Benito J Mariñas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6455920/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Atom Probe Tomography of Encapsulated Hydroxyapatite Nanoparticles. Small Methods, 2021, 5, e2000692.	8.6	8
2	Internalization of Fluoride in Hydroxyapatite Nanoparticles. Environmental Science & Technology, 2021, 55, 2639-2651.	10.0	12
3	Inside Front Cover: Atom Probe Tomography of Encapsulated Hydroxyapatite Nanoparticles (Small) Tj ETQq1 1 (0.784314 8.6	rgBT /Overlo
4	Direct detection of human adenovirus or SARS-CoV-2 with ability to inform infectivity using DNA aptamer-nanopore sensors. Science Advances, 2021, 7, eabh2848.	10.3	87
5	Atomic-scale Observation of Hydroxyapatite Nanoparticle. Microscopy and Microanalysis, 2019, 25, 2528-2529.	0.4	0
6	Reducing the Pore Size of Covalent Organic Frameworks in Thin-Film Composite Membranes Enhances Solute Rejection. , 2019, 1, 440-446.		55
7	Predominant <i>N</i> -Haloacetamide and Haloacetonitrile Formation in Drinking Water via the Aldehyde Reaction Pathway. Environmental Science & Technology, 2019, 53, 850-859.	10.0	34
8	Adenovirus Replication Cycle Disruption from Exposure to Polychromatic Ultraviolet Irradiation. Environmental Science & Technology, 2018, 52, 3652-3659.	10.0	21
9	Lewis-Acid-Catalyzed Interfacial Polymerization of Covalent Organic Framework Films. CheM, 2018, 4, 308-317.	11.7	364
10	Reconciling DLVO and non-DLVO Forces and Their Implications for Ion Rejection by a Polyamide Membrane. Langmuir, 2017, 33, 8982-8992.	3.5	14
11	Development and Performance Characterization of a Polyimine Covalent Organic Framework Thin-Film Composite Nanofiltration Membrane. Environmental Science & Technology, 2017, 51, 14352-14359.	10.0	166
12	Inactivation Kinetics and Replication Cycle Inhibition of Adenovirus by Monochloramine. Environmental Science and Technology Letters, 2016, 3, 185-189.	8.7	10
13	Characterizing Bacteriophage PR772 as a Potential Surrogate for Adenovirus in Water Disinfection: A Comparative Analysis of Inactivation Kinetics and Replication Cycle Inhibition by Free Chlorine. Environmental Science & Technology, 2016, 50, 2522-2529.	10.0	13
14	Acetonitrile and <i>N</i> -Chloroacetamide Formation from the Reaction of Acetaldehyde and Monochloramine. Environmental Science & Technology, 2015, 49, 9954-9963.	10.0	29
15	Occurrence and Comparative Toxicity of Haloacetaldehyde Disinfection Byproducts in Drinking Water. Environmental Science & Technology, 2015, 49, 13749-13759.	10.0	167
16	Changes in Physicochemical and Transport Properties of a Reverse Osmosis Membrane Exposed to Chloraminated Seawater. Environmental Science & amp; Technology, 2015, 49, 2301-2309.	10.0	26
17	Analysis of the Viral Replication Cycle of Adenovirus Serotype 2 after Inactivation by Free Chlorine. Environmental Science & Technology, 2015, 49, 4584-4590.	10.0	38
18	Waterborne Viruses: A Barrier to Safe Drinking Water. PLoS Pathogens, 2015, 11, e1004867.	4.7	144

