Paolo Meridiani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6453489/publications.pdf

Version: 2024-02-01

434 papers

19,693 citations

68 h-index 21540 114 g-index

452 all docs

452 docs citations

452 times ranked

9746 citing authors

#	Article	IF	CITATIONS
1	Inclusive and differential cross section measurements of single top quark production in association with a Z boson in proton-proton collisions at $$$ sqrt{s} $$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	6
2	Search for flavor-changing neutral current interactions of the top quark and the Higgs boson decaying to a bottom quark-antiquark pair at $$$ sqrt $\{s\}$ $$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	5
3	Search for long-lived particles decaying to leptons with large impact parameter in proton–proton collisions at \$\$sqrt{s} = 13,ext {Te}ext {V} \$\$. European Physical Journal C, 2022, 82, 153.	3.9	14
4	Study of dijet events with large rapidity separation in proton-proton collisions at $\$\$$ sqrt $\{s\}$ $\$\$$ = 2.76 TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	1
5	Search for low-mass dilepton resonances in Higgs boson decays to four-lepton final states in proton–proton collisions at \$\$sqrt{s}=13,ext {TeV} \$\$. European Physical Journal C, 2022, 82, 290.	3.9	18
6	Search for supersymmetry in final states with two or three soft leptons and missing transverse momentum in proton-proton collisions at $$$ sqrt ${s}$ $$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	13
7	Search for long-lived particles decaying into muon pairs in proton-proton collisions at \$\$ sqrt{s} \$\$ = 13 TeV collected with a dedicated high-rate data stream. Journal of High Energy Physics, 2022, 2022, .	4.7	5
8	Search for a right-handed W boson and a heavy neutrino in proton-proton collisions at $\$$ sqrt{s} $\$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	12
9	Search for a heavy resonance decaying into a top quark and a W boson in the lepton+jets final state at \$\$ sqrt{s} \$\$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	2
10	Search for heavy resonances decaying to ZZ or ZW and axion-like particles mediating nonresonant ZZ or ZH production at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	6
11	Measurement and QCD analysis of double-differential inclusive jet cross sections in proton-proton collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	5
12	Search for electroweak production of charginos and neutralinos in proton-proton collisions at $\$\$$ sqrt $\{s\}$ $\$\$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	5
13	Measurement of the inclusive $\$ mathrm{t}-overline{mathrm{t}} \$\$ production cross section in proton-proton collisions at \$\$ sqrt{s} \$\$ = 5.02 TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	2
14	Search for heavy resonances decaying to a pair of Lorentz-boosted Higgs bosons in final states with leptons and a bottom quark pair at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, .	4.7	2
15	Search for higgsinos decaying to two Higgs bosons and missing transverse momentum in proton-proton collisions at $$$ sqrt ${s}$ $$$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, .	4.7	4
16	Observation of B\$\$^0\$\$ \$\$ightarrow \$\$ \$\$uppsi \$\$(2S)K\$\$^0_mathrm $\{S\}$ uppi ^+uppi ^-\$\$ and B\$\$^0_mathrm $\{s\}$ \$\$ \$\$ightarrow \$\$ \$\$uppsi \$\$(2S)K\$\$^0_mathrm $\{S\}$ \$\$ decays. European Physical Journal C, 2022, 82, .	3.9	1
17	Search for dark matter produced in association with a leptonically decaying \$\${mathrm{Z}} \$\$ boson in proton–proton collisions at \$\$sqrt{s}=13,ext {Te}ext {V} \$\$. European Physical Journal C, 2021, 81, 13.	3.9	33
18	Search for top squark pair production using dilepton final states in $\{p\}$ {ext $\{p\}$ } \$ collision data collected at $\{p\}$ = 13,ext $\{TeV\}$ \$\$. European Physical Journal C, 2021, 81, 3.	3.9	33

#	Article	IF	CITATIONS
19	Measurements of $f^{p}} {\mathrm{p}} {\mathrm{p}$	3.9	24
20	Development and validation of HERWIGÂ7 tunes from CMS underlying-event measurements. European Physical Journal C, 2021, 81, 312.	3.9	12
21	Measurement of the Higgs boson production rate in association with top quarks in final states with electrons, muons, and hadronically decaying tau leptons at $\frac{5}{100} = 13$,ext $\frac{7}{100} = 13$,ext $\frac{7}{100} = 13$.	3.9	40
22	Measurements of production cross sections of the Higgs boson in the four-lepton final state in proton–proton collisions at \$\$sqrt{s} = 13,ext {TeV} \$\$. European Physical Journal C, 2021, 81, 488.	3.9	35
23	Measurements of Higgs boson production cross sections and couplings in the diphoton decay channel at $\$$ sqrt{mathrm{s}} $\$$ = 13 TeV. Journal of High Energy Physics, 2021, 2021, 1.	4.7	27
24	MUSiC: a model-unspecific search for new physics in proton–proton collisions at \$\$sqrt{s} = 13,ext {TeV} \$\$. European Physical Journal C, 2021, 81, 629.	3.9	18
25	Search for a heavy vector resonance decaying to a $\$\{mathrm\{Z\}\}_{mathrm\{\}}^{mathrm\{\}}$ and a Higgs boson in proton-proton collisions at $\$sqrt\{s\} = 13,ext\{Te\}ext\{V\}$ Physical Journal C, 2021, 81, 688.	3.9	9
26	Search for charged Higgs bosons produced in vector boson fusion processes and decaying into vector boson pairs in protonâ \in proton collisions at $\$$ qrt $\{s\} = 13,\{ext \{TeV\}\} \$$. European Physical Journal C, 2021, 81, 723.	3.9	19
27	Measurements of angular distance and momentum ratio distributions in three-jet and $\{Z\}$ + two-jet final states in $\{p\}$ ext $\{p\}$ collisions. European Physical Journal C, 2021, 81, 852.	3.9	2
28	Precision luminosity measurement in proton–proton collisions at \$\$sqrt{s} = 13,hbox {TeV}\$\$ in 2015 and 2016 at CMS. European Physical Journal C, 2021, 81, 800.	3.9	123
29	Combined searches for the production of supersymmetric top quark partners in proton–proton collisions at \$\$sqrt{s} = 13,ext {Te}ext {V} \$\$. European Physical Journal C, 2021, 81, 970.	3.9	18
30	A Deep Neural Network for Simultaneous Estimation of b Jet Energy and Resolution. Computing and Software for Big Science, 2020, 4, 10.	2.9	21
31	Performance of the reconstruction and identification of high-momentum muons in proton-proton collisions at â^š <i>s</i> = 13 TeV. Journal of Instrumentation, 2020, 15, P02027-P02027.	1.2	27
32	Calibration of the CMS hadron calorimeters using proton-proton collision data at \hat{a} ss = 13 TeV. Journal of Instrumentation, 2020, 15, P05002-P05002.	1.2	3
33	Study of central exclusive "Equation missing" No EquationSource Format="TEX", only image production in proton-proton collisions at \$\$sqrt{s} = 5.02\$\$ and 13TeV. European Physical Journal C, 2020, 80, 718.	3.9	7
34	Search for physics beyond the standard model in events with jets and two same-sign or at least three charged leptons in proton-proton collisions at $\frac{s}{13,\{ext \{TeV\}\}} $. European Physical Journal C, 2020, 80, 752.	3.9	23
35	Performance of the CMS Level-1 trigger in proton-proton collisions at $\hat{a}\hat{s}\langle i\rangle s\langle i\rangle = 13$ TeV. Journal of Instrumentation, 2020, 15, P10017-P10017.	1.2	84
36	Search for direct top squark pair production in events with one lepton, jets, and missing transverse momentum at 13 TeV with the CMS experiment. Journal of High Energy Physics, 2020, 2020, 1.	4.7	21

#	Article	IF	CITATIONS
37	Measurement of top quark pair production in association with a Z boson in proton-proton collisions at $\$$ sqrt{mathrm{s}} $\$$ = 13 TeV. Journal of High Energy Physics, 2020, 2020, 1.	4.7	20
38	Search for direct pair production of supersymmetric partners to the \$\${uptau }_{}^{}\$\$ lepton in protonâ€"proton collisions at \$\$sqrt{s}=13,ext {TeV} \$\$. European Physical Journal C, 2020, 80, 189.	3.9	22
39	Mixed higher-order anisotropic flow and nonlinear response coefficients of charged particles in $\$ mathrm {PbPb}\$\$ collisions at \$\$sqrt{smash [b]{s_{_{mathrm {NN}}}}} = 2.76\$\$ and 5.02\$\$,ext {TeV}\$\$. European Physical Journal C, 2020, 80, 534.	3.9	14
40	Measurement of electroweak production of a \$\$mathrm{W} \$\$ boson in association with two jets in protonâ€"proton collisions at \$\$sqrt{s}=13,ext {Te}ext {V} \$\$. European Physical Journal C, 2020, 80, 43.	3.9	11
41	Evidence for \$\$ext {W}ext {W}\$\$ production from double-parton interactions in proton–proton collisions at \$\$sqrt{s} = 13 ,ext {TeV} \$\$. European Physical Journal C, 2020, 80, 1.	3.9	10
42	Search for production of four top quarks in final states with same-sign or multiple leptons in proton–proton collisions at \$\$sqrt{s}=13\$\$ \$\$,ext {TeV}\$\$. European Physical Journal C, 2020, 80, 75.	3.9	78
43	Searches for physics beyond the standard model with the \$\$M_{mathrm {T2}}\$\$ variable in hadronic final states with and without disappearing tracks in proton–proton collisions at \$\$\$qrt{s}=13,ext {Te}ext {V} \$\$. European Physical Journal C, 2020, 80, 3.	3.9	70
44	Extraction and validation of a new set of CMS pythia8 tunes from underlying-event measurements. European Physical Journal C, 2020, 80, 4.	3.9	198
45	Search for dark matter particles produced in association with a Higgs boson in proton-proton collisions at \$\$ sqrt{mathrm{s}} \$\$ = 13 TeV. Journal of High Energy Physics, 2020, 2020, 1.	4.7	14
46	A multi-dimensional search for new heavy resonances decaying to boosted $\$ w \{\}{\}\\$\\$ \$\ w \{\}\\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\	3.9	31
47	Measurement of single-diffractive dijet production in proton–proton collisions at \$\$sqrt{s} = 8,ext {Te}ext {V} \$\$ with the CMS and TOTEM experiments. European Physical Journal C, 2020, 80, 1164.	3.9	5
48	Measurement of differential cross sections and charge ratios for t-channel single top quark production in proton–proton collisions at \$\$sqrt{s}=13\$\$ \$\$,ext {Te}ext {V}\$\$. European Physical Journal C, 2020, 80, 370.	3.9	22
49	Measurement of \$\$hbox {t}{ar{hbox {t}}}\$\$ normalised multi-differential cross sections in \$\${ext {p}} \$\$ collisions at \$\$sqrt{s}=13,{ext {TeV}} \$\$, and simultaneous determination of the strong coupling strength, top quark pole mass, and parton distribution functions. European Physical Journal C. 2020. 80. 1.	3.9	33
50	Search for dark matter produced in association with a single top quark or a top quark pair in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	17
51	Search for a heavy resonance decaying to a top quark and a vector-like top quark in the lepton $+$ jets final state in pp collisions at $\$$ sqrt $\{s\}$ = 13,ext $\{TeV\}$ $\$$ s = 13 TeV. European Physical Journal C, 2019, 79, 1.	3.9	9
52	Measurement of exclusive $\{{\{uprho _{}^{}}\}_{}^{}\}\{\{left({770}ight) }{\}_{}^{}}\}$	3.9	33
53	Measurement of exclusive $\mbox{mathrm {Upsilon }$\$ photoproduction from protons in $\$mathrm {p}$\$Pb collisions at $\$sqrt{smash [b]{s_{_{mathrm {NN}}}}} = 5.02,ext {TeV} $\$. European Physical Journal C, 2019, 79, 277.$	3.9	35
54	Search for a heavy pseudoscalar boson decaying to a Z and a Higgs boson at $\$$ sqrt $\{s\}=13$,ext $\{Te\}$ ext $\{V\}$ $\$$. European Physical Journal C, 2019, 79, 564.	3.9	50

