List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6455978/publications.pdf Version: 2024-02-01

ZENC-ZHEN HU

#	Article	IF	CITATIONS
1	Evolution of ENSO-Related Rainfall Anomalies in East Asia. Journal of Climate, 2003, 16, 3742-3758.	3.2	577
2	Long-term climate variations in China and global warming signals. Journal of Geophysical Research, 2003, 108, .	3.3	293
3	Interdecadal variability of summer climate over East Asia and its association with 500 hPa height and global sea surface temperature. Journal of Geophysical Research, 1997, 102, 19403-19412.	3.3	228
4	Summer Climate Variability in China and Its Association with 500 hPa Height and Tropical Convection. Journal of the Meteorological Society of Japan, 1996, 74, 425-445.	1.8	221
5	Intensified Asian Summer Monsoon and its variability in a coupled model forced by increasing greenhouse gas concentrations. Geophysical Research Letters, 2000, 27, 2681-2684.	4.0	147
6	An assessment of oceanic variability in the NCEP climate forecast system reanalysis. Climate Dynamics, 2011, 37, 2511-2539.	3.8	144
7	The Record-breaking Mei-yu in 2020 and Associated Atmospheric Circulation and Tropical SST Anomalies. Advances in Atmospheric Sciences, 2021, 38, 1980-1993.	4.3	134
8	Weakened Interannual Variability in the Tropical Pacific Ocean since 2000. Journal of Climate, 2013, 26, 2601-2613.	3.2	132
9	Interferential Impact of ENSO and PDO on Dry and Wet Conditions in the U.S. Great Plains. Journal of Climate, 2009, 22, 6047-6065.	3.2	119
10	Impact of global warming on the Asian winter monsoon in a coupled GCM. Journal of Geophysical Research, 2000, 105, 4607-4624.	3.3	105
11	Prediction Skill and Bias of Tropical Pacific Sea Surface Temperatures in the NCEP Climate Forecast System Version 2. Journal of Climate, 2013, 26, 5358-5378.	3.2	104
12	Linear trends in sea surface temperature of the tropical Pacific Ocean and implications for the El Niño-Southern Oscillation. Climate Dynamics, 2013, 40, 1223-1236.	3.8	93
13	Salinity anomaly as a trigger for ENSO events. Scientific Reports, 2014, 4, 6821.	3.3	92
14	An analysis of warm pool and cold tongue El Niños: air–sea coupling processes, global influences, and recent trends. Climate Dynamics, 2012, 38, 2017-2035.	3.8	90
15	Persistence and Predictions of the Remarkable Warm Anomaly in the Northeastern Pacific Ocean during 2014–16. Journal of Climate, 2017, 30, 689-702.	3.2	85
16	Ranking the strongest ENSO events while incorporating SST uncertainty. Geophysical Research Letters, 2016, 43, 9165-9172.	4.0	84
17	Forcing of Northern Hemisphere Climate Trends. Journals of the Atmospheric Sciences, 2003, 60, 1504-1521.	1.7	83
18	Why were some La Niñas followed by another La Niña?. Climate Dynamics, 2014, 42, 1029-1042.	3.8	83

