List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6454669/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanisms and regulation ofÂcholesterol homeostasis. Nature Reviews Molecular Cell Biology, 2020, 21, 225-245.	37.0	899
2	Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast. Journal of Cell Biology, 2008, 180, 473-482.	5.2	411
3	Cholesterol Transport through Lysosome-Peroxisome Membrane Contacts. Cell, 2015, 161, 291-306.	28.9	314
4	A Role for Phosphatidic Acid in the Formation of "Supersized―Lipid Droplets. PLoS Genetics, 2011, 7, e1002201.	3.5	290
5	Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites. Journal of Cell Biology, 2011, 195, 953-963.	5.2	273
6	A role for oxysterol-binding protein–related protein 5 in endosomal cholesterol trafficking. Journal of Cell Biology, 2011, 192, 121-135.	5.2	270
7	Up-Regulation of Mitochondrial Activity and Acquirement of Brown Adipose Tissue-Like Property in the White Adipose Tissue of Fsp27 Deficient Mice. PLoS ONE, 2008, 3, e2890.	2.5	223
8	Perilipin1 promotes unilocular lipid droplet formation through the activation of Fsp27 in adipocytes. Nature Communications, 2013, 4, 1594.	12.8	200
9	Rab18 promotes lipid droplet (LD) growth by tethering the ER to LDs through SNARE and NRZ interactions. Journal of Cell Biology, 2018, 217, 975-995.	5.2	164
10	Controlling the size of lipid droplets: lipid and protein factors. Current Opinion in Cell Biology, 2012, 24, 509-516.	5.4	161
11	Human SEIPIN Binds Anionic Phospholipids. Developmental Cell, 2018, 47, 248-256.e4.	7.0	159
12	Conditions of endoplasmic reticulum stress stimulate lipid droplet formation in <i>Saccharomyces cerevisiae</i> . Biochemical Journal, 2009, 424, 61-67.	3.7	156
13	Seipin ablation in mice results in severe generalized lipodystrophy. Human Molecular Genetics, 2011, 20, 3022-3030.	2.9	152
14	ORP5 and ORP8 bind phosphatidylinositol-4, 5-biphosphate (PtdIns(4,5)P 2) and regulate its level at the plasma membrane. Nature Communications, 2017, 8, 757.	12.8	150
15	SEIPIN Regulates Lipid Droplet Expansion and Adipocyte Development by Modulating the Activity of Glycerol-3-phosphate Acyltransferase. Cell Reports, 2016, 17, 1546-1559.	6.4	148
16	ORP2 Delivers Cholesterol to the Plasma Membrane in Exchange for Phosphatidylinositol 4, 5-Bisphosphate (PI(4,5)P2). Molecular Cell, 2019, 73, 458-473.e7.	9.7	143
17	Human Multidrug Resistance Associated Protein 4 Confers Resistance to Camptothecins. Pharmaceutical Research, 2005, 22, 1837-1853.	3.5	127
18	Tissue-Autonomous Function of Drosophila Seipin in Preventing Ectopic Lipid Droplet Formation. PLoS Genetics, 2011, 7, e1001364.	3.5	121

#	Article	IF	CITATIONS
19	Schizosaccharomyces pombe Cells Deficient in Triacylglycerols Synthesis Undergo Apoptosis upon Entry into the Stationary Phase. Journal of Biological Chemistry, 2003, 278, 47145-47155.	3.4	116
20	Toward one step analysis of cellular lipidomes using liquid chromatography coupled with mass spectrometry: application to Saccharomyces cerevisiae and Schizosaccharomyces pombe lipidomics. Molecular BioSystems, 2010, 6, 1008.	2.9	111
21	Structure of Osh3 Reveals a Conserved Mode of Phosphoinositide Binding in Oxysterol-Binding Proteins. Structure, 2013, 21, 1203-1213.	3.3	111
22	Intracellular Cholesterol Transport by Sterol Transfer Proteins at Membrane Contact Sites. Trends in Biochemical Sciences, 2019, 44, 273-292.	7.5	109
23	Structural Basis of Low-pH-Dependent Lysosomal Cholesterol Egress by NPC1 and NPC2. Cell, 2020, 182, 98-111.e18.	28.9	107
24	Monitoring of immune responses to a herbal immuno-modulator in patients with advanced colorectal cancer. International Immunopharmacology, 2006, 6, 499-508.	3.8	105
