Weibo Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6456965/publications.pdf

Version: 2024-02-01

172457 254184 2,673 148 29 43 citations h-index g-index papers 150 150 150 2724 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	CR-GAN: Automatic craniofacial reconstruction for personal identification. Pattern Recognition, 2022, 124, 108400.	8.1	6
2	Intermittent fasting enhances hippocampal NPY expression to promote neurogenesis after traumatic brain injury. Nutrition, 2022, 97, 111621.	2.4	12
3	Optogenetics for Understanding and Treating Brain Injury: Advances in the Field and Future Prospects. International Journal of Molecular Sciences, 2022, 23, 1800.	4.1	7
4	Assess the diversity of gut microbiota among healthy adults for forensic application. Microbial Cell Factories, 2022, 21, 46.	4.0	10
5	A fully automated sex estimation for proximal femur X-ray images through deep learning detection and classification. Legal Medicine, 2022, 57, 102056.	1.3	4
6	Scientific Evidences of Calorie Restriction and Intermittent Fasting for Neuroprotection in Traumatic Brain Injury Animal Models: A Review of the Literature. Nutrients, 2022, 14, 1431.	4.1	6
7	An overview of SNP-SNP microhaplotypes in the 26 populations of the 1000 Genomes Project. International Journal of Legal Medicine, 2022, 136, 1211-1226.	2.2	6
8	Validation of the Microreader 40Y ID System: a Y-STR multiplex for casework and database samples. International Journal of Legal Medicine, 2021, 135, 23-41.	2.2	7
9	Population genetics of 27 Y-STRs for the Yi population from Liangshan Yi Autonomous Prefecture, China. International Journal of Legal Medicine, 2021, 135, 441-442.	2.2	1
10	Morphological analysis of three-dimensionally reconstructed frontal sinuses from Chinese Han population using computed tomography. International Journal of Legal Medicine, 2021, 135, 1015-1023.	2.2	8
11	A Novel SNP-STR System Based on a Capillary Electrophoresis Platform. Frontiers in Genetics, 2021, 12, 636821.	2.3	11
12	Detection of cellâ€free fetal DNA in maternal plasma using two types of compound markers. Electrophoresis, 2021, 42, 1158-1167.	2.4	4
13	Computer-aided superimposition of the frontal sinus via 3D reconstruction for comparative forensic identification. International Journal of Legal Medicine, 2021, 135, 1993-2001.	2.2	10
14	DNA-based eyelid trait prediction in Chinese Han population. International Journal of Legal Medicine, 2021, 135, 1743-1752.	2.2	2
15	The effect of infertile semen on the mRNAâ€based body fluid identification. Electrophoresis, 2021, 42, 1614-1622.	2.4	2
16	Validation of the Microreader 28A ID System: A 6â€dye multiplex amplification assay for forensic application. Electrophoresis, 2021, 42, 1928-1935.	2.4	3
17	Feasibility of using probabilistic methods to analyse microRNA quantitative data in forensically relevant body fluids: a proof-of-principle study. International Journal of Legal Medicine, 2021, 135, 2247-2261.	2.2	2
18	mRNA and microRNA stability validation of blood samples under different environmental conditions. Forensic Science International: Genetics, 2021, 55, 102567.	3.1	13

#	Article	IF	Citations
19	Set of 15 SNP-SNP Markers for Detection of Unbalanced Degraded DNA Mixtures and Noninvasive Prenatal Paternity Testing. Frontiers in Genetics, 2021, 12, 800598.	2.3	3
20	Postmortem interval determination using mRNA markers and DNA normalization. International Journal of Legal Medicine, 2020, 134, 149-157.	2.2	18
21	A new method to detect methylation profiles for forensic body fluid identification combining ARMS-PCR technique and random forest model. Forensic Science International: Genetics, 2020, 49, 102371.	3.1	16
22	Multi-Indel: A Microhaplotype Marker Can Be Typed Using Capillary Electrophoresis Platforms. Frontiers in Genetics, 2020, 11, 567082.	2.3	19
23	Moringa oleifera Lam and its Therapeutic Effects in Immune Disorders. Frontiers in Pharmacology, 2020, 11, 566783.	3.5	31