#	Article	IF	CITATIONS
19	Evolution of model systematic errors in the Tropical Atlantic Basin from coupled climate hindcasts. Climate Dynamics, 2007, 28, 661-682.	3.8	80
20	Ensemble ENSO hindcasts initialized from multiple ocean analyses. Geophysical Research Letters, 2012, 39, .	4.0	73
21	The Interdecadal Shift of ENSO Properties in 1999/2000: A Review. Journal of Climate, 2020, 33, 4441-4462.	3.2	71
22	The role of off-equatorial surface temperature anomalies in the 2014 El Niño prediction. Scientific Reports, 2016, 6, 19677.	3.3	68
23	Connection of stratospheric QBO with global atmospheric general circulation and tropical SST. Part I: methodology and composite life cycle. Climate Dynamics, 2012, 38, 1-23.	3.8	60
24	Connection of summer rainfall variations in South and East Asia: role of El Niño-southern oscillation. International Journal of Climatology, 2005, 25, 1279-1289.	3.5	58
25	Uncertainty in the ocean–atmosphere feedbacks associated with ENSO in the reanalysis products. Climate Dynamics, 2012, 39, 575-588.	3.8	58
26	Interannual Variations of the First Rainy Season Precipitation over South China. Journal of Climate, 2018, 31, 623-640.	3.2	56
27	Evaluation of the Second Global Soil Wetness Project soil moisture simulations: 2. Sensitivity to external meteorological forcing. Journal of Geophysical Research, 2006, 111, .	3.3	54
28	Predictable patterns of the Asian and Indo-Pacific summer precipitation in the NCEP CFS. Climate Dynamics, 2009, 32, 989-1001.	3.8	54
29	SST and ENSO variability and change simulated in historical experiments of CMIP5 models. Climate Dynamics, 2014, 42, 2113-2124.	3.8	52
30	Interannual and interdecadal variability of ocean temperature along the equatorial Pacific in conjunction with ENSO. Climate Dynamics, 2014, 42, 1243-1258.	3.8	50
31	The intensification and shift of the annual North Atlantic Oscillation in a global warming scenario simulation. Tellus, Series A: Dynamic Meteorology and Oceanography, 2004, 56, 112-124.	1.7	49
32	Physical Processes Associated with the Tropical Atlantic SST Gradient during the Anomalous Evolution in the Southeastern Ocean. Journal of Climate, 2007, 20, 3366-3378.	3.2	47
33	The Predictive Skill and the Most Predictable Pattern in the Tropical Atlantic: The Effect of ENSO. Monthly Weather Review, 2007, 135, 1786-1806.	1.4	45
34	On the variety of coastal El Niño events. Climate Dynamics, 2019, 52, 7537-7552.	3.8	44
35	Variations of the East Asian Mei-Yu and Simulation and Prediction by the NCEP Climate Forecast System. Journal of Climate, 2011, 24, 94-108.	3.2	41
36	Prediction skill of monthly SST in the North Atlantic Ocean in NCEP Climate Forecast System version 2. Climate Dynamics, 2013, 40, 2745-2759.	3.8	41

#	Article	IF	CITATIONS
37	Simulation and projection of the western pacific subtropical high in CMIP5 models. Journal of Meteorological Research, 2014, 28, 327-340.	2.4	41
38	Estimating ENSO predictability based on multi-model hindcasts. Climate Dynamics, 2017, 48, 39-51.	3.8	41
39	Predictable patterns and predictive skills of monsoon precipitation in Northern Hemisphere summer in NCEP CFSv2 reforecasts. Climate Dynamics, 2013, 40, 3071-3088.	3.8	40
40	Variability and predictability of Northeast China climate during 1948–2012. Climate Dynamics, 2014, 43, 787-804.	3.8	39
41	Challenges in predicting and simulating summer rainfall in the eastern China. Climate Dynamics, 2019, 52, 2217-2233.	3.8	39
42	Interdecadal variations of ENSO around 1999/2000. Journal of Meteorological Research, 2017, 31, 73-81.	2.4	37
43	Persistent Atmospheric and Oceanic Anomalies in the North Atlantic from Summer 2009 to Summer 2010. Journal of Climate, 2011, 24, 5812-5830.	3.2	35
44	On the Challenge for ENSO Cycle Prediction: An Example from NCEP Climate Forecast System, Version 2. Journal of Climate, 2019, 32, 183-194.	3.2	35
45	How much of monthly mean precipitation variability over global land is associated with SST anomalies?. Climate Dynamics, 2020, 54, 701-712.	3.8	35
46	Physical Processes Associated with the Tropical Atlantic SST Meridional Gradient. Journal of Climate, 2006, 19, 5500-5518.	3.2	34
47	Climate drift of AMOC, North Atlantic salinity and arctic sea ice in CFSv2 decadal predictions. Climate Dynamics, 2015, 44, 559-583.	3.8	34
48	Enhancing the ENSO Predictability beyond the Spring Barrier. Scientific Reports, 2020, 10, 984.	3.3	34
49	Predictable Components of ENSO Evolution in Real-time Multi-Model Predictions. Scientific Reports, 2016, 6, 35909.	3.3	33
50	Contrastive Influence of ENSO and PNA on Variability and Predictability of North American Winter Precipitation. Journal of Climate, 2019, 32, 6271-6284.	3.2	32
51	Prediction Skill of North Pacific Variability in NCEP Climate Forecast System Version 2: Impact of ENSO and Beyond. Journal of Climate, 2014, 27, 4263-4272.	3.2	31
52	An Assessment of Multimodel Simulations for the Variability of Western North Pacific Tropical Cyclones and Its Association with ENSO. Journal of Climate, 2016, 29, 6401-6423.	3.2	31
53	Wavelet Analysis of Summer Rainfall over North China and India and SOI Using 1891-1992 Data. Journal of the Meteorological Society of Japan, 1996, 74, 833-844.	1.8	30
54	Cloud-SST feedback in southeastern tropical Atlantic anomalous events. Journal of Geophysical Research, 2007, 112, .	3.3	30