#	Article	IF	Citations
55	Measurement of the top quark mass in the all-jets final state at $\$\$qrt\{s\}=13$,ext TeV $\$\$$ s = 13 TeV and combination with the lepton+jets channel. European Physical Journal C, 2019, 79, 313.	3.9	40
56	Azimuthal separation in nearly back-to-back jet topologies in inclusive 2- and 3-jet events in $\{0\}$ {ext {p}} \$\$ collisions at $\{0\}$ {zo19, 79, 773.	3.9	8
57	Search for resonant production of second-generation sleptons with same-sign dimuon events in proton \hat{s} proton collisions at s qrt $s = 13$, ext TeV $s = 13$ TeV. European Physical Journal C, 2019, 79, 305.	3.9	4
58	FCC Physics Opportunities. European Physical Journal C, 2019, 79, 1.	3.9	346
59	Search for the pair production of light top squarks in the e±Î $\frac{1}{4}$ â´" final state in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	5
60	Combined measurements of Higgs boson couplings in proton–proton collisions at \$\$sqrt{s}=13,ext {Te}ext {V} \$\$. European Physical Journal C, 2019, 79, 421.	3.9	355
61	Search for supersymmetry in events with a photon, jets, \$\$mathrm {b}\$\$-jets, and missing transverse momentum in proton–proton collisions at 13\$\$,ext {Te}ext {V}\$\$. European Physical Journal C, 2019, 79, 444.	3.9	11
62	Measurements of the pp \hat{a}^{\dagger} WZ inclusive and differential production cross sections and constraints on charged anomalous triple gauge couplings at \$\$ sqrt{s} \$\$ = 13 TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	14
63	Measurement of the $\$ {mathrm {t}overline{mathrm {t}}}\$\$ t t production cross section, the top quark mass, and the strong coupling constant using dilepton events in pp collisions at. European Physical Journal C, 2019, 79, 368.	3.9	68
64	Measurement of the energy density as a function of pseudorapidity in proton–proton collisions at \$\$sqrt{s} =13,ext {TeV} \$\$. European Physical Journal C, 2019, 79, 1.	3.9	12
65	Search for dark matter produced in association with a Higgs boson decaying to a pair of bottom quarks in proton–proton collisions at \$\$sqrt{s}=13,ext {Te}ext {V} \$\$ s = 13 Te. European Physical Journal C, 2019, 79, 280.	3.9	29
66	Search for vector-like quarks in events with two oppositely charged leptons and jets in proton \hat{s} proton collisions at \$\$sqrt{s} = 13,ext {Te}ext {V} \$\$ s = 13 Te. European Physical Journal C, 2019, 79, 364.	3.9	48
67	Search for single production of vector-like quarks decaying to a top quark and a \$\$mathrm {W} \$\$ W boson in proton–proton collisions at \$\$sqrt{s} = 13 ,ext {TeV} \$\$ s = 13 TeV. European Physical Journal C, 2019, 79, 90.	3.9	34
68	Study of the underlying event in top quark pair production in $\frac{p}{mathrm \{p\}}$ p p collisions at 13 $-ext \{Te\}$ te. European Physical Journal C, 2019, 79, 123.	3.9	11
69	Search for rare decays of \$\$mathrm {Z}\$\$ Z and Higgs bosons to \$\${mathrm {J}/psi } \$\$ J / $\ddot{\Gamma}$ and a photon in proton-proton collisions at \$\$sqrt{s}\$\$ s = 13 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2019, 79, 94.	3.9	20
70	Search for $\$$ mathrm{t}overline{mathrm{t}}mathrm{H} $\$$ production in the $\$$ mathrm{H}o mathrm{b}overline{mathrm{b}} $\$$ decay channel with leptonic $\$$ mathrm{t}overline{mathrm{t}} $\$$ decays in proton-proton collisions at $\$$ sqrt{s}=13 $\$$ TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	28
71	Search for heavy resonances decaying into two Higgs bosons or into a Higgs boson and a W or Z boson in proton-proton collisions at 13 TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	12
72	Measurement of differential cross sections for inclusive isolated-photon and photon+jet production in proton-proton collisions at $\$$ sqrt{s} = 13,ext {TeV} $\$$ s = 13 TeV. European Physical Journal C, 2019, 79, 20.	3.9	18

#	Article	IF	CITATIONS
73	Measurements of triple-differential cross sections for inclusive isolated-photon+jet events in $\mbox{\$mathrm{p}mathrm{p}}\$ collisions at $\mbox{\$sqrt{s}} = 8$,ext $\mbox{TeV}\$ \$. European Physical Journal C, 2019, 79, 969.	3.9	6
74	Measurement of the differential Drell-Yan cross section in proton-proton collisions at \$\$ sqrt{mathrm{s}} \$\$ = 13 TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	18
75	Measurement of the average very forward energy as a function of the track multiplicity at central pseudorapidities in proton-proton collisions at \$\$sqrt{s}=13,ext {TeV} \$\$. European Physical Journal C, 2019, 79, 893.	3.9	12
76	Search for new physics in top quark production in dilepton final states in proton-proton collisions at \$\$sqrt{s} = 13,ext {TeV} \$\$. European Physical Journal C, 2019, 79, 886.	3.9	16
77	Measurements of differential Z boson production cross sections in proton-proton collisions at $\$\$$ sqrt $\$\$$ = 13 TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	28
78	Study of dijet events with a large rapidity gap between the two leading jets in pp collisions at \$\$\$qrt{s}=7\$\$ \$\$,ext {TeV}\$\$. European Physical Journal C, 2018, 78, 242.	3.9	10
79	Pseudorapidity distributions of charged hadrons in proton-lead collisions at s N N = $5.02 \$$ sqrt{s_{mathrm{NN}}}= $5.02 \$$ and 8.16 TeV . Journal of High Energy Physics, 2018, 2018, 1.	4.7	8
80	Search for resonant and nonresonant Higgs boson pair production in the b b $\hat{A}^ \hat{a}$, " $\hat{l}^1/2\hat{a}$," $\hat{l}^1/2\hat{a}$ $\hat{l}^1/2\hat{a}$,	4.7	36
81	Search for new physics in events with a leptonically decaying Z boson and a large transverse momentum imbalance in proton–proton collisions at \$\$sqrt{s} \$\$ s = 13 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2018, 78, 291.	3.9	27
82	Measurements of the $\mbox{mathrm } \{p\}$ ightarrow mathrm $\{Z\}$ mathrm $\{Z\}$ pp at Z production cross section and the $\mbox{mathrm} \{Z\}$ ightarrow 4ell $\mbox{val} Z$ at a, branching fraction, and constraints on anomalous triple gauge couplings at. European Physical Journal C, 2018, 78, 165.	3.9	52
83	Measurement of associated Z + charm production in proton–proton collisions at \$\$sqrt{s} = 8\$\$ s = 8 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2018, 78, 287.	3.9	16
84	Search for new phenomena in final states with two opposite-charge, same-flavor leptons, jets, and missing transverse momentum in pp collisions at $s=13$ \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	5
85	Search for supersymmetry in events with at least three electrons or muons, jets, and missing transverse momentum in proton-proton collisions at $s=13 $ \$ sqrt{ s }=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	6
86	Search for electroweak production of charginos and neutralinos in multilepton final states in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	63
87	Constraints on the double-parton scattering cross section from same-sign W boson pair production in proton-proton collisions at $s=8$ \$\$ sqrt $\{s\}=8$ \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	17
88	Search for ZZ resonances in the $2\hat{a}$, " $2\hat{l}$ "/2 final state in proton-proton collisions at 13 TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	4
89	Response of microchannel plates in ionization mode to single particles and electromagnetic showers. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 879, 6-12.	1.6	7
90	Search for $\$ mathrm{t}overline{mathrm{t}}mathrm{H} \$\$ production in the all-jet final state in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	20