24	Integrated Bioinformatics Analysis for the Identification of Key Molecules and Pathways in the Hippocampus of Rats After Traumatic Brain Injury. Neurochemical Research, 2020, 45, 928-939.	3.3	9
25	Development and application of a nonbinary SNP-based microhaplotype panel for paternity testing involving close relatives. Forensic Science International: Genetics, 2020, 46, 102255.	3.1	48
26	A new approach to detect a set of SNPâ€SNP markers: Combining ARMSâ€PCR with SNaPshot technology. Electrophoresis, 2020, 41, 1189-1197.	2.4	10
27	Rapidly mutating Y-STRs study in Chinese Yi population. International Journal of Legal Medicine, 2019, 133, 45-50.	2.2	8
28	Identifying novel microhaplotypes for ancestry inference. International Journal of Legal Medicine, 2019, 133, 983-988.	2.2	47
29	Developmental validation of the Microreaderâ, ¢ 20A ID system. Electrophoresis, 2019, 40, 3099-3107.	2.4	4
30	miR-212-5p attenuates ferroptotic neuronal death after traumatic brain injury by targeting Ptgs2. Molecular Brain, 2019, 12, 78.	2.6	123
31	Establishing a second-tier panel of 18 ancestry informative markers to improve ancestry distinctions among Asian populations. Forensic Science International: Genetics, 2019, 41, 159-167.	3.1	13
32	The expression of 10 candidate specific microRNA markers for human body fluid identification in animal buccal swabs. Forensic Science International, 2019, 300, e44-e49.	2.2	3
33	A microhaplotypes panel for massively parallel sequencing analysis of DNA mixtures. Forensic Science International: Genetics, 2019, 40, 140-149.	3.1	58
34	A functional variant in the flanking region of priâ€letâ€7f contributes to colorectal cancer risk in a Chinese population. Journal of Cellular Physiology, 2019, 234, 15717-15725.	4.1	6
35	A new approach to detect a set of SNP-SNP markers: Combining ARMS-PCR with SNaPshot technology. Forensic Science International: Genetics Supplement Series, 2019, 7, 150-151.	0.3	1
36	Multiplex DNA methylation profiling by ARMS-PCR for body fluid identification. Forensic Science International: Genetics Supplement Series, 2019, 7, 820-822.	0.3	2

#	Article	lF	Citations
37	Evaluation of the microhaplotype markers in kinship analysis. Electrophoresis, 2019, 40, 1091-1095.	2.4	22
38	Genotyping polymorphic microhaplotype markers through the Illumina® MiSeq platform for forensics. Forensic Science International: Genetics, 2019, 39, 1-7.	3.1	35
39	Forensic age estimation for pelvic X-ray images using deep learning. European Radiology, 2019, 29, 2322-2329.	4.5	51
40	Fermented dairy foods intake and risk of cancer. International Journal of Cancer, 2019, 144, 2099-2108.	5.1	79
41	Population genetic analysis of 30 insertion–deletion (INDEL) loci in a Qinghai Tibetan group using the Investigator DIPplex Kit. International Journal of Legal Medicine, 2019, 133, 1039-1041.	2.2	12
42	Circular Ribonucleic Acid Expression Profile in Mouse Cortex after Traumatic Brain Injury. Journal of Neurotrauma, 2019, 36, 1018-1028.	3.4	28
43	Effect of infertile semen samples on mRNA-based body fluid identification by KLK3 and PRM1. Forensic Science International: Genetics Supplement Series, 2019, 7, 507-508.	0.3	2
44	A new proposed nomenclature for microhaplotypes. Forensic Science International: Genetics Supplement Series, 2019, 7, 813-815.	0.3	0
45	What makes your "eyes―look different?. Forensic Science International: Genetics Supplement Series, 2019, 7, 105-106.	0.3	0
46	Application of MHanalyser software in the study of microhaplotypes in forensics. Forensic Science International: Genetics Supplement Series, 2019, 7, 271-273.	0.3	1
47	A comparison of malpractice lawsuits mediated and judged in court in China. Journal of Clinical Forensic and Legal Medicine, 2018, 54, 109-113.	1.0	4
48	Genetic portrait of 27 Y-STR loci in the Tibetan ethnic population of the Qinghai province of China. Forensic Science International: Genetics, 2018, 34, e18-e19.	3.1	25
49	Semen-specific miRNAs: Suitable for the distinction of infertile semen in the body fluid identification?. Forensic Science International: Genetics, 2018, 33, 161-167.	3.1	49
