International Journal of Quantum Chemistry, 1994, 49, 575-579.	1.0	31
245	Antiaromaticity in relation to 1,3,5,7-cyclooctatetraene structures. International Journal of Quantum Chemistry, 1994, 50, 273-277.	1.0	15
246	Statistically-based interaction indices derived from molecular surface electrostatic potentials: a general interaction properties function (GIPF). Computational and Theoretical Chemistry, 1994, 307, 55-64.	1.5	183
247	Energy changes associated with some decomposition steps of 1,3,3-trinitroazetidine. A non-local density functional study. Chemical Physics Letters, 1993, 207, 27-30.	1.2	43
248	Computational study of the structure of dinitraminic acid, HN(NO2)2, and the energetics of some possible decomposition steps. Chemical Physics Letters, 1993, 216, 348-352.	1.2	48
249	X-NO2 rotational energy barriers: Local density functional calculations. International Journal of Quantum Chemistry, 1993, 45, 15-20.	1.0	19
250	Molecular surface electrostatic potentials and local ionization energies of Group V-VII hydrides and their anions: Relationships for aqueous and gas-phase acidities. International Journal of Quantum Chemistry, 1993, 48, 73-88.	1.0	146
251	Density-Functional andab initio computational studies of palladium clusters. International Journal of Quantum Chemistry, 1993, 48, 263-268.	1.0	8
252	Density functional study of the structure and some decomposition reactions of the dinitramide anion N(NO2)2â^'. Computational and Theoretical Chemistry, 1993, 287, 235-240.	1.5	32

#	Article	IF	CITATIONS
253	Relationships between solute molecular properties and solubility in supercritical carbon dioxide. The Journal of Physical Chemistry, 1993, 97, 729-732.	2.9	48
254	Relationships of critical constants and boiling points to computed molecular surface properties. The Journal of Physical Chemistry, 1993, 97, 9369-9373.	2.9	81
255	Octanol/water partition coefficients expressed in terms of solute molecular surface areas and electrostatic potentials. Journal of Organic Chemistry, 1993, 58, 7070-7073.	1.7	69
256	Relationships between computed molecular properties and solute-solvent interactions in supercritical solutions. The Journal of Physical Chemistry, 1993, 97, 5144-5148.	2.9	38
257	Polarizability and volume. Journal of Chemical Physics, 1993, 98, 4305-4306.	1.2	216
258	Partition coefficients of nitroaromatics expressed in terms of their molecular surface areas and electrostatic potentials. The Journal of Physical Chemistry, 1993, 97, 13807-13809.	2.9	31
259	A computational analysis of the bonding in boron trifluoride and boron trichloride and their complexes with ammonia. Inorganic Chemistry, 1993, 32, 2622-2625.	1.9	94
260	Relationship between dissociation energies, force constants, and bond lengths for some N–F and O–F bonds. Journal of Chemical Physics, 1993, 98, 7659-7660.	1.2	32
261	Charge capacities and shell structures of atoms. , 1993, , 101-114.		20
262	Computational determination of the relative stabilities of some nitro carbocations. Canadian Journal of Chemistry, 1992, 70, 636-641.	0.6	2
263	Calculated electrostatic potentials and local surface ionization energies of para-substituted anilines as measures of substituent effects. Canadian Journal of Chemistry, 1992, 70, 2209-2214.	0.6	66
264	C?H Bond dissociation of acetylene: Local density functional calculations. International Journal of Quantum Chemistry, 1992, 42, 267-272.	1.0	11
265	An analysis of molecular electrostatic potentials obtained by a local density functional approach. International Journal of Quantum Chemistry, 1992, 44, 113-122.	1.0	28
266	Surface electrostatic potentials of halogenated methanes as indicators of directional intermolecular interactions. International Journal of Quantum Chemistry, 1992, 44, 57-64.	1.0	370
267	Gaussian-2 and density functional studies of H2N?NO2 dissociation, inversion, and isomerization. International Journal of Quantum Chemistry, 1992, 44, 497-504.	1.0	35
268	Quantitative determination of the total local polarity (charge separation) in molecules. Molecular Physics, 1992, 76, 609-617.	0.8	118
269	Investigation of relationships between solute molecule surface electrostatic potentials and solubilities in supercritical fluids. The Journal of Physical Chemistry, 1992, 96, 7938-7943.	2.9	62
270	Applications of calculated local surface ionization energies to chemical reactivity. Computational and Theoretical Chemistry, 1992, 255, 271-281.	1.5	62