#	Article	IF	CITATIONS
91	Search for heavy resonances decaying into a vector boson and a Higgs boson in final states with charged leptons, neutrinos and b quarks at $$$ sqrt ${s}=13 $ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	11
92	Search for decays of stopped exotic long-lived particles produced in proton-proton collisions at $\$\$$ sqrt $\{\$\}=13$ $\$\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	12
93	Measurement of the top quark mass with lepton+jets final states using $\$$ mathrm p \$\\$mathrm p \$\\$mathrm p \$\$\\$mathrm p \$\$\$ collisions at \$\$sqrt{s}=13,ext {TeV} \$\$. European Physical Journal C, 2018, 78, 891.	3.9	34
94	Measurements of Higgs boson properties in the diphoton decay channel in proton-proton collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	57
95	Search for $Z\hat{I}^3$ resonances using leptonic and hadronic final states in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	17
96	Search for black holes and sphalerons in high-multiplicity final states in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	14
97	Search for third-generation scalar leptoquarks decaying to a top quark and a $\$$ au $\$$ i, lepton at $\$$ sqrt $\$$ =13,ext $\{$ Te $\}$ ext $\{$ V $\}$ $\$$ \$ s = 13 Te. European Physical Journal C, 2018, 78, 707.	3.9	46
98	Measurement of differential cross sections for $f(z)$ boson production in association with jets in proton-proton collisions at $f(z)$ at $f(z)$ be some proton proton proton at $f(z)$ be some proton proton proton at $f(z)$ be some proton proton and $f(z)$ be some proton proton as $f(z)$ be some proton prot	3.9	39
99	Studies of \$\${mathrm {B}} ^{*}_{{mathrm {s}}2}(5840)^0 \$\$ B s 2 \hat{a} — (5840) 0 and \$\${mathrm {B}}		

#	Article	IF	Citations
109	Measurement of the weak mixing angle using the forward–backward asymmetry of Drell–Yan events in \$\$mathrm {p}mathrm {p}\$\$ p p collisions at 8 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2018, 78, 701.	3.9	58
110	Measurement of prompt and nonprompt charmonium suppression in $\$$ ext {PbPb}\$\$ collisions at 5.02\$\$,ext {Te}ext {V}\$\$. European Physical Journal C, 2018, 78, 509.	3.9	83
111	Evidence for associated production of a Higgs boson with a top quark pair in final states with electrons, muons, and hadronically decaying \ddot{l}_n leptons at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	38
112	Electroweak production of two jets in association with a Z boson in proton $\hat{a} \in \text{``proton collisions at $$} = \$ s = 13 \$$,ext {TeV}$$ TeV. European Physical Journal C, 2018, 78, 1.$	3.9	17
113	Search for dark matter in events with energetic, hadronically decaying top quarks and missing transverse momentum at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	20
114	Measurements of differential cross sections of top quark pair production as a function of kinematic event variables in proton-proton collisions at $$$ sqrt ${s}=13 $ \$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	13
115	Measurement of the inelastic proton-proton cross section at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	62
116	Search for high-mass resonances in dilepton final states in proton-proton collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	86
117	Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at $s=13$ \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	42
118	Search for standard model production of four top quarks with same-sign and multilepton final states in protonâ \in proton collisions at \$\$sqrt{s} = 13,ext {TeV} \$\$ s = 13 TeV. European Physical Journal C, 2018, 78, 140.	3.9	44
119	Measurements of the (mathrm {p}mathrm {p}ightarrow mathrm{Z}mathrm{Z}) production cross section and the (mathrm{Z}ightarrow 4ell) branching fraction, and constraints on anomalous triple gauge couplings at (sqrt{s} = 13,ext {TeV}). , 2018, 78, 1.		3
120	Radiation hardness and precision timing study of silicon detectors for the CMS High Granularity Calorimeter (HGC). Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 845, 60-63.	1.6	12
121	Beam test results on the detection of single particles and electromagnetic showers with microchannel plates. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 845, 471-474.	1.6	2
122	Measurements of the $\mbox{mathrm{t}}$ overline{mathrm{t}}\$\$ t t $\mbox{$\hat{A}^{-}$}$ production cross section in lepton+jets final states in pp collisions at 8 \$\$,ext {TeV}\$\$ TeV and ratio of 8 to 7 $\mbox{$\hat{A}$}$ \$\$,ext {TeV}\$\$ TeV cross sections. European Physical Journal C, 2017, 77, 15.	3.9	34
123	Measurement of the $\mbox{mathrm{t}}$ overline{mathrm{t}} \$\$ t t $\mbox{$\hat{A}$}^-$ production cross section using events in the \$\$mathrm {e}mu \$\$ e $\mbox{$\hat{I}4 final state in pp collisions at \$\$sqrt{s}=13,ext {TeV} \$\$ s = 13 TeV. European Physical Journal C, 2017, 77, 172.	3.9	40
124	Measurement and QCD analysis of double-differential inclusive jet cross sections in pp collisions at s = $8 $ \$ sqrt{ s }= $8 $ \$ TeV and cross section ratios to 2.76 and 7 TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	54
125	On the timing performance of thin planar silicon sensors. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 859, 31-36.	1.6	11
126	Search for electroweak production of charginos in final states with two \ddot{i} , leptons in pp collisions at s = 8 \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	11

#	Article	IF	Citations
127	Measurement of the production cross section of a WÂboson in association with two b jets in pp collisions at $\$$ sqrt $\{s\} = 8$, mathrm $\{\{TeV\}\}\}$ $\$$ s = 8 TeV. European Physical Journal C, 2017, 77, 92.	3.9	16
128	Measurement of the WZ production cross section in pp collisions at $\$$ sqrt $\{s\} = 7$ \$\$ s = 7 and 8 $\$$,ext $\{TeV\}$ \$\$ TeV and search for anomalous triple gauge couplings at $\$$ sqrt $\{s\} = 8$,ext $\{TeV\}$ \$\$ s = 8 TeV. European Physical Journal C, 2017, 77, 236.	3.9	37
129	Measurement of prompt and nonprompt $\$$ mathrm{J}/{psi}\$\$J/ $\ddot{\Gamma}$ production in $\$$ mathrm {p}mathrm {p}\$\$ p p and $\$$ mathrm {p}mathrm {Pb}\$\$ p Pb collisions at $\$$ sqrt{s_{mathrm {NN}}} =5.02,ext {TeV} \$\$ s. European Physical Journal C, 2017, 77, 269.	3.9	53
130	A search for new phenomena in pp collisions at $\$$ sqrt $\{s\} = 13$,ext $\{TeV\}$ $\$$ s = 13 TeV in final states with missing transverse momentum and at least one jet using the $\$$ alpha $_{\text{mathrm }}$ $\{T\}$	3.9	29
131	Search for new physics in the monophoton final state in proton-proton collisions at $s=13 \$\$$ sqrt $\{s\}=13 \$\$$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	17
132	Measurement of double-differential cross sections for top quark pair production in pp collisions at $s=0$ so $s=0$ for the part on parton distribution functions. European Physical Journal C, 2017, 77, 459.	3.9	52
133	Measurement of the jet mass in highly boosted $f(t)=0$ where $f(t)=0$ where $f(t)=0$ where $f(t)=0$ is a sum of the jet mass in highly boosted $f(t)=0$ where $f(t)=0$ is a sum of the jet mass in highly boosted $f(t)=0$ where $f(t)=0$ is a sum of the jet mass in highly boosted	3.9	23
134	Charged-particle nuclear modification factors in PbPb and pPb collisions at s N N = $5.02 \$\$$ sqrt{s_{mathrm{N}}}= $5.02 \$\$$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	103
135	Search for t t \hat{A}^- \$\$ mathrm{t}overline{mathrm{t}} \$\$ resonances in highly boosted lepton+jets and fully hadronic final states in proton-proton collisions at s = 13 \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	22
136	Search for associated production of dark matter with a Higgs boson decaying to b b \hat{A}^- \$\$ mathrm{b}overline{mathrm{b}} \$\$ or $\hat{I}^3\hat{I}^3$ at s = 13 \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	14
137	Observation of Y(1S) pair production in proton-proton collisions at $s = 8 $ \$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	48
138	Search for anomalous Wtb couplings and flavour-changing neutral currents in t-channel single top quark production in pp collisions at $s=7$ \$\$ sqrt{s}=7 \$\$ and 8 TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	35
139	Search for single production of vector-like quarks decaying to a Z boson and a top or a bottom quark in proton-proton collisions at $s=13 $ \$ sqrt{ s }=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	13
140	Measurement of the semileptonic t t \hat{A}^- \$\$ mathrm{t}overline{mathrm{t}} \$\$ + \hat{I}^3 production cross section in pp collisions at s = 8 \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	11
141	Search for new phenomena with the \$\$M_{mathrm {T2}}\$\$ M T 2 variable in the all-hadronic final state produced in proton–proton collisions at \$\$sqrt{s} = 13\$\$ s = 13 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2017, 77, 710.	3.9	98
142	Measurements of differential production cross sections for a Z boson in association with jets in pp collisions at $s = 8 $ \$\$ sqrt $\{s\}=8 $ \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	14
143	Search for heavy resonances decaying to tau lepton pairs in proton-proton collisions at $s=13 $ \$\$ sqrt{ s }=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	23
144	Search for electroweak production of a vector-like quark decaying to a top quark and a Higgs boson using boosted topologies in fully hadronic final states. Journal of High Energy Physics, 2017, 2017, 1.	4.7	14