BENITO J MARIñAS

#	Article	IF	CITATIONS
19	Toxic Impact of Bromide and Iodide on Drinking Water Disinfected with Chlorine or Chloramines. Environmental Science & Technology, 2014, 48, 12362-12369.	10.0	215
20	Toxicity of Drinking Water Disinfection Byproducts: Cell Cycle Alterations Induced by the Monohaloacetonitriles. Environmental Science & amp; Technology, 2014, 48, 11662-11669.	10.0	59
21	Kinetics of Bromochloramine Formation and Decomposition. Environmental Science & Technology, 2014, 48, 2843-2852.	10.0	56
22	Development and Performance Characterization of a Polyamide Nanofiltration Membrane Modified with Covalently Bonded Aramide Dendrimers. Environmental Science & Technology, 2013, 47, 130711065921008.	10.0	8
23	Chloroacetonitrile and <i>N</i> ,2-Dichloroacetamide Formation from the Reaction of Chloroacetaldehyde and Monochloramine in Water. Environmental Science & Technology, 2013, 47, 12382-12390.	10.0	51
24	Growth dynamics of interfacially polymerized polyamide layers by diffuse reflectance spectroscopy and Rutherford backscattering spectrometry. Journal of Membrane Science, 2013, 429, 71-80.	8.2	62
25	Modeling the Effect of Charge Density in the Active Layers of Reverse Osmosis and Nanofiltration Membranes on the Rejection of Arsenic(III) and Potassium Iodide. Environmental Science & amp; Technology, 2013, 47, 420-428.	10.0	48
26	Nanofiltration Membranes with Modified Active Layer Using Aromatic Polyamide Dendrimers. Advanced Functional Materials, 2013, 23, 598-607.	14.9	56
27	Inactivation of Bacteriophage MS2 with Potassium Ferrate(VI). Environmental Science & Technology, 2012, 46, 12079-12087.	10.0	94
28	Cytotoxicity analysis of water disinfection byproducts with a micro-pillar microfluidic device. Lab on A Chip, 2012, 12, 3891.	6.0	4
29	Bromide Ion Effect on <i>N</i> -Nitrosodimethylamine Formation by Monochloramine. Environmental Science & Technology, 2012, 46, 5085-5092.	10.0	37
30	Enhancing the Performance of Nanofiltration Membranes by Modifying the Active Layer with Aramide Dendrimers. Environmental Science & Technology, 2012, 46, 9592-9599.	10.0	29
31	Depth Heterogeneity of Fully Aromatic Polyamide Active Layers in Reverse Osmosis and Nanofiltration Membranes. Environmental Science & Technology, 2011, 45, 4513-4520.	10.0	150
32	Inactivation of Coxsackievirus by Chlorine, Silver, and Solar Disinfection for Safe Global Water. Proceedings of the Water Environment Federation, 2011, 2011, 64-71.	0.0	1
33	Assessment of Suitable Drinking Water Technologies for Disinfection of DNA Viruses: Providing Global Safe Water. Proceedings of the Water Environment Federation, 2011, 2011, 80-83.	0.0	0
34	Mechanistic Aspects of Adenovirus Serotype 2 Inactivation with Free Chlorine. Applied and Environmental Microbiology, 2010, 76, 2946-2954.	3.1	50
35	Ionization Behavior, Stoichiometry of Association, and Accessibility of Functional Groups in the Active Layers of Reverse Osmosis and Nanofiltration Membranes. Environmental Science & Technology, 2010, 44, 6808-6814.	10.0	97
36	Absorption of water in the active layer of reverse osmosis membranes. Journal of Membrane Science, 2009, 331, 143-151.	8.2	111