50	Population genetic analysis of a 21-plex DIP panel in seven Chinese ethnic populations. International Journal of Legal Medicine, 2018, 132, 145-147.	2.2	4
51	Detection of promoter methylation status of suppressor of cytokine signaling 3 (SOCS3) in tissue and plasma from Chinese patients with different hepatic diseases. Clinical and Experimental Medicine, 2018, 18, 79-87.	3 . 6	27
52	Genetic polymorphism of 21 non-CODIS STR loci in Chengdu Han population and its interpopulation analysis between 25 populations in China. Legal Medicine, 2018, 31, 14-16.	1.3	6
53	Evaluation of the Microhaplotypes panel for DNA mixture analyses. Forensic Science International: Genetics, 2018, 35, 149-155.	3.1	64
54	Two-person DNA mixture interpretation based on a novel set of SNP-STR markers. Forensic Science International: Genetics, 2018, 37, 37-45.	3.1	25

#	Article	IF	CITATIONS
55	Microhaplotype identified and performed in genetic investigation using PCR-SSCP. Forensic Science International: Genetics, 2017, 28, e1-e7.	3.1	15
56	Forensic parameters of 19 X-STR polymorphisms in two Chinese populations. International Journal of Legal Medicine, 2017, 131, 975-977.	2.2	14
57	Screening and confirmation of microRNA markers for distinguishing between menstrual and peripheral blood. Forensic Science International: Genetics, 2017, 30, 24-33.	3.1	31
58	Genetic polymorphisms of 17 Y-chromosomal STRs in the Chengdu Han population of China. International Journal of Legal Medicine, 2017, 131, 967-968.	2.2	3
59	Developing eight SNP-STR markers for DNA mixture detection. Forensic Science International: Genetics Supplement Series, 2017, 6, e351-e352.	0.3	3
60	Postmortem interval (PMI) determination by profiling of HAF mRNA degradation using RT-qPCR. Forensic Science International: Genetics Supplement Series, 2017, 6, e182-e183.	0.3	1
61	Expression difference of miR-10b and miR-135b between the fertile and infertile semen samples (p). Forensic Science International: Genetics Supplement Series, 2017, 6, e257-e259.	0.3	24
62	Comparative study on methods of DNA genotyping between single piece of dandruff and EZ-tape. Forensic Science International: Genetics Supplement Series, 2017, 6, e244-e245.	0.3	0
63	Association between BMP4 gene polymorphisms and eyelid traits in Chinese Han population. Forensic Science International: Genetics Supplement Series, 2017, 6, e355-e356.	0.3	2
64	Genotyping microhaplotype markers through massively parallel sequencing. Forensic Science International: Genetics Supplement Series, 2017, 6, e314-e316.	0.3	6
65	Microhaplotype: Ability of personal identification and being ancestry informative marker. Forensic Science International: Genetics Supplement Series, 2017, 6, e442-e444.	0.3	5
66	Degradation of AIF in mouse heart tissue for estimating postmortem interval (PMI). Forensic Science International: Genetics Supplement Series, 2017, 6, e575-e576.	0.3	0
67	SNP-STR analysis for non-invasive paternity test for fetus. Forensic Science International: Genetics Supplement Series, 2017, 6, e413-e414.	0.3	5
68	Estimate the heterozygote balance of microhaplotype marker with massively parallel sequencing. Forensic Science International: Genetics Supplement Series, 2017, 6, e375-e376.	0.3	6
69	An investigation of a set of DIP-STR markers to detect unbalanced DNA mixtures among the southwest Chinese Han population. Forensic Science International: Genetics, 2017, 31, 34-39.	3.1	21
70	Genetic diversity of 21 autosomal STR loci in the Han population from Sichuan province, Southwest China. Forensic Science International: Genetics, 2017, 31, e33-e35.	3.1	41
71	Mutational analysis of 33 autosomal short tandem repeat (STR) loci in southwest Chinese Han population based on trio parentage testing. Forensic Science International: Genetics, 2016, 23, 86-90.	3.1	25
72	Population study and mutation analysis for 28 short tandem repeat loci in southwest Chinese Han population. Journal of Clinical Forensic and Legal Medicine, 2016, 44, 10-13.	1.0	9