25	The biogenesis of lipid droplets: Lipids take center stage. Progress in Lipid Research, 2019, 75, 100989.	11.6	104
26	Identification of the major functional proteins of prokaryotic lipid droplets. Journal of Lipid Research, 2012, 53, 399-411.	4.2	103
27	Vps20p and Vta1p interact with Vps4p and function in multivesicular body sorting and endosomal transport in Saccharomyces cerevisiae. Journal of Cell Science, 2003, 116, 3957-3970.	2.0	101
28	TMEM41B and VMP1 are scramblases and regulate the distribution of cholesterol and phosphatidylserine. Journal of Cell Biology, 2021, 220, .	5.2	100
29	Rab8a-AS160-MSS4 Regulatory Circuit Controls Lipid Droplet Fusion and Growth. Developmental Cell, 2014, 30, 378-393.	7.0	98
30	Routes and mechanisms of postâ€endosomal cholesterol trafficking: A story that never ends. Traffic, 2017, 18, 209-217.	2.7	91
31	Seipin, adipogenesis and lipid droplets. Trends in Endocrinology and Metabolism, 2011, 22, 204-210.	7.1	90
32	Insulin resistance and white adipose tissue inflammation are uncoupled in energetically challenged Fsp27-deficient mice. Nature Communications, 2015, 6, 5949.	12.8	87
33	TMAVA, a Metabolite of Intestinal Microbes, Is Increased in Plasma From Patients With Liver Steatosis, Inhibits î ³ -Butyrobetaine Hydroxylase, and Exacerbates Fatty Liver in Mice. Gastroenterology, 2020, 158, 2266-2281.e27.	1.3	87
34	A Mechanistic Study of the Intestinal Absorption of Cryptotanshinone, the Major Active Constituent ofSalvia miltiorrhiza. Journal of Pharmacology and Experimental Therapeutics, 2006, 317, 1285-1294.	2.5	86
35	Adipose-Specific Knockout of <i>Seipin/Bscl2</i> Results in Progressive Lipodystrophy. Diabetes, 2014, 63, 2320-2331.	0.6	84
36	Dynamic transcriptome changes during adipose tissue energy expenditure reveal critical roles for long noncoding RNA regulators. PLoS Biology, 2017, 15, e2002176.	5.6	81

#	Article	IF	CITATIONS
37	Molecular characterization of seipin and its mutants: implications for seipin in triacylglycerol synthesis. Journal of Lipid Research, 2011, 52, 2136-2147.	4.2	77
38	Positive and negative regulation of a sterol biosynthetic gene (ERG3) in the post-squalene portion of the yeast ergosterol pathway. FEBS Letters, 1996, 392, 161-165.	2.8	75
39	Topotecan Is a Substrate for Multidrug Resistance Associated Protein 4. Current Drug Metabolism, 2006, 7, 105-118.	1.2	75
40	ORP5 localizes to ER–lipid droplet contacts and regulates the level of PI(4)P on lipid droplets. Journal of Cell Biology, 2020, 219, .	5.2	75
41	Allosteric enhancement of ORP1-mediated cholesterol transport by PI(4,5)P2/PI(3,4)P2. Nature Communications, 2019, 10, 829.	12.8	73
42	Antitumor Activity and Underlying Mechanisms of Ganopoly, The Refined Polysaccharides Extracted from <i>Ganoderma Lucidum</i> , in Mice. Immunological Investigations, 2005, 34, 171-198.	2.0	68
43	Structural basis for catalysis and substrate specificity of human ACAT1. Nature, 2020, 581, 333-338.	27.8	66
44	Identification of a 26S Proteasome-Associated UCH in Fission Yeast. Biochemical and Biophysical Research Communications, 2000, 272, 270-275.	2.1	64
45	Lack of testicular seipin causes teratozoospermia syndrome in men. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7054-7059.	7.1	63
46	AAA ATPases regulate membrane association of yeast oxysterol binding proteins and sterol metabolism. EMBO Journal, 2005, 24, 2989-2999.	7.8	57
47	Functional Expression of a cDNA to Human Acyl-coenzyme A:Cholesterol Acyltransferase in Yeast. Journal of Biological Chemistry, 1997, 272, 3980-3985.	3.4	56