BENITO J MARIñAS

#	Article	IF	CITATIONS
37	Mammalian Cell DNA Damage and Repair Kinetics of Monohaloacetic Acid Drinking Water Disinfection By-Products. Environmental Science & Technology, 2009, 43, 8437-8442.	10.0	52
38	Kinetics of adenovirus type 2 inactivation with free chlorine. Water Research, 2009, 43, 2916-2926.	11.3	48
39	Science and technology for water purification in the coming decades. , 2009, , 337-346.		110
40	Improving the Control of Viral Pathogens By Pou Technologies Used in Developing Regions. Proceedings of the Water Environment Federation, 2009, 2009, 195-201.	0.0	0
41	Science and technology for water purification in the coming decades. Nature, 2008, 452, 301-310.	27.8	6,795
42	Quantification of Functional Groups and Modeling of Their Ionization Behavior in the Active Layer of FT30 Reverse Osmosis Membrane. Environmental Science & Technology, 2008, 42, 5260-5266.	10.0	159
43	Inactivation kinetics of adenovirus serotype 2 with monochloramine. Water Research, 2008, 42, 1467-1474.	11.3	38
44	Inactivation of Mycobacterium avium with chlorine dioxide. Water Research, 2008, 42, 1531-1538.	11.3	26
45	Effects of Powdered Activated Carbon Pore Size Distribution on the Competitive Adsorption of Aqueous Atrazine and Natural Organic Matter. Environmental Science & Technology, 2008, 42, 1227-1231.	10.0	75
46	Treatment of Coliphage MS2 with Palladium-Modified Nitrogen-Doped Titanium Oxide Photocatalyst Illuminated by Visible Light. Environmental Science & Technology, 2008, 42, 6148-6153.	10.0	69
47	Effect of Strongly Competing Background Compounds on the Kinetics of Trace Organic Contaminant Desorption from Activated Carbon. Environmental Science & Technology, 2008, 42, 2606-2611.	10.0	15
48	Inactivation of <i>Mycobacterium avium</i> with Monochloramine. Environmental Science & Technology, 2008, 42, 8051-8056.	10.0	21
49	Effect of Pore-Blocking Background Compounds on the Kinetics of Trace Organic Contaminant Desorption from Activated Carbon. Environmental Science & Technology, 2008, 42, 4825-4830.	10.0	24
50	Effect of Exposure to UV-C Irradiation and Monochloramine on Adenovirus Serotype 2 Early Protein Expression and DNA Replication. Applied and Environmental Microbiology, 2008, 74, 3774-3782.	3.1	45
51	Partitioning of salt ions in FT30 reverse osmosis membranes. Applied Physics Letters, 2007, 91, .	3.3	32
52	Modeling Cryptosporidium parvum oocyst inactivation and bromate in a flow-through ozone contactor treating natural water. Water Research, 2007, 41, 467-475.	11.3	36
53	Simplification of the IAST for activated carbon adsorption of trace organic compounds from natural water. Water Research, 2007, 41, 440-448.	11.3	38
54	Application of a three-component competitive adsorption model to evaluate and optimize granular activated carbon systems. Water Research, 2007, 41, 3289-3298.	11.3	22