#	Article	IF	CITATIONS
145	Measurement of the transverse momentum spectra of weak vector bosons produced in proton-proton collisions at $s = 8 $ \$\$ sqrt $\{s\}=8 $ \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	23
146	Suppression and azimuthal anisotropy of prompt and nonprompt $\$\{mathrm{J}\}/psi \$ J / \ddot{\Gamma}$ production in PbPb collisions at $\$sqrt{\{s_{ext {NN}}\}}\} = 2.76\$\$ s NN = 2.76\$\$$, mathrm $\{TeV\}\$\$$ TeV. European Physical Journal C, 2017, 77, 252.	3.9	82
147	Searches for pair production of third-generation squarks in $\$$ sqrt $\{s\}=13$ \$\$ s = 13 \$\$,ext {TeV}\$\$ TeV pp collisions. European Physical Journal C, 2017, 77, 327.	3.9	32
148	Measurement of the top quark mass using single top quark events in proton-proton collisions at $s=8$ s = 8 ÂTeV. European Physical Journal C, 2017, 77, 354.	3.9	23
149	Searches for invisible decays of the Higgs boson in pp collisions at s $\$$ sqrt $\{s\}$ $\$$ = 7, 8, and 13 TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	95
150	Search for massive resonances decaying into WW, WZ or ZZ bosons in proton-proton collisions at s = $13 $ \$\$ sqrt{s}= $13 $ \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	22
151	Search for dark matter produced in association with heavy-flavor quark pairs in proton-proton collisions at $\$$ sqrt $\{s\}$ = 13,ext $\{TeV\}$ $\$$ \$ s = 13 TeV. European Physical Journal C, 2017, 77, 845.	3.9	38
152	Measurement of electroweak-induced production of $\hat{W^{3}}$ with two jets in pp collisions at s = 8 \$\$ sqrt{s}=8 \$\$ TeV and constraints on anomalous quartic gauge couplings. Journal of High Energy Physics, 2017, 2017, 1.	4.7	17
153	Searches for W′ bosons decaying to a top quark and a bottom quark in proton-proton collisions at 13 TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	8
154	Measurement of the inclusive energy spectrum in the very forward direction in proton-proton collisions at $s=13$ \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	10
155	Search for direct production of supersymmetric partners of the top quark in the all-jets final state in proton-proton collisions at $s=13$ \$\$ $sqrt{s}=13$ \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	22
156	Search for electroweak production of charginos and neutralinos in WH events in proton-proton collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	15
157	Search for pair production of vector-like T and B quarks in single-lepton final states using boosted jet substructure in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	27
158	Search for top squark pair production in pp collisions at s = 13 $\$$ sqrt $\{s\}$ =13 $\$$ TeV using single lepton events. Journal of High Energy Physics, 2017, 2017, 1.	4.7	31
159	Search for top quark decays via Higgs-boson-mediated flavor-changing neutral currents in pp collisions at $s=8$ \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	15
160	Measurement of the t t \hat{A}^- \$\$ mathrm{t}overline{mathrm{t}} \$\$ production cross section using events with one lepton and at least one jet in pp collisions at s = 13 \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	15
161	Search for a heavy resonance decaying to a top quark and a vector-like top quark at $s=13 \$\$$ sqrt $\{s\}=13 \$\$$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	5
162	Search for physics beyond the standard model in events with two leptons of same sign, missing transverse momentum, and jets in proton–proton collisions at \$\$sqrt{s} = 13,ext {TeV} \$\$. European Physical Journal C, 2017, 77, 578.	3.9	57

#	Article	lF	Citations
163	Search for top quark partners with charge $5/3$ in proton-proton collisions at $s=13$ \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	3
164	Search for light bosons in decays of the 125 GeV Higgs boson in proton-proton collisions at $s=8$ \$\$ sqrt $\{s\}=8$ \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	29
165	Measurements of jet charge with dijet events in pp collisions at $s=8$ \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	17
166	Search for associated production of a Z boson with a single top quark and for tZ flavour-changing interactions in pp collisions at $s = 8 $ \$\$ sqrt $\{s\}=8 $ \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	21
167	Search for new physics with dijet angular distributions in proton-proton collisions at $s=13~$ \$\$ sqrt $\{s\}=13~$ \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	15
168	Search for dark matter produced with an energetic jet or a hadronically decaying W or Z boson at s = $13 $ \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	62
169	Search for third-generation scalar leptoquarks and heavy right-handed neutrinos in final states with two tau leptons and two jets in proton-proton collisions at $s=13 \$ sqrt{ s }=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	41
170	Search for new phenomena with multiple charged leptons in proton–proton collisions at \$\$sqrt{s}= 13\$\$ s = 13 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2017, 77, 1.	3.9	2
171	Search for heavy resonances that decay into a vector boson and a Higgs boson in hadronic final states at $\$$ sqrt $\{s\} = 13$ \$\$ s = 13 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2017, 77, 636.	3.9	38
172	Search for heavy neutrinos or third-generation leptoquarks in final states with two hadronically decaying $\ddot{\parallel}$, leptons and two jets in proton-proton collisions at s = 13 \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	22
173	Search for CP violation in t t \hat{A}^- \$\$ toverline{t} \$\$ production and decay in proton-proton collisions at s = 8 \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	4
174	Measurement of the triple-differential dijet cross section in proton-proton collisions at $s=0.00$ squares and constraints on parton distribution functions. European Physical Journal C, 2017, 77, 746.	3.9	23
175	Search for a light pseudoscalar Higgs boson produced in association with bottom quarks in pp collisions at $\$$ sqrt $\{s\}=8$ $\$$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	10
176	Search for supersymmetry in events with at least one photon, missing transverse momentum, and large transverse event activity in proton-proton collisions at $s=13$ \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	14
177	A fast timing calorimetric layer using micro-channel plates in ionisation mode. Journal of Instrumentation, 2017, 12, C03019-C03019.	1.2	2
178	Measurements of properties of the Higgs boson decaying into the four-lepton final state in pp collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	101
179	Micro-channel plates in ionization mode as a fast timing device for future hadron colliders. Journal of Instrumentation, 2017, 12, C08014-C08014.	1.2	5
180	Measurements of the associated production of a Z boson and b jets in pp collisions at $\$\{sqrt\{s\}\} = 8$, ext $\{TeV\}$ $\$$ s = 8 TeV. European Physical Journal C, 2017, 77, 751.	3.9	30

#	Article	IF	Citations
181	Measurement of the transverse momentum spectrum of the Higgs boson produced in pp collisions at s = 8 \$\$ sqrt{s}=8 \$\$ TeV using H â†' WW decays. Journal of High Energy Physics, 2017, 2017, 1.	4.7	11
182	Search for dark matter and unparticles in events with a Z boson and missing transverse momentum in proton-proton collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV. Journal of High Energy Physics, 2017, 2017, 1.	4.7	23
183	Decomposing transverse momentum balance contributions for quenched jets in PbPb collisions at s N N = $2.76 \$$ sqrt{s_{mathrm{N};mathrm{N}}}= $2.76 \$$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	18
184	Measurement of the double-differential inclusive jet cross section in protonâ \in proton collisions at \$\$sqrt{s} = 13,ext {TeV} \$\$ s = 13 TeV. European Physical Journal C, 2016, 76, 451.	3.9	55
185	Measurement of the $\{\{\{mathrm\{W\}\}^{+}\}\}$ mathrm $\{W\}^{-}\}$ \$\ W + W - cross section in pp collisions at \$\\$sqrt\{s\} = 8\\$\\$s = 8 TeVand limits on anomalous gauge couplings. European Physical Journal C, 2016, 76, 401.	3.9	74
186	Search for heavy resonances decaying to two Higgs bosons in final states containing four b quarks. European Physical Journal C, 2016, 76, 371.	3.9	33
187	Beam test evaluation of electromagnetic calorimeter modules made from proton-damaged PbWO ₄ crystals. Journal of Instrumentation, 2016, 11, P04012-P04012.	1.2	8
188	Search for Higgs boson off-shell production in proton-proton collisions at 7 and 8 TeV and derivation of constraints on its total decay width. Journal of High Energy Physics, 2016, 2016, 1.	4.7	17
189	Search for lepton flavour violating decays of heavy resonances and quantum black holes to an \$\$mathrm {e}mu \$\$ e μ pair in proton–proton collisions at \$\$sqrt{s}=8~ext {TeV} \$\$ s = 8 TeV. European Physical Journal C, 2016, 76, 317.	3.9	16
190	Measurement of electroweak production of a W boson and two forward jets in proton-proton collisions at $s=8$ \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	5
191	Measurement of transverse momentum relative to dijet systems in PbPb and pp collisions at s N N = 2.76 \$\$ sqrt{s_{mathrm{NN}}}= 2.76 \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	31
192	Search for anomalous single top quark production in association with a photon in pp collisions at s = $8 $ \$\$ sqrt{s}= $8 $ \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	27
193	Search for direct pair production of scalar top quarks in the single- and dilepton channels in proton-proton collisions at $s=8$ \$\$ sqrt{ s }=8 \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	7
194	Search for the associated production of a Higgs boson with a single top quark in proton-proton collisions at $s=8$ \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	13
195	Forward–backward asymmetry of Drell–Yan lepton pairs in pp collisions at \$\$sqrt{s} = 8\$\$ s = 8 \$\$,mathrm{TeV}\$\$ TeV. European Physical Journal C, 2016, 76, 325.	3.9	25
196	Search for new physics in same-sign dilepton events in proton–proton collisions at \$\$sqrt{s} = 13,ext {TeV} \$\$ s = 13 TeV. European Physical Journal C, 2016, 76, 439.	3.9	64
197	Measurement of dijet azimuthal decorrelation in ppÂcollisions at $\$$ sqrt $\{s\}=8$,mathrm $\{TeV\}$ $\$$ s = 8 TeV. European Physical Journal C, 2016, 76, 536.	3.9	16
198	Search for dark matter particles in proton-proton collisions at $s = 8 $ \$\$ sqrt{s}=8 \$\$ TeV using the razor variables. Journal of High Energy Physics, 2016, 2016, 1.	4.7	4

