

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6453708/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly epoxidized soybean oil in replacement of mineral oil for high performance on silica-filled tread rubber compounds. Journal of Elastomers and Plastics, 2022, 54, 169-184.	1.5	3
2	CHANGES IN THE MECHANICAL, MICRO-, AND NANO-STRUCTURAL PROPERTIES OF REINFORCED VULCANIZED NATURAL RUBBER COMPOUNDS: THEIR DEPENDENCE ON THE SiO2/CB RATIO. Rubber Chemistry and Technology, 2021, , .	1.2	1
3	Silicaâ€filled S‣BR with epoxidized soybean oil: Influence of the mixing process on rheological and mechanical properties of the compound. Journal of Applied Polymer Science, 2020, 137, 48504.	2.6	12
4	Effect of electronâ€beam irradiation on the thermal vulcanization of a natural rubber compound. Journal of Applied Polymer Science, 2019, 136, 47216.	2.6	2
5	Natural rubber/styrene-butadiene rubber blends prepared by solution mixing: Influence of vulcanization temperature using a Semi-EV sulfur curing system on the microstructural properties. Polymer Testing, 2017, 63, 150-157.	4.8	33
6	Effect of entanglements in the microstructure of cured NR/SBR blends prepared by solution and mixing in a two-roll mill. European Polymer Journal, 2016, 81, 365-375.	5.4	33
7	Comparative study of thermal, mechanical and structural properties of polybutadiene rubber isomers vulcanized using peroxide. Polymer Testing, 2016, 52, 117-123.	4.8	17
8	Influence of vulcanization temperature on the cure kinetics and on the microstructural properties in natural rubber/styrene-butadiene rubber blends prepared by solution mixing. European Polymer Journal, 2015, 69, 50-61.	5.4	37
9	Evolution of the free volume and glass transition temperature with the degree of cure of polybutadiene rubbers. Polymer Testing, 2013, 32, 686-690.	4.8	19
10	About the cure kinetics in natural rubber/styrene Butadiene rubber blends at 433K. Physica B: Condensed Matter, 2012, 407, 3271-3273.	2.7	9
11	A study about the structure of vulcanized natural rubber/styrene butadiene rubber blends and the glass transition behavior. Journal of Applied Polymer Science, 2012, 125, 992-999.	2.6	29
12	Influence of the microstructure of vulcanized polybutadiene rubber on the dielectric properties. Polymer Testing, 2011, 30, 657-662.	4.8	14
13	Temperature dependence on free volume in cured natural rubber and styrene-butadiene rubber blends. Physical Review E, 2011, 83, 051805.	2.1	26
14	Measurement of the Young's modulus in particulate epoxy composites using the impulse excitation technique. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 4619-4623.	5.6	46
15	Evaluation of the polymer–solvent interaction parameter χ for the system cured polybutadiene rubber and toluene. Polymer Testing, 2010, 29, 119-126.	4.8	71
16	Cure kinetics and swelling behaviour in polybutadiene rubber. Polymer Testing, 2010, 29, 477-482.	4.8	43
17	Accelerator adsorption onto carbon nanotubes surface affects the vulcanization process of styrene–butadiene rubber composites. Journal of Applied Polymer Science, 2009, 113, 2851-2857.	2.6	46
18	About the activation energies of the main and secondary relaxations in cured styrene butadiene rubber. Journal of Applied Polymer Science, 2009, 113, 2361-2367.	2.6	9