#	Article	IF	CITATIONS
73	A comparative study of insertion/deletion polymorphisms applied among Southwest, South and Northwest Chinese populations using Investigator® DIPplex. Forensic Science International: Genetics, 2016, 21, 10-14.	3.1	45
74	Hippocampus-dependent spatial memory impairment due to molar tooth loss is ameliorated by an enriched environment. Archives of Oral Biology, 2016, 61, 1-7.	1.8	37
75	A 21-plex DIP panel's application in multinational Chinese population. Forensic Science International: Genetics Supplement Series, 2015, 5, e537-e538.	0.3	O
76	The species specific of 3 microRNA markers in saliva. Forensic Science International: Genetics Supplement Series, 2015, 5, e674-e676.	0.3	1
77	Screening and confirmation of microRNA markers for distinguishing between menstrual and peripheral blood. Forensic Science International: Genetics Supplement Series, 2015, 5, e353-e355.	0.3	1
78	A primary investigation on SNPs associated with eyelid traits of Chinese Han Adults. Forensic Science International: Genetics Supplement Series, 2015, 5, e669-e670.	0.3	3
79	FLfinder: A novel software for the microhaplotype marker. Forensic Science International: Genetics Supplement Series, 2015, 5, e622-e624.	0.3	13
80	Mutation Study of 28 Autosomal STR Loci in Southwest Chinese Han Population. Forensic Science International: Genetics Supplement Series, 2015, 5, e298-e299.	0.3	1
81	A Functional Polymorphism in the Promoter of MiR-143/145 Is Associated With the Risk of Cervical Squamous Cell Carcinoma in Chinese Women. Medicine (United States), 2015, 94, e1289.	1.0	36
82	Development of a SNP-STRs multiplex for forensic identification. Forensic Science International: Genetics Supplement Series, 2015, 5, e598-e600.	0.3	18
83	Effect of aging on the microstructure, hardness and chemical composition of dentin. Archives of Oral Biology, 2015, 60, 1811-1820.	1.8	59
84	A novel system for forensic SNP analysis through PCR–ligase detection reaction. Forensic Science International: Genetics Supplement Series, 2015, 5, e231-e232.	0.3	0
85	NGS technology makes microhaplotype a potential forensic marker. Forensic Science International: Genetics Supplement Series, 2015, 5, e233-e234.	0.3	15
86	Influences of different RT-qPCR methods on forensic body fluid identification by microRNA. Forensic Science International: Genetics Supplement Series, 2015, 5, e295-e297.	0.3	13
87	SNP–STR polymorphism: A sensitive compound marker for forensic genetic applications. Forensic Science International: Genetics Supplement Series, 2013, 4, e206-e207.	0.3	11
88	Micro RNA profiling for the detection and differentiation of body fluids in forensic stain analysis. Forensic Science International: Genetics Supplement Series, 2013, 4, e216-e217.	0.3	6
89	mRNA degradation pattern analysis in post-mortem normalized using the DNA. Forensic Science International: Genetics Supplement Series, 2013, 4, e266-e267.	0.3	6
90	A genetic variant in the promoter region of miR-34b/c is associated with a reduced risk of colorectal cancer. Biological Chemistry, 2013, 394, 415-420.	2.5	52

#	Article	IF	Citations
91	5 miRNA expression analyze in post-mortem interval (PMI) within 48h. Forensic Science International: Genetics Supplement Series, 2013, 4, e190-e191.	0.3	18
92	Genetic data for 30 insertion/deletion polymorphisms in six Chinese populations with Qiagen Investigator DIPplex Kit. Forensic Science International: Genetics Supplement Series, 2013, 4, e268-e269.	0.3	5
93	Population genetics for 17 Y-STR loci(AmpFISTR®Y-filerTM) in Luzhou Han ethnic group. Forensic Science International: Genetics, 2013, 7, e23-e26.	3.1	23
94	Expression of basigin in the early phase of acute myocardial ischemia in rats. Molecular Medicine Reports, 2013, 7, 1494-1500.	2.4	7
95	Interactions ofmiR-34b/candTP53Polymorphisms on the Risk of Intracranial Aneurysm. Clinical and Developmental Immunology, 2012, 2012, 1-7.	3.3	22