Benito J Mariñas

#	Article	IF	CITATIONS
55	Nanofiltration Membranes Based on Rigid Star Amphiphiles. Chemistry of Materials, 2007, 19, 3194-3204.	6.7	64
56	Three-Component Adsorption Modeling to Evaluate and Improve Integrated Sorptionâ^'Membrane Processes. Environmental Science & Technology, 2007, 41, 6547-6553.	10.0	13
57	RBS Characterization of Arsenic(III) Partitioning from Aqueous Phase into the Active Layers of Thin-Film Composite NF/RO Membranes. Environmental Science & Technology, 2007, 41, 3290-3295.	10.0	29
58	Performance Characterization of Nanofiltration Membranes Based on Rigid Star Amphiphiles. Environmental Science & Technology, 2007, 41, 6246-6252.	10.0	24
59	Inactivation ofMycobacterium aviumwith Free Chlorine. Environmental Science & Technology, 2007, 41, 5096-5102.	10.0	35
60	Physico-chemical integrity of nanofiltration/reverse osmosis membranes during characterization by Rutherford backscattering spectrometry. Journal of Membrane Science, 2007, 291, 77-85.	8.2	60
61	Chemically activated carbon on a fiberglass substrate for removal of trace atrazine from water. Journal of Materials Chemistry, 2006, 16, 3375-3380.	6.7	27
62	Cyanogen Bromide Formation from the Reactions of Monobromamine and Dibromamine with Cyanide Ion. Environmental Science & Technology, 2006, 40, 2559-2564.	10.0	12
63	Three-Component Competitive Adsorption Model for Fixed-Bed and Moving-Bed Granular Activated Carbon Adsorbers. Part I. Model Development. Environmental Science & Technology, 2006, 40, 6805-6811.	10.0	34
64	Competitive Effects of Natural Organic Matter:Â Parametrization and Verification of the Three-Component Adsorption Model COMPSORB. Environmental Science & Technology, 2006, 40, 350-356.	10.0	37
65	Three-Component Competitive Adsorption Model for Fixed-Bed and Moving-Bed Granular Activated Carbon Adsorbers. Part II. Model Parameterization and Verification. Environmental Science & Technology, 2006, 40, 6812-6817.	10.0	19
66	Physico-chemical characterization of NF/RO membrane active layers by Rutherford backscattering spectrometryâ~†. Journal of Membrane Science, 2006, 282, 71-81.	8.2	120
67	ModelingCryptosporidium parvumOocyst Inactivation and Bromate Formation in a Full-Scale Ozone Contactor. Environmental Science & Technology, 2005, 39, 9343-9350.	10.0	39
68	Microbial Passage in Low Pressure Membrane Elements with Compromised Integrity. Environmental Science & Technology, 2005, 39, 4270-4279.	10.0	16
69	Development of a Ct equation taking into consideration the effect of lot variability on the inactivation of Cryptosporidium parvum oocysts with ozone. Water Research, 2005, 39, 2429-2437.	11.3	4
70	Bromamine Decomposition Kinetics in Aqueous Solutions. Environmental Science & Technology, 2004, 38, 2111-2119.	10.0	74
71	Simultaneous Prediction ofCryptosporidium parvumOocyst Inactivation and Bromate Formation during Ozonation of Synthetic Waters. Environmental Science & Technology, 2004, 38, 2232-2241.	10.0	36
72	Removal of biological and non-biological viral surrogates by spiral-wound reverse osmosis membrane elements with intact and compromised integrity. Water Research, 2004, 38, 3821-3832.	11.3	49

BENITO J MARIñAS

#	Article	IF	CITATIONS
73	Three-Component Competitive Adsorption Model for Flow-Through PAC Systems. 1. Model Development and Verification with a PAC/Membrane System. Environmental Science & Technology, 2003, 37, 2997-3004.	10.0	39
74	Three-Component Competitive Adsorption Model for Flow-Through PAC Systems. 2. Model Application to a PAC/Membrane System. Environmental Science & amp; Technology, 2003, 37, 3005-3011.	10.0	12
75	Pore blockage effect of NOM on atrazine adsorption kinetics of PAC: the roles of PAC pore size distribution and NOM molecular weight. Water Research, 2003, 37, 4863-4872.	11.3	174
76	Inactivation of Bacillus subtilis spores with ozone and monochloramine. Water Research, 2003, 37, 833-844.	11.3	80
77	A Bayesian method of estimating kinetic parameters for the inactivation of Cryptosporidium parvum oocysts with chlorine dioxide and ozone. Water Research, 2003, 37, 4533-4543.	11.3	30
78	Inactivation of Cryptosporidium Oocysts in a Pilot-Scale Ozone Bubble-Diffuser Contactor. II: Model Validation and Application. Journal of Environmental Engineering, ASCE, 2002, 128, 522-532.	1.4	16
79	Inactivation of Cryptosporidium Oocysts in a Pilot-Scale Ozone Bubble-Diffuser Contactor. I: Model Development. Journal of Environmental Engineering, ASCE, 2002, 128, 514-521.	1.4	23
80	Displacement Effect of NOM on Atrazine Adsorption by PACs with Different Pore Size Distributions. Environmental Science & Technology, 2002, 36, 1510-1515.	10.0	33
81	Sequential inactivation of Cryptosporidium parvum oocysts with chlorine dioxide followed by free chlorine or monochloramine. Water Research, 2002, 36, 178-188.	11.3	45
82	Inactivation of Cryptosporidium parvum oocysts with ozone and free chlorine. Water Research, 2002, 36, 4053-4063.	11.3	65
83	Improving membrane integrity monitoring indirect methods to reduce plant downtime and increase microbial removal credit. Desalination, 2002, 149, 493-497.	8.2	25
84	Inactivation of Cryptosporidium parvum oocysts with ozone and monochloramine at low temperature. Water Research, 2001, 35, 41-48.	11.3	71
85	The hydroxide-assisted hydrolysis of cyanogen chloride in aqueous solution. Water Research, 2001, 35, 643-648.	11.3	8
86	Inactivation of bacillus subtilis spores and formation of bromate during ozonation. Water Research, 2001, 35, 2950-2960.	11.3	67
87	Role of Disinfectant Concentration and pH in the Inactivation Kinetics ofCryptosporidium parvumOocysts with Ozone and Monochloramine. Environmental Science & Technology, 2001, 35, 2752-2757.	10.0	47
88	Sequential inactivation of Cryptosporidium parvum oocysts with ozone and free chlorine. Water Research, 2000, 34, 3591-3597.	11.3	93
89	Atrazine removal by powdered activated carbon in floc blanket reactors. Water Research, 2000, 34, 4070-4080.	11.3	29
90	Synergy in sequential inactivation of Cryptosporidium parvum with ozone/free chlorine and ozone/monochloramine. Water Research, 2000, 34, 4121-4130.	11.3	81