#	Article	IF	CITATIONS
199	Search for s channel single top quark production in pp collisions at $s=7$ \$\$ sqrt{s}=7 \$\$ and 8 TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	14
200	Measurement of inclusive jet production and nuclear modifications in pPb collisions at $s=\{mathrm \{NN\}\}\} = 5.02$, mathrm $t=\{TeV\}$ \$\$ s NN. European Physical Journal C, 2016, 76, 372.	3.9	29
201	Measurement of differential and integrated fiducial cross sections for Higgs boson production in the four-lepton decay channel in pp collisions at $s=7$ \$\$ sqrt{s}=7 \$\$ and 8 TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	19
202	Measurement of the t t \hat{A}^- \$\$ mathrm{t}overline{mathrm{t}} \$\$ production cross section in the ell/4 channel in proton-proton collisions at s = 7 \$\$ sqrt{s}=7 \$\$ and 8 TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	41
203	Search for new physics with the M T2 variable in all-jets final states produced in pp collisions at $s=13$ \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	17
204	Search for dark matter in proton-proton collisions at 8 TeV with missing transverse momentum and vector boson tagged jets. Journal of High Energy Physics, 2016, 2016, 1.	4.7	13
205	Evidence for exclusive $\hat{I}^3\hat{I}^3$ \hat{I}^3 \hat{I}^4	4.7	42
206	Search for supersymmetry in pp collisions at $s=13 $ \$\$ sqrt $\{s\}=13 $ \$\$ TeV in the single-lepton final state using the sum of masses of large-radius jets. Journal of High Energy Physics, 2016, 2016, 1.	4.7	14
207	Search for direct pair production of supersymmetric top quarks decaying to all-hadronic final states in pp collisions at $\$$ sqrt $\{s\} = 8$;ext $\{TeV\}$ $\$$ s = 8 TeV. European Physical Journal C, 2016, 76, 460.	3.9	18
208	Azimuthal decorrelation of jets widely separated in rapidity in pp collisions at $s=7 $ \$ sqrt $\{s\}=7 $ \$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	20
209	Phenomenological MSSM interpretation of CMS searches in pp collisions at $s = 7 $ \$\$ sqrt{s}=7 \$\$ and 8 TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	12
210	Measurement of the mass of the top quark in decays with a J/ $\hat{\Gamma}$ meson in pp collisions at 8 TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	6
211	Measurement of the inclusive jet cross section in pp collisions at $\$\$qrt\{s\} = 2.76$, ext $\{TeV\}$ s = 2.76 TeV. European Physical Journal C, 2016, 76, 1.	3.9	26
212	Measurement of $\mbox{mathrm {t}-verline{mathrm {t}}}$ tt $\mbox{$\hat{A}^{-}$}$ production with additional jet activity, including \$\$mathrm {b}\$\$ b quark jets, in the dilepton decay channel using pp collisions at \$\$sqrt{s} = 8,ext {TeV} \$\$ s = 8 TeV. European Physical Journal C, 2016, 76, 379.	3.9	34
213	Measurement of the differential cross section and charge asymmetry for inclusive $\mbox{smathrm } \{p\}$ mathrm $\{p\}$ mathrm $\{p\}$ mathrm $\{p\}$ = 8\$\$ s = 8 TeV. European Physical Journal C, 2016, 76, 469.	3.9	83
214	Observation of top quark pairs produced in association with a vector boson in pp collisions at $s=8$ \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	23
215	Search for Wâ \in 2 → tb in proton-proton collisions at s = 8 \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	3
216	Correlations between jets and charged particles in PbPb and pp collisions at s N N = 2.76 \$\$ sqrt{s_{mathrm{NN}}}= 2.76 \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	29

#	Article	IF	Citations
217	Search for the production of an excited bottom quark decaying to tW in proton-proton collisions at $s = 8 $ \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	5
218	Search for excited leptons in proton-proton collisions at $s=8$ \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	16
219	Measurement of the $\mbox{mathrm{t}}$ overline{{mathrm{t}}}\$\$ t t \mbox{A}^- production cross section in the all-jets final state in pp collisions at \$\$sqrt{s}=8\$\$ s = 8 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2016, 76, 128.	3.9	41
220	Event generator tunes obtained from underlying event and multiparton scattering measurements. European Physical Journal C, 2016, 76, 155.	3.9	499
221	Search for massive WH resonances decaying into the \$\$ell u mathrm{b} overline{mathrm{b}} \$\$ a,," $1\frac{1}{2}$ b b A^- final state at \$\$sqrt{s}=8\$\$ s = 8 \$\$~ext {TeV}\$\$ TeV. European Physical Journal C, 2016, 76, 237.	3.9	30
222	Search for a massive resonance decaying into a Higgs boson and a W or Z boson in hadronic final states in proton-proton collisions at $s = 8 $ \$ sqrt $\{s\}=8 $ \$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	16
223	Measurement of top quark polarisation in t-channel single top quark production. Journal of High Energy Physics, 2016, 2016, 1.	4.7	15
224	Search for heavy Majorana neutrinos in e $\hat{A}\pm\hat{A}\pm+$ jets and e $\hat{A}\pm\hat{A}\pm+$ jets events in proton-proton collisions at s = 8 \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	35
225	Search for a very light NMSSM Higgs boson produced in decays of the 125 GeV scalar boson and decaying into \ddot{l} , leptons in pp collisions at s = 8 \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	19
226	Measurement of differential cross sections for Higgs boson production in the diphoton decay channel in pp collisions at $\$$ qrt $\{s\}=8$,ext $\{TeV\}$ $\$$ s = 8 TeV. European Physical Journal C, 2016, 76, 13.	3.9	62
227	Test beam results with a sampling calorimeter of cerium fluoride scintillating crystals and tungsten absorber plates for calorimetry at the HL-LHC. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 824, 681-683.	1.6	1
228	Search for new physics in final states with two opposite-sign, same-flavor leptons, jets, and missing transverse momentum in pp collisions at $s=13$ \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2016, 2016, 1.	4.7	8
229	Response of microchannel plates to single particles and to electromagnetic showers. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 797, 216-221.	1.6	25
230	Beam test results for a tungsten-cerium fluoride sampling calorimeter with wavelength-shifting fiber readout. Journal of Instrumentation, 2015, 10, P07002-P07002.	1.2	6
231	High-energy electron test results of a calorimeter prototype based on CeF3 for HL-LHC applications. , 2015, , .		1
232	Beam test results on the detection of single particles and electromagnetic showers with microchannel plates. , $2015, \ldots$		0
233	Search for physics beyond the standard model in events with two leptons, jets, and missing transverse momentum in pp collisions at s $$$ sqrt{s} $$$ = 8 TeV. Journal of High Energy Physics, 2015, 2015, 1.	4.7	24
234	Search for third-generation scalar leptoquarks in the $t\ddot{l}$, channel in proton-proton collisions at $s=8$ \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2015, 2015, 1.	4.7	24

#	Article	IF	Citations
235	Searches for supersymmetry using the M T2 variable in hadronic events produced in pp collisions at 8 TeV. Journal of High Energy Physics, 2015, 2015, 1.	4.7	34
236	Searches for third-generation squark production in fully hadronic final states in proton-proton collisions at $s=8$ \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2015, 2015, 1.	4.7	37
237	Search for the production of dark matter in association with top-quark pairs in the single-lepton final state in proton-proton collisions at $s=8$ \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2015, 2015, 1.	4.7	20
238	Search for a charged Higgs boson in pp collisions at $s=8$ \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2015, 2015, 1.	4.7	81
239	Search for supersymmetry in the vector-boson fusion topology in proton-proton collisions at $s=8$ \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2015, 2015, 1.	4.7	12
240	Search for a light charged Higgs boson decaying to c s \hat{A}^- \$\$ mathrm{c}overline{mathrm{s}} \$\$ in pp collisions at s = 8 \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2015, 2015, 1-37.	4.7	44
241	Search for vector-like T quarks decaying to top quarks and Higgs bosons in the all-hadronic channel using jet substructure. Journal of High Energy Physics, 2015, 2015, 1.	4.7	24
242	Search for neutral color-octet weak-triplet scalar particles in proton-proton collisions at $s=8$ \$\$ sqrt $\{s\}=8$ \$\$ TeV. Journal of High Energy Physics, 2015, 2015, 1.	4.7	1
243	Search for a Higgs boson in the mass range from 145 to 1000 GeV decaying to a pair of W or Z bosons. Journal of High Energy Physics, 2015 , 2015 , 1 .	4.7	92
244	Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2015, 75, 212.	3.9	541
245	Measurement of the $Z\hat{1}^3$ production cross section in pp collisions at 8 TeV and search for anomalous triple gauge boson couplings. Journal of High Energy Physics, 2015, 2015, 1.	4.7	11
246	Measurement of the inclusive 3-jet production differential cross section in proton–proton collisions at 7 TeVÂand determination of the strong coupling constant in the TeVÂrange. European Physical Journal C, 2015, 75, 186.	3.9	68
247	Measurement of the differential cross section for top quark pair production in pp collisions at $s=8$ at TeV $s=8$ rev. European Physical Journal C, 2015, 75, 542.	3.9	191
248	Measurements of the \frac{Z} $Z \$ mathrm{Z}\$\$ Z production cross sections in the \$\$2 mathrm{I} 2u \$\$ 2 2 1/2 channel in protonâ e"proton collisions at \$\$ qrt{s} = 7\$\$ s = 7 and \$\$8~. European Physical Journal C, 2015, 75, 511.	3.9	32
249	Comparison of the Z/\hat{I}^3 \hat{a}^- + jets to \hat{I}^3 + jets cross sections in pp collisions at s = 8 \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2015, 2015, 1.	4.7	6
250	Search for neutral MSSM Higgs bosons decaying into a pair of bottom quarks. Journal of High Energy Physics, 2015, 2015, 1.	4.7	30
251	Search for a standard model Higgs boson produced in association with a top-quark pair and decaying to bottom quarks using a matrix element method. European Physical Journal C, 2015, 75, 251.	3.9	73
252	Measurement of electroweak production of two jets in association with a Z boson in proton–proton collisions at \$\$sqrt{s}=8,ext {TeV}\$\$ s = 8 TeV. European Physical Journal C, 2015, 75, 66.	3.9	31