#	Article	IF	CITATIONS
271	Computational analysis of the dinitramine and chlorine derivatives of benzene and s-tetrazine. Computational and Theoretical Chemistry, 1992, 262, 155-170.	1.5	23
272	Electronegativity and the concept of charge capacity. Computational and Theoretical Chemistry, 1992, 259, 99-120.	1.5	91
273	Correlations between molecular electrostatic potentials and some experimentally-based indices of reactivity. Computational and Theoretical Chemistry, 1992, 256, 29-45.	1.5	114
274	Correlations between the solvent hydrogen bond acceptor parameter .beta. and the calculated molecular electrostatic potential. Journal of Organic Chemistry, 1991, 56, 3734-3737.	1.7	122
275	Electrostatic potentials on the molecular surfaces of cyclic ureides. The Journal of Physical Chemistry, 1991, 95, 844-848.	2.9	49
276	Computational study of relative bond strengths and stabilities of a series of amine and nitro derivatives of triprismane and some azatriprismanes. The Journal of Physical Chemistry, 1991, 95, 1601-1605.	2.9	16
277	Relationships between the aqueous acidities of some carbon, oxygen, and nitrogen acids and the calculated surface local ionization energies of their conjugate bases. Journal of Organic Chemistry, 1991, 56, 5012-5015.	1.7	74
278	A relationship between experimentally determined pKas and molecular surface ionization energies for some azines and azoles. Journal of Organic Chemistry, 1991, 56, 2934-2936.	1.7	68
279	Energy barriers of symmetryâ€forbidden reactions: Local density functional calculations. Journal of Chemical Physics, 1991, 94, 1668-1669.	1.2	26
280	Correlations between the solvent hydrogen-bond-donating parameter .alpha. and the calculated molecular surface electrostatic potential. Journal of Organic Chemistry, 1991, 56, 6715-6717.	1.7	133
281	A computational analysis of the structural features and reactive behavior of some heterocyclic aromatic N-oxides. Computational and Theoretical Chemistry, 1991, 236, 283-296.	1.5	33
282	Shock-sensitivity relationships for nitramines and nitroaliphatics. Chemical Physics Letters, 1991, 181, 78-82.	1.2	96
283	Surface local ionization energies and electrostatic potentials of the conjugate bases of a series of cyclic hydrocarbons in relation to their aqueous acidities. International Journal of Quantum Chemistry, 1991, 40, 91-98.	1.0	25
284	Calculation of molecular geometries and energies by a local density functional approach. International Journal of Quantum Chemistry, 1991, 40, 249-259.	1.0	24
285	Effects of the simultaneous presence of nitro and amine substituents in cubane and some azacubanes. Structural Chemistry, 1991, 2, 153-166.	1.0	25
286	A computational analysis of some diaryl ureas in relation to their observed crystalline hydrogen bonding patterns. Molecular Engineering, 1991, 1, 75-87.	0.2	14
287	Radial behavior of the average local ionization energies of atoms. Journal of Chemical Physics, 1991, 95, 6699-6704.	1.2	88
288	First-Principles Theoretical Methods for the Calculation of Electronic Charge Densities and Electrostatic Potentials. NATO ASI Series Series B: Physics, 1991, , 371-381.	0.2	2

#	Article	IF	CITATIONS
289	Use of the electrostatic potential at the molecular surface to interpret and predict nucleophilic processes. The Journal of Physical Chemistry, 1990, 94, 3959-3961.	2.9	377
290	A computational analysis of some possible hydrogen transfer and intramolecular ring formation reactions of o-nitrotoluene and o-nitroaniline. Computational and Theoretical Chemistry, 1990, 209, 349-359.	1.5	16
291	Anomalous energy effects associated with the presence of aza nitrogens and nitro substituents in some strained systems. Computational and Theoretical Chemistry, 1990, 207, 193-200.	1.5	51
292	Calculated structures, relative energies and electrostatic potentials of some tetraaza cyclic systems. Structural Chemistry, 1990, 1, 325-332.	1.0	16
293	A comparative analysis of the electrostatic potentials of some structural analogues of 2,3,7,8-tetrachlorodibenzo-p-dioxin and of related aromatic systems. International Journal of Quantum Chemistry, 1990, 37, 271-289.	1.0	29
294	A computational analysis of the electrostatic potentials and relative bond strengths of hydrazine and some of its 1,1-dimethyl derivatives. International Journal of Quantum Chemistry, 1990, 37, 611-629.	1.0	12
295	Average local ionization energies computed on the surfaces of some strained molecules. International Journal of Quantum Chemistry, 1990, 38, 645-653.	1.0	126