#	Article	IF	CITATIONS
55	How Variable Is the Uncertainty in ENSO Sea Surface Temperature Prediction?. Journal of Climate, 2014, 27, 2779-2788.	3.2	30
56	Asymmetric evolution of El Niño and La Niña: the recharge/discharge processes and role of the off-equatorial sea surface height anomaly. Climate Dynamics, 2017, 49, 2737-2748.	3.8	30
57	Low cloud errors over the southeastern Atlantic in the NCEP CFS and their association with lowerâ€tropospheric stability and airâ€sea interaction. Journal of Geophysical Research, 2008, 113, .	3.3	29
58	Variability of Summer Rainfall in Northeast China and Its Connection with Spring Rainfall Variability in the Huang-Huai Region and Indian Ocean SST. Journal of Climate, 2014, 27, 7086-7101.	3.2	29
59	An ENSO prediction approach based on ocean conditions and ocean–atmosphere coupling. Climate Dynamics, 2017, 48, 2025-2044.	3.8	29
60	A Historical Perspective of the La Niña Event in 2020/2021. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	28
61	Why Did Large Differences Arise in the Sea Surface Temperature Datasets across the Tropical Pacific during 2012?. Journal of Atmospheric and Oceanic Technology, 2013, 30, 2944-2953.	1.3	27
62	Importance of convective parameterization in ENSO predictions. Geophysical Research Letters, 2017, 44, 6334-6342.	4.0	27
63	On the Shortening of the Lead Time of Ocean Warm Water Volume to ENSO SST Since 2000. Scientific Reports, 2017, 7, 4294.	3.3	27
64	The intensification and shift of the annual North Atlantic Oscillation in a global warming scenario simulation. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 56, 112.	1.7	26
65	Improved reliability of ENSO hindcasts with multi-ocean analyses ensemble initialization. Climate Dynamics, 2013, 41, 2785-2795.	3.8	26
66	Dynamical and cloud-radiation feedbacks in El Niño and greenhouse warming. Geophysical Research Letters, 2001, 28, 1539-1542.	4.0	25
67	Does Knowing the Oceanic PDO Phase Help Predict the Atmospheric Anomalies in Subsequent Months?. Journal of Climate, 2013, 26, 1268-1285.	3.2	25
68	Multi-year El Ni $ ilde{A}$ ±0 events tied to the North Pacific Oscillation. Nature Communications, 2022, 13, .	12.8	25
69	Air–sea coupling in the North Atlantic during summer. Climate Dynamics, 2006, 26, 441-457.	3.8	24
70	Predicting US summer precipitation using NCEP Climate Forecast System version 2 initialized by multiple ocean analyses. Climate Dynamics, 2013, 41, 1941-1954.	3.8	24
71	The Extreme Mei-yu Season in 2020: Role of the Madden-Julian Oscillation and the Cooperative Influence of the Pacific and Indian Oceans. Advances in Atmospheric Sciences, 2021, 38, 2040-2054.	4.3	24
72	Connection of the stratospheric QBO with global atmospheric general circulation and tropical SST. Part II: interdecadal variations. Climate Dynamics, 2012, 38, 25-43.	3.8	22