Benito J Mariñas

#	Article	IF	CITATIONS
91	Inactivation of Escherichia coli with ozone: chemical and inactivation kinetics. Water Research, 1999, 33, 2633-2641.	11.3	116
92	Inactivation of Cryptosporidium parvum oocysts with ozone. Water Research, 1999, 33, 2481-2488.	11.3	172
93	Formation of Cyanogen Chloride from the Reaction of Monochloramine with Formaldehyde. Environmental Science & Technology, 1999, 33, 4239-4249.	10.0	70
94	Adsorption of trace organic compounds in CRISTAL® processes. Desalination, 1998, 117, 265-271.	8.2	44
95	Role of Chlorine and Oxygen in the Photocatalytic Degradation of Trichloroethylene Vapor on TiO2Films. Environmental Science & Technology, 1997, 31, 562-568.	10.0	70
96	Role of Water in the Photocatalytic Degradation of Trichloroethylene Vapor on TiO2Films. Environmental Science & Technology, 1997, 31, 1440-1445.	10.0	46
97	Kinetics of Escherichia coli inactivation with ozone. Water Research, 1997, 31, 1355-1362.	11.3	164
98	Desalination of municipal wastewater for horticultural reuse: Process description and evaluation. Desalination, 1995, 103, 1-10.	8.2	15
99	Modified Indigo Method For Gaseous And Aqueous Ozone Analyses. Ozone: Science and Engineering, 1995, 17, 329-344.	2.5	39
100	Isotopic fractionation and overall permeation of lithium by a thin-film composite polyamide reverse osmosis membrane. Journal of Membrane Science, 1994, 88, 231-241.	8.2	11
101	Response to comments on "Stoichiometry and kinetics of the reaction of nitrite with free chlorine in aqueous solutions". Environmental Science & amp; Technology, 1992, 26, 1847-1847.	10.0	0
102	Reverse osmosis treatment of multicomponent electrolyte solutions. Journal of Membrane Science, 1992, 72, 211-229.	8.2	60
103	Stoichiometry and kinetics of the reaction of nitrite with free chlorine in aqueous solutions. Environmental Science & Technology, 1990, 24, 1711-1716.	10.0	14
104	Desalination of agricultural drainage return water. Part II: Analysis of the performance of a 13,000 GDP RO unit. Desalination, 1987, 61, 263-274.	8.2	7