#	Article	IF	Citations
253	Measurements of differential and double-differential Drellâ \in "Yan cross sections in protonâ \in "proton collisions at \$\$sqrt{s} = 8\$\$ s = 8 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2015, 75, 147.	3.9	88
254	Search for decays of stopped long-lived particles produced in proton–proton collisions at \$\$sqrt{s}= 8,ext {TeV} \$\$ s = 8 TeV. European Physical Journal C, 2015, 75, 151.	3.9	44
255	Measurement of the W boson helicity in events with a single reconstructed top quark in pp collisions at s = 8 \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2015, 2015, 1. Measurement of the ratio of the production cross sections times branching fractions of B c ±  → J∏`	4.7 i∈ Δ̂+	26
256	and B± â†' Jſr̂K ± and ℬ B c ± â†' J / r̂ ï€ Â± ï€ Â± ï€ â-" / ℬ B c ± â†' J / r̂ ï€ Â± \$\$ mathrm{mathcal{B}}left({mathrm{B}}_{mathrm{c}}^{pm}o mathrm{J}/psi {pi}^{pm} {pi}^{pm} Tj ETQq0 0 C		rlock 10 Tf 50
257	2015, 1. Search for disappearing tracks in proton-proton collisions at $s=8$ \$\$ sqrt{s}=8 \$\$ TeV. Journal of High Energy Physics, 2015, 2015, 1.	4.7	46
258	Study of Z production in PbPb and pp collisions at s N N = $2.76 \$\$ $ sqrt $\{s_{NN}\}\}=2.76 \$\$ $ TeV in the dimuon and dielectron decay channels. Journal of High Energy Physics, 2015, 2015, 1.	4.7	27
259	Search for physics beyond the standard model in dilepton mass spectra in proton-proton collisions at $s = 8 $ \$\$ sqrt s =8 \$\$ TeV. Journal of High Energy Physics, 2015, 2015, 1.	4.7	78
260	Measurement of the underlying event activity using charged-particle jets in proton-proton collisions at $s = 2.76 \$$ sqrt $\{s\}=2.76 \$$ TeV. Journal of High Energy Physics, 2015, 2015, 1.	4.7	10
261	Search for dark matter, extra dimensions, and unparticles in monojet events in proton–proton collisions at \$\$sqrt{s} = 8\$\$ s = 8 \$\$,{mathrm{TeV}},\$\$ TeV. European Physical Journal C, 2015, 75, 235.	3.9	320
262	Constraints on parton distribution functions and extraction of the strong coupling constant from the inclusive jet cross section in pp collisions at $\$$ sqrt $\{s\} = 7$ \$ $s = 7$ \$,ext $\{TeV\}$ \$\$ TeV. European Physical Journal C, 2015, 75, 288.	3.9	54
263	Performance of a tungsten–cerium fluoride sampling calorimeter in high-energy electron beam tests. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 804, 79-83.	1.6	3
264	Nuclear effects on the transverse momentum spectra of charged particles in pPb collisions at $\frac{s_{months}}{5.02}$ s NN = 5.02 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2015, 75, 237.	3.9	58
265	Distributions of topological observables in inclusive three- and four-jet events in pp collisions at $s=7$ s = 7 s,ext {TeV}\$\$ TeV. European Physical Journal C, 2015, 75, 302.	3.9	6
266	Constraints on the pMSSM, AMSB model and on other models from the search for long-lived charged particles in protonâ \in proton collisions at \$\$sqrt{s} =8,ext {TeV} \$\$ s = 8 TeV. European Physical Journal C, 2015, 75, 325.	3.9	43
267	Search for heavy neutrinos and \$\$mathrm {W}\$\$ W bosons with right-handed couplings in proton–proton collisions at \$\$sqrt{s} = 8,ext {TeV} \$\$ s = 8 TeV. European Physical Journal C, 2014, 74, 3149.	3.9	179
268	Measurement of top quark $\hat{a}\in$ "antiquark pair production in association with a W or Z boson in pp collisions at \$\$sqrt{s} = 8\$\$ s = 8 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2014, 74, 3060.	3.9	43
269	Measurement of differential cross sections for the production of a pair of isolated photons in pp collisions at $\$$ sqrt $\{s\}$ =7,ext $\{TeV\}$ $\$$ s = 7 TeV. European Physical Journal C, 2014, 74, 3129.	3.9	65
270	Search for neutral MSSM Higgs bosons decaying to a pair of tau leptons in pp collisions. Journal of High Energy Physics, 2014, 2014, 1.	4.7	81

#	Article	IF	Citations
271	Measurement of pseudorapidity distributions of charged particles in proton–proton collisions at \$\$sqrt{s} = 8\$\$ s = 8 ÂTeV by the CMS and TOTEM experiments. European Physical Journal C, 2014, 74, 1.	3.9	49
272	Searches for electroweak production of charginos, neutralinos, and sleptons decaying to leptons and W, Z, and Higgs bosons in pp collisions at 8ÂTeV. European Physical Journal C, 2014, 74, 3036.	3.9	241
273	Measurement of prompt J/ $\hat{\Gamma}$ pair production in pp collisions at s \$\$ sqrt{s} \$\$ = 7 Tev. Journal of High Energy Physics, 2014, 2014, 1.	4.7	61
274	Observation of the diphoton decay of the Higgs boson and measurement of its properties. European Physical Journal C, 2014, 74, 3076.	3.9	342
275	Search for the associated production of the Higgs boson with a top-quark pair. Journal of High Energy Physics, 2014, 2014, 1.	4.7	51
276	Study of hadronic event-shape variables in multijet final states in pp collisions at $s=7$ \$\$ sqrt{s} = 7 \$\$ TeV. Journal of High Energy Physics, 2014, 2014, 1.	4.7	3
277	Search for standard model production of four top quarks in the lepton + jets channel in pp collisions at $s = 8 $ \$\$ sqrt $\{s\}=8 $ \$\$ TeV. Journal of High Energy Physics, 2014, 2014, 1.	4.7	17
278	Identification techniques for highly boosted W bosons that decay into hadrons. Journal of High Energy Physics, 2014, 2014, 1.	4.7	43
279	Measurement of Higgs boson production and properties in the WW decay channel with leptonic final states. Journal of High Energy Physics, 2014, 2014, 1.	4.7	169
280	Measurement of the $\$$ toverline $\{t\}$ $\$$ production cross section in the dilepton channel in pp collisions at $\$$ sqrt $\{s\}$ $\$$ = 8 TeV. Journal of High Energy Physics, 2014, 2014, 1.	4.7	52
281	Studies of azimuthal dihadron correlations in ultra-central PbPb collisions at \$ sqrt{{{s_{NN }}}} \$ =2.76 TeV. Journal of High Energy Physics, 2014, 2014, 1.	4.7	77
282	Search for new physics in events with same-sign dileptons and jets in pp collisions at sqrts = 8 TeV. Journal of High Energy Physics, 2014, 2014, 1.	4.7	48
283	Studies of dijet transverse momentum balance and pseudorapidity distributions in pPb collisions at $\frac{s_{\infty}}{1.00}$ so NN = 5.02 \$\$,ext {TeV}\$\$ TeV. European Physical Journal C, 2014, 74, 1.	3.9	75
284	Measurement of WZ and ZZ production in pp collisions at $\$$ sqrt $\{s\} = 8$,ext $\{TeV\}$ $\$$ s = 8 TeV in final states with b-tagged jets. European Physical Journal C, 2014, 74, 2973.	3.9	23
285	Search for invisible decays of Higgs bosons in the vector boson fusion and associated ZH production modes. European Physical Journal C, 2014, 74, 2980.	3.9	171
286	Measurement of jet multiplicity distributions in $\frac{t}{\text{TeV}} $ s = 7 TeV. European Physical Journal C, 2014, 74, 3014.	3.9	16
287	Study of double parton scattering using W + 2-jet events in proton-proton collisions at	4.7	85
288	Event activity dependence of $Y $ (nS) production in $q = 1.02$ FeV pPb and $q = 1.02$ FeV pP collisions. Journal of High Energy Physics, 2014, 2014, 1.	4.7	56

#	Article	IF	CITATIONS
289	Measurements of the \$ mathrm{t}overline{mathrm{t}} \$ charge asymmetry using the dilepton decay channel in pp collisions at \$ $qt{s} = 7$ TeV. Journal of High Energy Physics, 2014, 2014, 1.	4.7	20
290	Evidence for the 125 GeV Higgs boson decaying to a pair of $\ddot{\text{l}}$, leptons. Journal of High Energy Physics, 2014, 2014, 1.	4.7	123
291	Search for $W\hat{a}\in \hat{a}$ \hat{a} \hat{a} to decays in the lepton + jets final state in pp collisions at \$ sqrt{s} \$ = 8 TeV. Journal of High Energy Physics, 2014, 2014, 1.	4.7	26
292	Measurement of the triple-differential cross section for photon $+$ jets production in proton-proton collisions at sqrts= 7 TeV. Journal of High Energy Physics, 2014, 2014, 1.	4.7	31
293	Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at $\$ sqrt $\{s\}$ $\$ = 8 TeV. Journal of High Energy Physics, 2014, 2014, 1.	4.7	100
294	Measurement of the t-channel single-top-quark production cross section and of the $ Vtb $ CKM matrix element in pp collisions at \$ sqrt{s} \$ = 8 TeV. Journal of High Energy Physics, 2014, 2014, 1.	4.7	70
295	Measurement of the production cross sections for a Z boson and one or more b jets in pp collisions at s $$$ sqrt ${s}$ $$$ = 7 TeV. Journal of High Energy Physics, 2014, 2014, 1.	4.7	39
296	Search for pair production of excited top quarks in the lepton + jets final state. Journal of High Energy Physics, 2014, 2014, 1.	4.7	4
297	Search for massive resonances in dijet systems containing jets tagged as W or Z boson decays in pp collisions at s $\$$ sqrt $\{s\}$ $\$$ = 8 TeV. Journal of High Energy Physics, 2014, 2014, 1.	4.7	85
298	Search for massive resonances decaying into pairs of boosted bosons in semi-leptonic final states at s $\$ sqrt{s} $\$ = 8 TeV. Journal of High Energy Physics, 2014, 2014, 1.	4.7	69
299	Measurement of the top-quark mass in all-jets $\frac{1}{2}$ whose $\frac{1}{2}$ mathrm $\frac{1}{2}$ t t \hat{A}^- events in pprocollisions at $\frac{1}{2}$ s = 7 TeV. European Physical Journal C, 2014, 74, 2758.	3.9	35
300	Study of the production of charged pions, kaons, and protons in pPb collisions at $\$$ sqrt{s_{NN}} =; $\$$ s N N = 5.02 $\$$, ext {TeV}\$\$ TeV. European Physical Journal C, 2014, 74, 2847.	3.9	85
301	Probing color coherence effects in pp collisions at $\$\$qrt\{s\}=7$, ext TeV $\$$ s = 7 TeV. European Physical Journal C, 2014, 74, 2901.	3.9	17
302	Measurement of the (toverline $\{t\}$) production cross section in the dilepton channel in pp collisions at (sqrt $\{s\}$) = 8 TeV., 2014, 2014, 1.		3
303	Search for the associated production of the Higgs boson with a top-quark pair. , 2014, 2014, 1.		6
304	Search for microscopic black holes in pp collisions at $q=0$ Sqrt $q=0$ Flysics, 2013, 2013, 1.	4.7	44
305	Measurement of the \$ Lambda_{mathrm{b}}^0 \$ lifetime in pp collisions at \$ $qt{s}=7 $ TeV. Journal of High Energy Physics, 2013, 2013, 1.	4.7	17
306	Searches for long-lived charged particles in pp collisions at $ \text{sqrt} = 7 $ and 8 TeV. Journal of High Energy Physics, 2013, 2013, 1.	4.7	118