#	Article	IF	CITATIONS
73	Spatial distribution and the interdecadal change of leading modes of heat budget of the mixed-layer in the tropical Pacific and the association with ENSO. Climate Dynamics, 2016, 46, 1753-1768.	3.8	22
74	Do Climate Change and El Niño Increase Likelihood of Yangtze River Extreme Rainfall?. Bulletin of the American Meteorological Society, 2018, 99, S113-S117.	3.3	22
75	An Analysis of Forced and Internal Variability in a Warmer Climate in CCSM3. Journal of Climate, 2012, 25, 2356-2373.	3.2	21
76	South Pacific Ocean Dipole: A Predictable Mode on Multiseasonal Time Scales. Journal of Climate, 2014, 27, 1648-1658.	3.2	21
77	Sensitivity of tropical climate to low-level clouds in the NCEP climate forecast system. Climate Dynamics, 2011, 36, 1795-1811.	3.8	20
78	Spatiotemporal variations of differences between surface air and ground temperatures in China. Journal of Geophysical Research D: Atmospheres, 2017, 122, 7990-7999.	3.3	20
79	Seasonal predictability of primary East Asian summer circulation patterns by three operational climate prediction models. Quarterly Journal of the Royal Meteorological Society, 2020, 146, 629-646.	2.7	20
80	Cooperative effects of tropical Pacific and Atlantic SST forcing in southern China winter precipitation variability. Climate Dynamics, 2020, 55, 2903-2919.	3.8	19
81	On the significance of the relationship between the North Atlantic Oscillation in early winter and Atlantic sea surface temperature anomalies. Journal of Geophysical Research, 2006, 111, .	3.3	18
82	Tropospheric biennial oscillation of summer monsoon rainfall over East Asia and its association with ENSO. Climate Dynamics, 2015, 45, 1747-1759.	3.8	18
83	Trend and seasonality of land precipitation in observations and CMIP5 model simulations. International Journal of Climatology, 2016, 36, 3781-3793.	3.5	18
84	The Role of Reversed Equatorial Zonal Transport in Terminating an ENSO Event. Journal of Climate, 2016, 29, 5859-5877.	3.2	18
85	An update on the estimate of predictability of seasonal mean atmospheric variability using North American Multi-Model Ensemble. Climate Dynamics, 2019, 53, 7397-7409.	3.8	18
86	Uncoupled El Niño Warming. Geophysical Research Letters, 2020, 47, e2020GL087621.	4.0	18
87	Influences of tropical–extratropical interaction on the multidecadal AMOC variability in the NCEP climate forecast system. Climate Dynamics, 2012, 39, 531-555.	3.8	17
88	Contributions of Atmosphere–Ocean Interaction and Low-Frequency Variation to Intensity of Strong El Niño Events since 1979. Journal of Climate, 2019, 32, 1381-1394.	3.2	17
89	Subseasonal prediction and predictability of summer rainfall over eastern China in BCC_AGCM2.2. Climate Dynamics, 2021, 56, 2057-2069.	3.8	17
90	Impact of global warming on the interannual and interdecadal climate modes in a coupled GCM. Climate Dynamics, 2001, 17, 361-374.	3.8	15