296	Evaluation of a finite multipole expansion technique for the computation of electrostatic potentials of dibenzo-p-dioxins and related systems. Journal of Computational Chemistry, 1990, 11, 112-120.	1.5	9
297	The use of the electrostatic potential at the molecular surface in recognition interactions: Dibenzo-p-dioxinsand related systems. Journal of Molecular Graphics, 1990, 8, 81-85.	1.7	37
298	Average local ionization energies on the molecular surfaces of aromatic systems as guides to chemical reactivity. Canadian Journal of Chemistry, 1990, 68, 1440-1443.	0.6	363
299	Anomalous energy effects in some aliphatic and alicyclic aza systems and their nitro derivatives. The Journal of Physical Chemistry, 1990, 94, 2320-2323.	2.9	33
300	Zâ€transition state calculations of energy changes and electrostatic potentials in isoelectronic atoms and molecules. Journal of Chemical Physics, 1989, 90, 4373-4378.	1.2	12
301	Approximate radii for singly negative ions of 3d, 4d, and 5d metal atoms. Journal of Chemical Physics, 1989, 91, 5123-5124.	1.2	33
302	A computational study of the structures and electrostatic potentials of some azines and nitroazines. Computational and Theoretical Chemistry, 1989, 187, 95-108.	1.5	72
303	A proposed interpretation of the destabilizing effect of hydroxyl groups on nitroaromatic molecules. Chemical Physics Letters, 1989, 158, 463-469.	1.2	52
304	Characteristic features of the electrostatic potentials of singly negative monoatomic ions. Journal of Chemical Physics, 1989, 90, 4370-4372.	1.2	125
305	Guanidinium trinitromethanide. Journal of the Chemical Society Perkin Transactions II, 1989, , 1237.	0.9	8
306	Electrostatic potentials of amine nitrogens as a measure of the total electron-attracting tendencies of substituents. Chemical Physics Letters, 1988, 152, 364-370.	1.2	79

#	Article	IF	CITATIONS
307	Computational approaches to the identification of suspect toxic molecules. Toxicology Letters, 1988, 43, 257-276.	0.4	24
308	Calculated structures and electrostatic potentials of some 1,4-dioxazines and 1,4-dioxadiazines. Computational and Theoretical Chemistry, 1988, 180, 161-173.	1.5	16
309	A relationship between the charge capacity and the hardness of neutral atoms and groups. Journal of Chemical Physics, 1987, 86, 1072-1073.	1.2	203
310	A computational study of some isomerization equilibria and their possible relation to vinyl chloride carcinogenicity. International Journal of Quantum Chemistry, 1987, 31, 569-579.	1.0	1
311	Electrostatic potentials of some dibenzo-p-dioxins in relation to their biological activities. Theoretica Chimica Acta, 1987, 72, 507-517.	0.9	46
312	The effects of water on hydrogen bonding in a formamide-ammonia complex. Chemical Physics Letters, 1987, 136, 283-288.	1.2	12
313	[1.1.1]Propellane, bicyclo[1.1.1]pentane and the effects of "inverted―carbons. Computational and Theoretical Chemistry, 1986, 135, 245-252.	1.5	27
314	Comparative analysis of the electrostatic potentials of dibenzofuran and some dibenzo-p-dioxins. Journal of the American Chemical Society, 1986, 108, 915-918.	6.6	66
315	Bond-order-bond-energy correlations. Chemical Physics Letters, 1986, 124, 527-530.	1.2	54
316	Approximate determination of Wigner-Seitz radii from free-atom wave functions. Physical Review B, 1985, 31, 6809-6810.	1.1	24
317	Some effects of amine substituents in strained hydrocarbons. Journal of the American Chemical Society, 1985, 107, 121-124.	6.6	19
318	The aromatic Cî—,NO2 bond as a site for nucleophilic attack. Chemical Physics Letters, 1984, 111, 75-78.	1.2	75
319	Some reactive properties of chlorooxirane, a likely carcinogenic metabolite of vinyl chloride. International Journal of Quantum Chemistry, 1984, 25, 493-502.	1.0	10
320	The effect of an epoxide-nucleophile reaction upon hydrogen bonding involving the nucleophile. International Journal of Quantum Chemistry, 1984, 25, 869-879.	1.0	3
321	Reactive properties oftrans-dichlorooxirane in relation to the contrasting carcinogenicities of vinyl chloride andtrans-dichloroethylen. International Journal of Quantum Chemistry, 1984, 26, 425-438.	1.0	5
322	Halogenated hydrocarbon epoxides: Factors underlying biological activity. International Journal of Quantum Chemistry, 1984, 26, 155-166.	1.0	18
323	Some energy formulas within the approximation of zero chemical potential. Journal of Chemical Physics, 1984, 80, 380-382.	1.2	11