48	The redox regulation of intermediary metabolism by a superoxide-aconitase rheostat. BioEssays, 2004, 26, 894-900.	2.5	55
49	ABCA1 gene polymorphisms and their associations with coronary artery disease and plasma lipids in males from three ethnic populations in Singapore. Human Genetics, 2003, 113, 106-117.	3.8	53
50	Seipin accumulates and traps diacylglycerols and triglycerides in its ring-like structure. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	52
51	Antitumor Activity and Underlying Mechanisms of Ganopoly, The Refined Polysaccharides Extracted from Ganoderma Lucidum, in Mice. Immunological Investigations, 2005, 34, 171-198.	2.0	51
52	Genome-Wide Analysis of Sterol-Lipid Storage and Trafficking in Saccharomyces cerevisiae. Eukaryotic Cell, 2008, 7, 401-414.	3.4	50
53	Changes in reactive oxygen species begin early during replicative aging of Saccharomyces cerevisiae cells. Free Radical Biology and Medicine, 2011, 50, 963-970.	2.9	50
54	Novel mechanisms of intracellular cholesterol transport: oxysterol-binding proteins and membrane contact sites. Current Opinion in Cell Biology, 2015, 35, 37-42.	5.4	49

#	Article	IF	CITATIONS
55	Smooth muscle SIRT1 reprograms endothelial cells to suppress angiogenesis after ischemia. Theranostics, 2020, 10, 1197-1212.	10.0	48
56	Cytochrome bc1 Regulates the Mitochondrial Permeability Transition by Two Distinct Pathways. Journal of Biological Chemistry, 2004, 279, 50420-50428.	3.4	47
57	GPAT3 deficiency alleviates insulin resistance and hepatic steatosis in a mouse model of severe congenital generalized lipodystrophy. Human Molecular Genetics, 2020, 29, 432-443.	2.9	47
58	Cysteine Starvation Activates the Redox-Dependent Mitochondrial Permeability Transition in Retinal Pigment Epithelial Cells. , 2004, 45, 4183.		45
59	An Essential Role of Hrs/Vps27 in Endosomal Cholesterol Trafficking. Cell Reports, 2012, 1, 29-35.	6.4	45
60	A structure of human Scap bound to Insig-2 suggests how their interaction is regulated by sterols. Science, 2021, 371, .	12.6	44
61	The size and phospholipid composition of lipid droplets can influence their proteome. Biochemical and Biophysical Research Communications, 2011, 415, 455-462.	2.1	43
62	Accumulation of squalene is associated with the clustering of lipid droplets. FEBS Journal, 2012, 279, 4231-4244.	4.7	43
63	Translocation Efficiency, Susceptibility to Proteasomal Degradation, and Lipid Responsiveness of Apolipoprotein B Are Determined by the Presence of β Sheet Domains. Journal of Biological Chemistry, 1998, 273, 35216-35221.	3.4	41
64	CDP-diacylglycerol synthases regulate the growth of lipid droplets and adipocyte development. Journal of Lipid Research, 2016, 57, 767-780.	4.2	41
65	St. John's Wort Modulates the Toxicities and Pharmacokinetics of CPT-11 (Irinotecan) in Rats. Pharmaceutical Research, 2005, 22, 902-914.	3.5	40
66	Caspase-dependent and -independent lipotoxic cell-death pathways in fission yeast. Journal of Cell Science, 2008, 121, 2671-2684.	2.0	39
67	High doses of simvastatin upregulate dopamine D1 and D2 receptor expression in the rat prefrontal cortex: possible involvement of endothelial nitric oxide synthase. British Journal of Pharmacology, 2005, 144, 933-939.	5.4	38
68	Sulphite oxidase gene expression in human brain and in other human and rat tissues. Biochemical and Biophysical Research Communications, 2003, 305, 619-623.	2.1	35
69	Apoptosis and lipoapoptosis in the fission yeast. FEMS Yeast Research, 2005, 5, 1199-1206.	2.3	34
70	Nonvesicular sterol transport: two protein families and a sterol sensor?. Trends in Cell Biology, 2006, 16, 427-432.	7.9	34