#	Article	IF	CITATIONS
91	What drove the Pacific and North America climate anomalies in winter 2014/15?. Climate Dynamics, 2018, 51, 2667-2679.	3.8	15
92	On the Delayed Coupling Between Ocean and Atmosphere in Recent Weak El Niño Episodes. Geophysical Research Letters, 2019, 46, 11416-11425.	4.0	15
93	How Significant Was the 1877/78 El Niño?. Journal of Climate, 2020, 33, 4853-4869.	3.2	15
94	Influence of the warm pool and cold tongue El Niños on the following Caribbean rainy season rainfall. Climate Dynamics, 2014, 42, 919-929.	3.8	14
95	Is the interdecadal variation of the summer rainfall over eastern China associated with SST?. Climate Dynamics, 2016, 46, 135-146.	3.8	14
96	On the westward shift of tropical Pacific climate variability since 2000. Climate Dynamics, 2019, 53, 2905-2918.	3.8	14
97	Causes and Predictability of the 2021 Spring Southwestern China Severe Drought. Advances in Atmospheric Sciences, 2022, 39, 1766-1776.	4.3	14
98	On the Interdecadal Variation of the Warm Water Volume in the Tropical Pacific Around 1999/2000. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033306.	3.3	12
99	Sea-ice change and its connection with climate change in the Arctic in CMIP2 simulations. Journal of Geophysical Research, 2004, 109, .	3.3	11
100	Leading patterns of the tropical Atlantic variability in a coupled general circulation model. Climate Dynamics, 2008, 30, 703-726.	3.8	11
101	Leading Modes of the Upper-Ocean Temperature Interannual Variability along the Equatorial Atlantic Ocean in NCEP GODAS. Journal of Climate, 2013, 26, 4649-4663.	3.2	11
102	Interannual variability of the South Pacific Ocean in observations and simulated by the NCEP Climate Forecast System, version 2. Climate Dynamics, 2014, 43, 1141-1157.	3.8	11
103	Global Oceans. Bulletin of the American Meteorological Society, 2021, 102, S143-S198.	3.3	11
104	Strength Outlooks for the El Niño–Southern Oscillation. Weather and Forecasting, 2019, 34, 165-175.	1.4	10
105	Inter-basin and Multi-time Scale Interactions in generating the 2019 Extreme Indian Ocean Dipole. Journal of Climate, 2021, , 1-39.	3.2	10
106	Potential mechanism for response of El Niño-Southern Oscillation variability to change in land surface energy budget. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	9
107	Was the North American extreme climate in winter 2013/14 a SST forced response?. Climate Dynamics, 2019, 52, 3099-3110.	3.8	9
108	Was the extremely wet winter of 2018/2019 in the lower reach of the Yangtze River driven by El Niño–Southern Oscillation?. International Journal of Climatology, 2020, 40, 6441-6457.	3.5	9

ZENG-ZHEN HU

#	Article	IF	CITATIONS
109	Influence of availability of TAO data on NCEP ocean data assimilation systems along the equatorial Pacific. Journal of Geophysical Research: Oceans, 2015, 120, 5534-5544.	2.6	8
110	Evaluation of the CFSv2 CMIP5 decadal predictions. Climate Dynamics, 2015, 44, 543-557.	3.8	8
111	Does vertical temperature gradient of the atmosphere matter for El Niño development?. Climate Dynamics, 2017, 48, 1413-1429.	3.8	7
112	Bulk connectivity of global SST and land precipitation variations. Climate Dynamics, 2022, 58, 195-209.	3.8	6
113	Hotspots of Monthly Land Precipitation Variations Affected by SST Anomalies. Journal of Climate, 2022, 35, 4927-4941.	3.2	6
114	Basinwide Connections of Upper-Ocean Temperature Variability in the Equatorial Indian Ocean. Journal of Climate, 2021, 34, 4675-4692.	3.2	4
115	Subannual to Interannual Variabilities of SST in the North Atlantic Ocean. Journal of Climate, 2020, 33, 5547-5564.	3.2	4
116	Oceanic meridional transports and their roles in warm water volume variability and ENSO in the tropical Pacific. Climate Dynamics, 2022, 59, 245-261.	3.8	4
117	Dominant modes of ensemble mean signal and noise in seasonal forecasts of SST. Climate Dynamics, 2021, 56, 1251-1264.	3.8	3
118	Tropical Cyclone Activities Over the Western North Pacific in Summer 2020: Transition From Silence	1.8	3

³ in July to Unusually Active in August. Frontiers in Earth Science, 2022, 10, .