96	Association Between Single-Nucleotide Polymorphisms in Interleukin-12A and Risk of Chronic Obstructive Pulmonary Disease. DNA and Cell Biology, 2012, 31, 1475-1479.	1.9	9
97	Association Between <i>pri-miR-218 </i> Polymorphism and Risk of Hepatocellular Carcinoma in a Han Chinese Population. DNA and Cell Biology, 2012, 31, 761-765.	1.9	26
98	Interactions of interleukin-12A and interleukin-12B polymorphisms on the risk of intracranial aneurysm. Molecular Biology Reports, 2012, 39, 11217-11223.	2.3	14
99	Association Between Single-Nucleotide Polymorphisms in Pre-miRNAs and the Risk of Asthma in a Chinese Population. DNA and Cell Biology, 2011, 30, 919-923.	1.9	35
100	Null Genotypes of GSTM1 and GSTT1 Contribute to Risk of Cervical Neoplasia: An Evidence-Based Meta-Analysis. PLoS ONE, 2011, 6, e20157.	2.5	49
101	Association of single nucleotide polymorphisms in interleukin 12 (IL-12A and -B) with asthma in a Chinese population. Human Immunology, 2011, 72, 603-606.	2.4	27
102	The association between two polymorphisms in pre-miRNAs and breast cancer risk: a meta-analysis. Breast Cancer Research and Treatment, 2011, 125, 571-574.	2.5	91
103	RAD51 135G/C polymorphism and breast cancer risk: a meta-analysis from 21 studies. Breast Cancer Research and Treatment, 2011, 125, 827-835.	2.5	60
104	Characteristics of eight X-STR loci for forensic purposes in the Chinese population. International Journal of Legal Medicine, 2011, 125, 127-131.	2.2	35
105	Association between SNPs in pre-miRNA and risk of chronic obstructive pulmonary disease. Clinical Biochemistry, 2011, 44, 813-816.	1.9	28
106	Association of TNF- \hat{l}_{\pm} Gene Promoter Polymorphisms With Susceptibility of Cervical Cancer in Southwest China. Laboratory Medicine, 2011, 42, 287-290.	1.2	10
107	Association of Tumor Necrosis Factor Gene Polymorphisms with Susceptibility to Dilated Cardiomyopathy in a Han Chinese Population. DNA and Cell Biology, 2010, 29, 625-628.	1.9	15
108	The Association Between Interleukin-23 Receptor Gene Polymorphisms and Systemic Lupus Erythematosus. DNA and Cell Biology, 2010, 29, 79-82.	1.9	13

#	Article	IF	CITATIONS
109	Association of ADAM33 Polymorphisms and Susceptibility to Psoriasis. DNA and Cell Biology, 2010, 29, 435-439.	1.9	10
110	CTLA4 and CD86 gene polymorphisms and susceptibility to chronic obstructive pulmonary disease. Human Immunology, 2010, 71, 1141-1146.	2.4	28
111	IL-8 –251A/T polymorphism is associated with decreased cancer risk among population-based studies: Evidence from a meta-analysis. European Journal of Cancer, 2010, 46, 1333-1343.	2.8	37
112	CD86 +1057 G/A Polymorphism and the Risk of Colorectal Cancer. DNA and Cell Biology, 2010, 29, 381-386.	1.9	14
113	Association of Matrix Metalloproteinases 1, 7, and 9 Gene Polymorphisms with Genetic Susceptibility to Colorectal Carcinoma in a Han Chinese Population. DNA and Cell Biology, 2010, 29, 657-661.	1.9	20
114	The association between ATM D1853N polymorphism and breast cancer susceptibility: a meta-analysis. Journal of Experimental and Clinical Cancer Research, 2010, 29, 117.	8.6	28
115	Association Between IRF-5 Polymorphisms and Risk of Acute Coronary Syndrome. DNA and Cell Biology, 2010, 29, 19-23.	1.9	10
116	Systemic Lupus Erythematosus (SLE) Risk Factors: Novel Proteins Detected From Familial SLE Using Proteomics. Laboratory Medicine, 2009, 40, 408-411.	1.2	4
117	The IL-16 gene polymorphisms and the risk of the systemic lupus erythematosus. Clinica Chimica Acta, 2009, 403, 223-225.	1.1	36
118	Association of CD40 â^'1C/T polymorphism in the 5′-untranslated region and chronic obstructive pulmonary disease. Clinica Chimica Acta, 2009, 408, 56-59.	1.1	13
119	Genetic polymorphism of Interleukin-16 and risk of nasopharyngeal carcinoma. Clinica Chimica Acta, 2009, 409, 132-135.	1.1	36
120	The association between dilated cardiomyopathy and RTN4 3′UTR insertion/deletion polymorphisms. Clinica Chimica Acta, 2009, 400, 21-24.	1.1	14