#	Article	IF	CITATIONS
307	Study of exclusive two-photon production of W+Wâ^' in pp collisions at \$ sqrt{s}=7 \$ TeV and constraints on anomalous quartic gauge couplings. Journal of High Energy Physics, 2013, 2013, 1.	4.7	75
308	Observation of a new boson with mass near 125 GeV in pp collisions at $q=1$ and 8 TeV. Journal of High Energy Physics, 2013, 2013, 1.	4.7	320
309	Search for the standard model Higgs boson produced in association with a top-quark pair in pp collisions at the LHC. Journal of High Energy Physics, 2013, 2013, 1.	4.7	39
310	Studies of jet mass in dijet and W/Z + jet events. Journal of High Energy Physics, 2013, 2013, 1.	4.7	58
311	Measurement of the \$ mathrm{t}overline{mathrm{t}} \$ production cross section in the all-jet final state in pp collisions at \$ $q^2 = 7 $ TeV. Journal of High Energy Physics, 2013, 2013, 1.	4.7	16
312	Measurement of the X(3872) production cross section via decays to J/ϴπ + π ⴒ in pp collisions at \$ sqrt{s}=7 \$ TeV. Journal of High Energy Physics, 2013, 2013, 1.	4.7	73
313	Study of the underlying event at forward rapidity in pp collisions at \$ sqrt{s}=0.9,2.76,;mathrm{and};7;mathrm{TeV} \$. Journal of High Energy Physics, 2013, 2013, 1.	4.7	50
314	Search for new physics in events with photons, jets, and missing transverse energy in pp collisions at \$ sqrt{s}=7 \$ TeV. Journal of High Energy Physics, 2013, 2013, 1.	4.7	15
315	Search for new physics in events with same-sign dileptons and b jets in pp collisions at $q=0$ sqrt $q=0$. Journal of High Energy Physics, 2013, 2013, 1.	4.7	33
316	Search in leptonic channels for heavy resonances decaying to long-lived neutral particles. Journal of High Energy Physics, 2013, 2013, 1.	4.7	32
317	Search for exotic resonances decaying into WZ/ZZ in pp collisions at $q=0$ FeV. Journal of High Energy Physics, 2013, 2013, 1.	4.7	20
318	Search for supersymmetry in pp collisions at \$sqrt{s} =7\$ TeV in events with a single lepton, jets, and missing transverse momentum. European Physical Journal C, 2013, 73, 2404.	3.9	20
319	Search for a standard-model-like Higgs boson with a mass in the range 145 to 1000 GeV at the LHC. European Physical Journal C, 2013, 73, 2469.	3.9	68
320	Measurement of the W-boson helicity in top-quark decays from \$ mathrm{t}overline{mathrm{t}} \$ production in lepton+jets events in pp collisions at \$ sqrt{s}=7 \$ TeV. Journal of High Energy Physics, 2013, 2013, 1.	4.7	30
321	Search for supersymmetry in hadronic final states with missing transverse energy using the variables $\hat{l}\pm T$ and b-quark multiplicity in pp collisions at $\frac{1}{5} = 8$ mathrm{TeV}\$. European Physical Journal C, 2013, 73, 2568.	3.9	147
322	Measurement of the hadronic activity in events with a Z and two jets and extraction of the cross section for the electroweak production of a Z with two jets in pp collisions at $\$ sqrt{s}=7 $\$ TeV. Journal of High Energy Physics, 2013, 2013, 1.	4.7	16
323	Measurement of masses in the $mathrm{t}$ overline{mathrm $t}$ \$ system by kinematic endpoints in pp collisions at $q=0.013, 73, 2494.$	3.9	55
324	Search for physics beyond the standard model in events with I_{s} , leptons, jets, and large transverse momentum imbalance in pp collisions at $q=1$ mathrm{TeV}\$. European Physical Journal C, 2013, 73, 2493.	3.9	22

#	Article	IF	CITATIONS
325	Measurement of the $mathrm{t}\ar{mathrm{t}}$ production cross section in the \ddot{l} ,+jets channel in pp collisions at $q=1$ mbox $r=1$ m	3.9	24
326	Jet and underlying event properties as a function of charged-particle multiplicity in proton–proton collisions at \$sqrt {s}= 7 ext{TeV}\$. European Physical Journal C, 2013, 73, 2674.	3.9	32
327			

#	Article	IF	CITATIONS
343	Search for heavy bottom-like quarks in 4.9 fb \hat{a} of pp collisions at \$ sqrt {s} = 7 \$ TeV. Journal of High Energy Physics, 2012, 2012, 1.	4.7	45
344	Measurement of the cross section for production of $\$$ boverline b X $\$$ decaying to muons in pp collisions at $\$$ sqrt $\{s\}$ = 7 $\$$ TeV. Journal of High Energy Physics, 2012, 2012, 1.	4.7	6
345	Measurement of the Z $\hat{\mathbb{I}}^3$ * + b-jet cross section in pp collisions at \$ sqrt {s} = 7 \$ TeV. Journal of High Energy Physics, 2012, 2012, 1.	4.7	39
346	Shape, transverse size, and charged-hadron multiplicity of jets in pp collisions at $q=7$; TeV \$. Journal of High Energy Physics, 2012, 2012, 1.	4.7	31
347	Search for anomalous production of multilepton events in pp collisions at $\$$ sqrt $\$$ = 7,TeV $\$$. Journal of High Energy Physics, 2012, 2012, 1.	4.7	68
348	Search for a light charged Higgs boson in top quark decays in pp collisions at $\$ sqrt $\{s\} = 7$; TeV $\$. Journal of High Energy Physics, 2012, 2012, 1.	4.7	117
349	Search for leptonic decays of $W\hat{a}\in \mathbb{R}^2$ bosons in pp collisions at \$ sqrt {s} = {7} \$ TeV. Journal of High Energy Physics, 2012, 2012, 1.	4.7	49
350	Search for stopped long-lived particles produced in pp collisions at sqrt s = ext7TeV} 9. Journal of High Energy Physics, 2012, 2012, 1.	4.7	17
351	Search for new physics in events with same-sign dileptons and b-tagged jets in pp collisions at \$ sqrt {s} = 7 \$ TeV. Journal of High Energy Physics, 2012, 2012, 1.	4.7	30
352	Measurement of the underlying event activity in pp collisions at $\$$ sqrt $\{\$\}$ = 0.9 $\$$ and 7 TeV with the novel jet-area/median approach. Journal of High Energy Physics, 2012, 2012, 1.	4.7	13
353	Search for anomalous \$ toverline t \$ production in the highly-boosted all-hadronic final state. Journal of High Energy Physics, 2012, 2012, 1.	4.7	58
354	Search for dark matter and large extra dimensions in monojet events in pp collisions at $\$$ sqrt $\{s\}$ = $\{7\}$ $\$$ TeV. Journal of High Energy Physics, 2012, 2012, 1.	4.7	168
355	Search for a fermiophobic Higgs boson in pp collisions at $\$$ sqrt $\$$ = 7 $\$$ TeV. Journal of High Energy Physics, 2012, 2012, 1.	4.7	15
356	Search for supersymmetry in hadronic final states using M T2 in pp collisions at $\$ sqrt{s}=7 $\$ TeV. Journal of High Energy Physics, 2012, 2012, 1.	4.7	95
357	Measurement of jet fragmentation into charged particles in pp and PbPb collisions at $\$ sqrt{{{s_{mathrm{NN}}}}} = 2.76 \$ TeV. Journal of High Energy Physics, 2012, 2012, 1.	4.7	85
358	Measurement of the $\mbox{mathrm}\{t\}$ overline{mathrm} $\{t\}$ production cross section in the dilepton channel in pp collisions at $\mbox{sqrt}\{s\}=7$ TeV. Journal of High Energy Physics, 2012, 2012, 1.	4.7	69
359	Search for exclusive or semi-exclusive $\hat{I}^3\hat{I}^3$ production and observation of exclusive and semi-exclusive e+e \hat{a} ° production in pp collisions at \$ sqrt{s}=7 \$ TeV. Journal of High Energy Physics, 2012, 2012, 1.	4.7	51
360	Search for the standard model Higgs boson produced in association with W and Z bosons in pp collisions at $\$ sqrt $\{s\}=7\$ TeV. Journal of High Energy Physics, 2012, 2012, 1.	4.7	7

#	Article	IF	CITATIONS
361	Search for electroweak production of charginos and neutralinos using leptonic final states in pp collisions at $\$ sqrt $\{s\}=7\$ TeV. Journal of High Energy Physics, 2012, 2012, 1.	4.7	41
362	Search for new physics with long-lived particles decaying to photons and missing energy in pp collisions at $\$ sqrt $\{s\}=7\$ TeV. Journal of High Energy Physics, 2012, 2012, 1.	4.7	11
363	Search for resonant $\mbox{mathrm{t}overline{mathrm{t}} $ production in lepton+jets events in pp collisions at $ \mbox{sqrt{s}=7 } \mbox{TeV}. Journal of High Energy Physics, 2012, 2012, 1.$	4.7	26
364	Observation of Z decays to four leptons with the CMS detector at the LHC. Journal of High Energy Physics, 2012, 2012, 1.	4.7	34
365	Measurement of the single-top-quark t-channel cross section in pp collisions at $\$ sqrt{s}=7 $\$ TeV. Journal of High Energy Physics, 2012, 2012, 1.	4.7	83
366	Search for third-generation leptoquarks and scalar bottom quarks in pp collisions at $\frac{1}{100}$ sqrt $\frac{1}{10$	4.7	14
367	Measurement of the top-quark mass in $\mbox{mathrm}\{t\}$ verline{mathrm $\{t\}$ } events with lepton+jets final states in pp collisions at $\mbox{sqrt}\{s\}=7\mbox{ TeV}$. Journal of High Energy Physics, 2012, 2012, 1.	4.7	38
368	Measurement of the underlying event in the Drellâ€"Yan process in protonâ€"proton collisions at \$sqrt{s} = 7~mbox{TeV}\$. European Physical Journal C, 2012, 72, 1.	3.9	33
369	Study of the inclusive production of charged pions, kaons, and protons in pp collisions at $q=0.9, 2.76, mbox{and }7~mbox{TeV}$. European Physical Journal C, 2012, 72, 1.	3.9	154
370	A search for a doubly-charged Higgs boson in pp collisions at $q=7 \mod TeV$. European Physical Journal C, 2012, 72, 1.	3.9	129
371	Measurement of the top-quark mass in $mathrm\{t\}$ events with dilepton final states in pp collisions at $q=0$ mbox TeV . European Physical Journal C, 2012, 72, 1.	3.9	42
372	Ratios of dijet production cross sections as a function of the absolute difference in rapidity between jets in protonâ \in proton collisions at $q=7 \text{ mathrm} = 7 math$	3.9	26
373			