Marzocca Aj

#	Article	IF	CITATIONS
19	A SAXS and swelling study of cured natural rubber/styrene–butadiene rubber blends. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 2320-2327.	2.1	16
20	Thermal properties in cured natural rubber/styrene butadiene rubber blends. European Polymer Journal, 2008, 44, 1525-1534.	5.4	40
21	Analysis of network structure formed in styrene–butadiene rubber cured with sulfur/TBBS system. Journal of Applied Polymer Science, 2007, 103, 1105-1112.	2.6	37
22	Carbon nanotubes as reinforcement of styrene–butadiene rubber. Applied Surface Science, 2007, 254, 262-265.	6.1	91
23	Evaluation of the polymer–solvent interaction parameter χ for the system cured styrene butadiene rubber and toluene. European Polymer Journal, 2007, 43, 2682-2689.	5.4	116
24	Evolution of the crosslink structure in the elastomers NR and SBR. Radiation Physics and Chemistry, 2007, 76, 142-145.	2.8	21
25	Vulcanization kinetic of styrene–butadiene rubber by sulfur/TBBS. Journal of Applied Polymer Science, 2006, 101, 35-41.	2.6	38
26	Contribution of the Methine Group to the Transverse1H NMR Relaxation in Vulcanized Natural Rubbers. Macromolecules, 2004, 37, 5624-5629.	4.8	13
27	Influence of the cure level on the monomeric friction coefficient of natural rubber vulcanizates. Polymer International, 2004, 53, 646-655.	3.1	14
28	An analysis of the influence of the accelerator/sulfur ratio in the cure reaction and the uniaxial stress-strain behavior of SBR. Journal of Applied Polymer Science, 2004, 91, 2601-2609.	2.6	27
29	Dependence of the network structure of cured styrene butadiene rubber on the sulphur content. Polymer, 2004, 45, 6037-6044.	3.8	66
30	Thermal aging of carbon black filled rubber compounds. I. Experimental evidence for bridging flocculation. Polymer, 2003, 44, 7229-7240.	3.8	40
31	Yield and internal stresses in aluminum filled epoxy resin. A compression test and positron annihilation analysis. Polymer, 2003, 44, 3193-3199.	3.8	44
32	Characterization of free volume in particulate-filled epoxy resin by means of dynamic mechanical analysis and positron annihilation lifetime spectroscopy. Polymer International, 2002, 51, 1277-1284.	3.1	20
33	Analysis of thermal diffusivity in aluminum (particle)-filled PMMA compounds. Polymer, 2001, 42, 5267-5274.	3.8	32
34	Some considerations concerning the dynamic mechanical properties of cured styrene-butadiene rubber/polybutadiene blends. Polymer International, 2000, 49, 216-222.	3.1	23
35	Glass-transition and secondary relaxation in SBR-1502 from dynamic mechanical data. Polymer, 2000, 41, 2227-2230.	3.8	18
36	A numerical simulation of the electrical resistivity of carbon black filled rubber. Polymer, 2000, 41, 6589-6595.	3.8	24

Marzocca Aj

#	Article	IF	CITATIONS
37	Optimization of sensor arrays for beam position estimation. Sensors and Actuators A: Physical, 2000, 87, 11-18.	4.1	2
38	Dynamic properties in aluminum filled PMMA. Polymer, 1999, 40, 1495-1500.	3.8	11
39	On apparent activation energies of creep in nickel-base superalloys. Scripta Materialia, 1999, 41, 797-802.	5.2	4
40	Influence of carbon black dispersion on the thermal diffusivity of an SBR vulcanizate. Journal of Applied Polymer Science, 1999, 72, 1379-1385.	2.6	8
41	Dynamical mechanical properties of polymethylmethacrylate after exposure to 60Co gamma radiation. Polymer Testing, 1997, 16, 7-18.	4.8	10
42	Evaluation of the thermal diffusivity of rubber compounds through the glass transition range. Journal of Applied Polymer Science, 1997, 63, 157-162.	2.6	5
43	Analysis of the variation of molecular parameters of NR during vulcanization in the frame of the conformational tube model. Journal of Applied Polymer Science, 1997, 66, 1085-1092.	2.6	27
44	Thermal expansion and glass transition of polymethylmethacrylate after exposure to 60Co gamma irradiation. Polymer Testing, 1996, 15, 179-187.	4.8	7
45	Estimation by mechanical analysis of the molecular parameters of SBR vulcanizates at different cure conditions. Journal of Applied Polymer Science, 1995, 58, 1839-1845.	2.6	11
46	A high frequency resonant method for the determination of the dynamic mechanical properties of solid polymers. Polymer, 1992, 33, 2709-2714.	3.8	4
47	Finite element analysis of cure in a rubber cylinder. Polymer, 1991, 32, 1456-1460.	3.8	13
48	Prediction of tensile curves, at 673 K, of cold-worked and stress-relieved Zircaloy-4 from creep data. Journal of Nuclear Materials, 1986, 138, 277-285.	2.7	0
49	Evolution of texture during creep of Zircaloy-4 at 673 K. Journal of Nuclear Materials, 1984, 125, 249-257.	2.7	9
50	Apparent activation energy for creep controlled by jog-drag and cell-formation. Journal of Nuclear Materials, 1983, 119, 78-81.	2.7	6
51	Creep of stress-relieved Zry-4 at 673 K. Journal of Nuclear Materials, 1983, 118, 224-233.	2.7	11
52	Ratio of cell diameter to dislocation spacing for creep of Zircaloy-4. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1983, 48, 759-766.	0.6	7
53	Creep of cold-worked Zry-4 at 673 K. Journal of Nuclear Materials, 1981, 97, 323-332.	2.7	17
54	Creep and stress-relaxation in bending, at 673 K, of cold-worked Zircaloy-4. Journal of Nuclear Materials, 1981, 98, 322-328.	2.7	12

#	Article	IF	CITATIONS
55	Representation of creep and stress-relaxation data either in terms of harts phenomenological theory or a hyperbolic sine equation. Journal of Nuclear Materials, 1981, 99, 317-319.	2.7	5
56	Alpha (Vitrea) Transition in Vulcanized Natural Rubber/Styrene Butadiene Rubber Blends Prepared by Mechanical and Solution Mixing. Solid State Phenomena, 0, 184, 405-410.	0.3	5