121	Identification of serum biomarkers for nasopharyngeal carcinoma by proteomic analysis. Cancer, 2008, 112, 544-551.	4.1	31
122	Association of IL-1B Gene Polymorphisms with Nasopharyngeal Carcinoma in a Chinese Population. Clinical Oncology, 2008, 20, 207-211.	1.4	27
123	No association between epidermal growth factor and epidermal growth factor receptor polymorphisms and nasopharyngeal carcinoma. Cancer Genetics and Cytogenetics, 2008, 185, 69-73.	1.0	18
124	Single nucleotide polymorphisms of VEGF gene and Psoriasis risk. Journal of Dermatological Science, 2008, 49, 263-265.	1.9	21
125	The association of interleukin-16 polymorphisms with IL-16 serum levels and risk of colorectal and gastric cancer. Carcinogenesis, 2008, 30, 295-299.	2.8	95
126	The xeroderma pigmentosum group C gene polymorphisms and genetic susceptibility of nasopharyngeal carcinoma. Acta Oncol \tilde{A}^3 gica, 2008, 47, 379-384.	1.8	26

#	Article	IF	CITATIONS
127	Genetic Polymorphisms of the DNA Repair Gene and Risk of Nasopharyngeal Carcinoma. DNA and Cell Biology, 2007, 26, 491-496.	1.9	36
128	Association of transforming growth factor- \hat{l}^21 gene polymorphisms with genetic susceptibility to nasopharyngeal carcinoma. Clinica Chimica Acta, 2007, 380, 165-169.	1.1	46
129	Interleukin-10 gene promoter polymorphisms and the risk of nasopharyngeal carcinoma. Tissue Antigens, 2007, 70, 12-17.	1.0	40
130	Construction and characterization of monoclonal antibodies specific for the R transactivator 185 of Epstein-Barr virus. Journal of Virological Methods, 2007, 144, 12-16.	2.1	1
131	Allele Frequencies of D2S2960 and GATA149B10 in Two Populations. Journal of Forensic Sciences, 2006, 51, 1204-1204.	1.6	0
132	Allele Frequency Distribution of STR Loci D5S1486 in Three Populations. Journal of Forensic Sciences, 2005, 50, 1-2.	1.6	0
133	Allele Frequency Distributions for 15 STR Loci in Chinese Chengdu Han Population. Journal of Forensic Sciences, 2005, 50, 1-2.	1.6	0
134	Allele Frequency Distribution of STR Loci D5S814 in Four Populations. Journal of Forensic Sciences, 2005, 50, 1-2.	1.6	0
135	STR Loci D19S400's Allele Frequency Distribution in Ten Populations. Journal of Forensic Sciences, 2005, 50, 1-1.	1.6	1
136	Allele Frequency Distribution of STR D5S819 in Four Populations. Journal of Forensic Sciences, 2005, 50, 1-2.	1.6	0
137	Allele Frequency Distribution of STR Loci D11S1390 and D11S2008 in Two Populations. Journal of Forensic Sciences, 2005, 50, 1-1.	1.6	0
138	Allele Frequency Distributions for 9 STR Loci of Tibetan Population in Chinese Tibet. Journal of Forensic Sciences, 2005, 50, 1-2.	1.6	2
139	Allele Frequency Distribution of STR Loci D5S2845 in Four Populations. Journal of Forensic Sciences, 2005, 50, 1-2.	1.6	0
140	Allele frequency distribution of STR loci D5S814 in four populations. Journal of Forensic Sciences, 2005, 50, 226-7.	1.6	0
141	STR loci D19S400's allele frequency distribution in ten populations. Journal of Forensic Sciences, 2005, 50, 725.	1.6	0
142	Allele frequency distribution of two X-chromosomal STR loci in the Han population in China. International Congress Series, 2004, 1261, 145-147.	0.2	1
143	A population study of three Y-STR loci by multiplexing in Han population in Chengdu, China. International Congress Series, 2004, 1261, 254-256.	0.2	0
144	Allele Frequency Distribution of Two X-Chromosomal STR Loci in Han Population in China. Journal of Forensic Sciences, 2004, 49, 1-2.	1.6	3

#	Article	IF	CITATIONS
145	Two X-Chromosome STR Loci DXS6803 and XS6793 Frequency Data in Chinese Population. Journal of Forensic Sciences, 2004, 49, 1-2.	1.6	7
146	Allele Frequency Distribution of STR Loci D5S2848 in Four Populations. Journal of Forensic Sciences, 2004, 49, 1-2.	1.6	3
147	Sequence Polymorphisms of the Mitochondrial DNA Control Region in 105 Chinese Han Population. Journal of Forensic Sciences, 2003, 48, 1-5.	1.6	3
148	Allele distributions for D21 S1435 and D21S2055 loci in two Chinese populations. Journal of Forensic Sciences, 2002, 47, 667-8.	1.6	0