71	Different kinetics of cholesterol delivery to components of the cholesterol homeostatic machinery: Implications for cholesterol trafficking to the endoplasmic reticulum. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2008, 1781, 724-730.	2.4	34
72	Characterization of Substrate Preference for Slc1p and Cst26p in Saccharomyces cerevisiae Using Lipidomic Approaches and an LPAAT Activity Assay. PLoS ONE, 2010, 5, e11956.	2.5	34

#	Article	IF	CITATIONS
73	Molecular characterization of Osh6p, an oxysterol binding protein homolog in the yeast Saccharomyces cerevisiae. FEBS Journal, 2005, 272, 4703-4715.	4.7	33
74	The role of oxysterol-binding protein and its related proteins in cancer. Seminars in Cell and Developmental Biology, 2018, 81, 149-153.	5.0	32
75	Enhanced acyl-CoA:cholesterol acyltransferase activity increases cholesterol levels on the lipid droplet surface and impairs adipocyte function. Journal of Biological Chemistry, 2019, 294, 19306-19321.	3.4	32
76	Ncr1p, the Yeast Ortholog of Mammalian Niemann Pick C1 Protein, is Dispensable for Endocytic Transport. Traffic, 2004, 5, 1017-1030.	2.7	31
77	Overexpression of a short human seipin/BSCL2 isoform in mouse adipose tissue results in mild lipodystrophy. American Journal of Physiology - Endocrinology and Metabolism, 2012, 302, E705-E713.	3.5	31
78	Association of CETP Taq1B and -629C > A polymorphisms with coronary artery disease and lipid levels in the multi-ethnic Singaporean population. Lipids in Health and Disease, 2013, 12, 85.	3.0	31
79	Lipid Raft-dependent Endocytosis of Close Homolog of Adhesion Molecule L1 (CHL1) Promotes Neuritogenesis. Journal of Biological Chemistry, 2012, 287, 44447-44463.	3.4	28
80	The <scp>AAA ATPase VPS4</scp> / <scp>SKD1</scp> Regulates Endosomal Cholesterol Trafficking Independently of <scp>ESCRTâ€II</scp> . Traffic, 2013, 14, 107-119.	2.7	27
81	Lipid droplet growth and adipocyte development: mechanistically distinct processes connected by phospholipids. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 1273-1283.	2.4	25
82	Oxysterol-binding protein–related protein 5 (ORP5) promotes cell proliferation by activation of mTORC1 signaling. Journal of Biological Chemistry, 2018, 293, 3806-3818.	3.4	24
83	Identification of two proteins, S14 and UIP1, that interact with UCH37. FEBS Letters, 2001, 488, 201-205.	2.8	23
84	Programmed cell death in fission yeast Schizosaccharomyces pombe. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 1335-1349.	4.1	23
85	Retinyl esters form lipid droplets independently of triacylglycerol and seipin. Journal of Cell Biology, 2021, 220, .	5.2	22
86	DFCP1 associates with lipid droplets. Cell Biology International, 2019, 43, 1492-1504.	3.0	21
87	Adipose tissue deficiency results in severe hyperlipidemia and atherosclerosis in the low-density lipoprotein receptor knockout mice. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 410-418.	2.4	20
88	CDP-DAG synthase 1 and 2 regulate lipid droplet growth through distinct mechanisms. Journal of Biological Chemistry, 2019, 294, 16740-16755.	3.4	20
89	Prediction of herb-drug metabolic interactions: a simulation study. Phytotherapy Research, 2005, 19, 464-471.	5.8	19
90	Endosomal cholesterol trafficking: protein factors at a glance. Acta Biochimica Et Biophysica Sinica, 2013, 45, 11-17.	2.0	19

#	Article	IF	CITATIONS
91	TMEM41B and VMP1 are phospholipid scramblases. Autophagy, 2021, 17, 2048-2050.	9.1	18
92	VPS13: A lipid transfer protein making contacts at multiple cellular locations. Journal of Cell Biology, 2018, 217, 3322-3324.	5.2	17
93	AGPAT2 interaction with CDP-diacylglycerol synthases promotes the flux of fatty acids through the CDP-diacylglycerol pathway. Nature Communications, 2021, 12, 6877.	12.8	17