324	Effects of amino and nitro substituents upon the electrostatic potential of an aromatic ring. Journal of the American Chemical Society, 1984, 106, 855-860.	6.6	183

#	Article	IF	CITATIONS
325	A formula for calculating molecular energy differences from electrostatic potentials at nuclei. Journal of Chemical Physics, 1983, 78, 7008-7010.	1.2	8
326	Relationships between atomic chemical potentials, electrostatic potentials, and covalent radii. Journal of Chemical Physics, 1983, 79, 3859-3861.	1.2	114
327	Proposed procedure for using electrostatic potentials to predict and interpret nucleophilic processes. The Journal of Physical Chemistry, 1982, 86, 4767-4771.	2.9	72
328	Calculated properties of some possible vinyl chloride metabolites. International Journal of Quantum Chemistry, 1982, 22, 1271-1279.	1.0	8
329	A study of the reactive properties of the chlorinated ethylenes. International Journal of Quantum Chemistry, 1982, 22, 307-319.	1.0	2
330	Relationships between the Energies of Atoms and Molecules and the Electrostatic Potentials at Their Nuclei. , 1981, , 7-28.		28
331	Electrostatic potential–electronic density relationships in atoms. Journal of Chemical Physics, 1980, 72, 3027-3033.	1.2	69
332	Electrostatic potential–electronic density relationships in atoms. II. Journal of Chemical Physics, 1980, 73, 3264-3267.	1.2	31
333	Observations on the Significance of the Electrostatic Potentials at the Nuclei of Atoms and Molecules. Israel Journal of Chemistry, 1980, 19, 224-232.	1.0	44
334	An improved approximate energy formula for molecules. Journal of Chemical Physics, 1979, 70, 1067.	1.2	30
335	A proposed formula for the energy of an atom in a molecule. Journal of Chemical Physics, 1979, 70, 4400-4404.	1.2	7
336	Some relations between electronic distribution and electronegativity. Journal of Chemical Physics, 1979, 71, 4218-4220.	1.2	151
337	Some potential-energy relationships for isoelectronic atomic series. International Journal of Quantum Chemistry, 1978, 14, 245-251.	1.0	13
338	Calculation of proton affinities with the integral Hellmann–Feynman theorem. Journal of Chemical Physics, 1978, 68, 5289-5291.	1.2	2
339	Some approximate energy relationships for ground and excited states of diatomic molecules and molecular ions. Journal of Chemical Physics, 1978, 69, 491.	1.2	29
340	Some approximate energy relationships for molecules. Journal of Chemical Physics, 1976, 64, 4239-4240.	1.2	107
341	Separation of core and valence regions in atoms. Journal of Chemical Physics, 1976, 64, 4634-4637.	1.2	99
342	Analysis of the charge distributions in molecules of the types XCCH and XCN. The Journal of Physical Chemistry, 1976, 80, 283-287.	2.9	20

#	Article	IF	CITATIONS
343	A misconception concerning the electronic density distribution of an atom. Theoretica Chimica Acta, 1975, 38, 159-163.	0.9	182
344	Some new energy formulas for atoms and molecules. Journal of Chemical Physics, 1974, 61, 4258-4262.	1.2	124
345	Molecular electrostatic potentials. Mechanistic aspects of electrophilic attack on furan. Journal of the Chemical Society Chemical Communications, 1973, , 617.	2.0	19
346	Properties of atoms in molecules. Theoretica Chimica Acta, 1971, 23, 203-207.	0.9	40
347	Atom promotion and bond properties in the hydrogen and the lithium molecules. Theoretica Chimica Acta, 1970, 16, 120-125.	0.9	12
348	Constant Term in the Energy Function of a Pointâ€Charge Model of Diatomic Molecules. Journal of Chemical Physics, 1970, 52, 2157-2158.	1.2	10
349	Properties of atoms in molecules. I. Proposed definition of the charge on an atom in a molecule. Journal of the American Chemical Society, 1970, 92, 6451-6454.	6.6	164
350	Electronic density distribution in nitric oxide. Journal of the American Chemical Society, 1970, 92, 1834-1836.	6.6	13
351	Bond Orders of Homonuclear Diatomic Molecules. Journal of Chemical Physics, 1969, 50, 2780-2781.	1.2	37
352	Bond Orders of Heteronuclear Diatomic Molecules. Journal of Chemical Physics, 1969, 51, 459-460.	1.2	31
353	A Study of the Bonding in the Hydrogen Molecule1. The Journal of Physical Chemistry, 1966, 70, 1174-1178.	2.9	9
354	The Electrostatic Forces within the Carbon Monoxide Molecule1. The Journal of Physical Chemistry, 1965, 69, 2132-2134.	2.9	8
355	General and theoretical aspects of theOH,O andOO groups: Integration of theory and experiment. , 0, , 1-39.		1
356	General and Theoretical Aspects of the CX Bonds (X = F, Cl, Br, I): Integration of Theory and Experiment. , 0, , 1-30.		2