94	ApoC2 deficiency elicits severe hypertriglyceridemia and spontaneous atherosclerosis: A rodent model rescued from neonatal death. Metabolism: Clinical and Experimental, 2020, 109, 154296.	3.4	16
95	Maintenance of Mitochondrial Morphology by Autophagy and Its Role in High Glucose Effects on Chronological Lifespan of <i>Saccharomyces cerevisiae</i> . Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-13.	4.0	14
96	Akt activation increases cellular cholesterol by promoting the proteasomal degradation of Niemann–Pick C1. Biochemical Journal, 2015, 471, 243-253.	3.7	14
97	Molecular cloning and biochemical characterization of Candida albicans acyl-CoA:sterol acyltransferase, a potential target of antifungal agents. Biochemical and Biophysical Research Communications, 2004, 319, 911-919.	2.1	13
98	The last five amino acid residues at the C-terminus of PRK1/PKN is essential for full lipid responsiveness. Cellular Signalling, 2005, 17, 1084-1097.	3.6	12
99	Acyl-CoA: cholesterol acyltransferase-2 gene polymorphisms and their association with plasma lipids and coronary artery disease risks. Human Genetics, 2005, 118, 393-403.	3.8	11
100	CRISPR/Cas9-Mediated Generation of Niemann–Pick C1 Knockout Cell Line. Methods in Molecular Biology, 2017, 1583, 73-83.	0.9	11
101	Integrative analyses of translatome and transcriptome reveal important translational controls in brown and white adipose regulated by microRNAs. Scientific Reports, 2017, 7, 5681.	3.3	10
102	Identification of gene products that control lipid droplet size in yeast using a high-throughput quantitative image analysis. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 113-127.	2.4	10
103	Genome-Wide Screens for Gene Products Regulating Lipid Droplet Dynamics. Methods in Cell Biology, 2012, 108, 303-316.	1.1	9
104	The expression of SEIPIN in the mouse central nervous system. Brain Structure and Function, 2016, 221, 4111-4127.	2.3	8
105	Hepatic CDP-diacylglycerol synthase 2 deficiency causes mitochondrial dysfunction and promotes rapid progression of NASH and fibrosis. Science Bulletin, 2022, 67, 299-314.	9.0	8
106	Human Multidrug Resistance Associated Protein 4 Confers Resistance to Camptothecins. Pharmaceutical Research, 2005, 22, 1837.	3.5	6
107	Surgical fat removal exacerbates metabolic disorders but not atherogenesis in LDLRâ^'/â^' mice fed on high-fat diet. Scientific Reports, 2019, 9, 17848.	3.3	5
108	Extended synaptotagmins, peroxisome-endoplasmic reticulum contact and cholesterol transport. Science China Life Sciences, 2019, 62, 1266-1269.	4.9	4

#	Article	IF	CITATIONS
109	Seipin regulates the formation of nuclear lipid droplets from a distance. Journal of Cell Biology, 2021, 220, .	5.2	3
110	Idol Depletion Protects against Spontaneous Atherosclerosis in a Hamster Model of Familial Hypercholesterolemia. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-14.	4.0	3
111	ORP1L, ORP1S, and ORP2: Lipid Sensors and Transporters. Contact (Thousand Oaks (Ventura County,) Tj ETQq1	1 0.78431 1.3	4 ₂ rgBT /Ove
112	Elevated HB‣GF expression in neural stem cells causes middle age obesity by suppressing Hypocretin/Orexin expression. FASEB Journal, 2021, 35, e21345.	0.5	2
113	Sterol-binding proteins and endosomal cholesterol transport. Frontiers in Biology, 2011, 6, 190.	0.7	1
114	Functional characterization of two single nucleotide polymorphisms of acyl-coenzyme A:cholesterol acyltransferase 2. Gene, 2015, 566, 236-241.	2.2	1
115	Triacylglycerol Measurement in HeLa Cells. Bio-protocol, 2020, 10, e3852.	0.4	1
116	Preface. Methods in Cell Biology, 2013, 116, xiii.	1.1	0
117	Structure and function of lipid droplets. , 2021, , 357-394.		0