#	Article	IF	CITATIONS
379	Search for a Higgs boson in the decay channel H \hat{a} † $ZZ(*)$ \hat{a} † \hat{a} overline {ext{q}} \$ \hat{a} ," \hat{a} " \hat{a} " + in pp collisions at \$ sqrt {s} = 7 \$TeV. Journal of High Energy Physics, 2012, 2012, 1.	4.7	30
380	Search for microscopic black holes in pp collisions at $\$\$ $ sqrt $\{s\} = \{ext\{7TeV\}\} \$\$$. Journal of High Energy Physics, 2012, 2012, 1.	4.7	34
381	Measurement of the inclusive production cross sections for forward jets and for dijet events with one forward and one central jet in pp collisions at	4.7	16
382	Measurement of the mass difference between top and antitop quarks. Journal of High Energy Physics, 2012, 2012, 1.	4.7	15
383	Study of high-p T charged particle suppression in PbPb compared to pp collisions at \$sqrt{s_{mathrm{NN}}}=2.76~mathrm{TeV}\$. European Physical Journal C, 2012, 72, 1.	3.9	369
384	Centrality dependence of dihadron correlations and azimuthal anisotropy harmonics in PbPb collisions at $sqrt{s_{NN}}= 2.76$ mbox{TeV}\$. European Physical Journal C, 2012, 72, 1.	3.9	181
385	Jet production rates in association with W and Z bosons in pp collisions at sqrt s = 7 extTeV} \$. Journal of High Energy Physics, 2012, 2012, 1.	4.7	58
386	Exclusive $\hat{I}^3\hat{I}^3$ \hat{a}^{\dagger} ' $\hat{I}^1/4 + \hat{I}^1/4$ \hat{a}^{\dagger} ' production in proton-proton collisions at \$ sqrt {s} = {7} \$ TeV. Journal of High Energy Physics, 2012, 2012, 1.	4.7	56
387	Measurement of the production cross section for pairs of isolated photons in pp collisions at $\$ sqrt $\$ s} = 7;TeV $\$. Journal of High Energy Physics, 2012, 2012, 1.	4.7	26
388	Prompt and non-prompt J/ $\hat{\Gamma}$ production in pp collisions at \$sqrt{s} = 7\$ TeV. European Physical Journal C, 2011, 71, 1.	3.9	135
389	Measurement of the \$mathrm{{tar{t}}}\$ production cross section in pp collisions at \$sqrt{s}=7\$ TeV using the kinematic properties of events with leptons and jets. European Physical Journal C, 2011, 71, 1.	3.9	37
390	Charged particle multiplicities in pp interactions at sqrt s} = 0.9 5, 2.36, and 7 TeV. Journal of High Energy Physics, 2011, 2011, 1.	4.7	106
391	Measurements of inclusive W and Z cross sections in pp collisions at sqrt s} = 7 TeV. Journal of High Energy Physics, 2011, 2011, 1.	4.7	122
392	Search for heavy stable charged particles in pp collisions at sqrt s= 7;extTeV} 5. Journal of High Energy Physics, 2011, 2011, 1.	4.7	38
393	Inclusive b-hadron production cross section with muons in pp collisions at sqrt s} = 7;extTeV} \$. Journal of High Energy Physics, 2011, 2011, 1.	4.7	23
394	Measurement of $\{\text{ext}\{B\}\}$ overline $\{\text{ext}\{B\}\}$ angular correlations based on secondary vertex reconstruction at $\{\text{sqrt}\{s\} = 7, \{\text{ext}\{\text{TeV}\}\}\}$. Journal of High Energy Physics, 2011, 2011, 1.	4.7	32
395	Measurement of the lepton charge asymmetry in inclusive W production in pp collisions at $\$$ sqrt $\{s\}$ = 7; $\{ext\{TeV\}\}$ $\$$. Journal of High Energy Physics, 2011, 2011, 1.	4.7	59
396	Measurement of Bose-Einstein correlations in pp collisions at sqrt s = 0.9 s and 7 TeV. Journal of High Energy Physics, 2011, 2011, 1.	4.7	30

#	Article	IF	Citations
397	Strange particle production in pp collisions at sqrt s = 0.9 s and 7 TeV. Journal of High Energy Physics, 2011, 2011, 1.	4.7	139
398	Search for large extra dimensions in the diphoton final state at the Large Hadron Collider. Journal of High Energy Physics, 2011, 2011, 1.	4.7	22
399	Search for resonances in the dilepton mass distribution in pp collisions at sqrt = 7 TeV. Journal of High Energy Physics, 2011, 2011, 1.	4.7	39
400	Search for physics beyond the standard model in opposite-sign dilepton events in pp collisions at $q=7,{ext}$ Sournal of High Energy Physics, 2011, 2011, 1.	4.7	26
401	Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy at the LHC. Journal of High Energy Physics, 2011, 2011, 1.	4.7	46
402	Search for supersymmetry in events with a lepton, a photon, and large missing transverse energy in pp collisions at sqrt FeV. Journal of High Energy Physics, 2011, 2011, 1.	4.7	10
403	Measurement of the $\{m t\}$ ar $\{m t\}$ production cross section and the top quark mass in the dilepton channel in pp collisions at sqrt $\{s\}$ = 7 TeV . Journal of High Energy Physics, 2011, 2011, 1.	4.7	53
404	Long-range and short-range dihadron angular correlations in central PbPb collisions at \$ sqrt {{{s_{ext{NN}}}}} \$  = 2.76 TeV. Journal of High Energy Physics, 2011, 2011, 1.	4.7	65
405	Search for light resonances decaying into pairs of muons as a signal of new physics. Journal of High Energy Physics, 2011, 2011, 1.	4.7	13
406	Search for supersymmetry in events with b jets and missing transverse momentum at the LHC. Journal of High Energy Physics, 2011, 2011, 1.	4.7	29
407	Search for same-sign top-quark pair production at	4.7	40
408	Charged particle transverse momentum spectra in pp collisions at $\$$ sqrt $\{s\}$ = 0.9 $\$$ and 7 TeV. Journal of High Energy Physics, 2011, 2011, 1.	4.7	56
409	Measurement of the inclusive Z cross section via decays to tau pairs in pp collisions at sqrt s = 7 TeV. Journal of High Energy Physics, 2011, 2011, 1.	4.7	20
410	Dependence on pseudorapidity and on centrality of charged hadron production in PbPb collisions at $\{\{s_{ext}NN\}\}\}\}$ = 2.76 \$ TeV. Journal of High Energy Physics, 2011, 2011, 1.	4.7	99
411	Search for new physics with jets and missing transverse momentum in pp collisions at $\$ $ sqrt $\$ $ = $7 $ $\$$ TeV. Journal of High Energy Physics, 2011, 2011, 1.	4.7	49
412	Search for supersymmetry in pp collisions at $\$$ sqrt $\{s\} = 7 \$$ TeV in events with a single lepton, jets, and missing transverse momentum. Journal of High Energy Physics, 2011, 2011, 1.	4.7	32
413	Measurement of the underlying event activity at the LHC with $\$ sqrt $\{s\}$ = 7 $\$ TeV and comparison with $\$ sqrt $\{s\}$ = 0.9 $\$ TeV. Journal of High Energy Physics, 2011, 2011, 1.	4.7	97
414	Measurement of the Drell-Yan cross section in pp collisions at sqrt = 7 TeV. Journal of High Energy Physics, 2011, 2011, 1.	4.7	36

#	Article	IF	Citations
415	Measurement of the inclusive W and Z production cross sections in pp collisions at $\$$ sqrt $\{s\}$ = 7 $\$$ TeV with the CMS experiment. Journal of High Energy Physics, 2011, 2011, 1.	4.7	158
416	Measurement of energy flow at large pseudorapidities in pp collisions at $\$ sqrt $\{s\}$ = 0. $\{9\}$ $\$ and 7 TeV. Journal of High Energy Physics, 2011, 2011, 1.	4.7	25
417	Measurement of energy flow at large pseudorapidities in pp collisions at (sqrt $\{s\}$ = 0. $\{9\}$) and 7 TeV. , 2011, 2011, 1.		5
418	First measurement of the underlying event activity at \hat{A} the \hat{A} LHC \hat{A} with \hat{A} \$ sqrt {s} = 0.9\$ \hat{A} TeV. European Physical Journal C, 2010, 70, 555-572.	3.9	50
419	CMS tracking performance results from early LHC operation. European Physical Journal C, 2010, 70, 1165-1192.	3.9	120
420	Transverse-momentum and pseudorapidity distributions of charged hadrons in pp collisions at $sqrt{s} = 0.9 $ and 2.36 TeV. Journal of High Energy Physics, 2010, 2010, 1.	4.7	230
421	Observation of long-range, near-side angular correlations in proton-proton collisions at the LHC. Journal of High Energy Physics, 2010, 2010, 1.	4.7	497
422	Radiation hardness qualification of PbWO ₄ scintillation crystals for the CMS Electromagnetic Calorimeter. Journal of Instrumentation, 2010, 5, P03010-P03010.	1.2	19
423	The CMS barrel calorimeter response to particle beams fromÂ2ÂtoÂ350 GeV/c. European Physical Journal C, 2009, 60, 359-373.	3.9	29
424	CMS Electromagnetic Calorimeter preparation towards the LHC data taking. Nuclear Physics, Section B, Proceedings Supplements, 2008, 177-178, 316-317.	0.4	0
425	Intercalibration of the barrel electromagnetic calorimeter of the CMS experiment at start-up. Journal of Instrumentation, 2008, 3, P10007-P10007.	1.2	26
426	CMS discovery potential for the SM Higgs boson in the H â†' ZZ(*)â†' e+eâ^'e+eâ^'decay channel. Journal of Physics G: Nuclear and Particle Physics, 2007, 34, N23-N46.	3.6	7
427	High voltage system for the CMS electromagnetic calorimeter. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 582, 462-468.	1.6	10
428	Electron reconstruction in CMS. European Physical Journal C, 2007, 49, 1099-1116.	3.9	46
429	The CMS Simulation Software. , 2006, , .		1
430	Precise measurements of light yield and transmission of crystals at the INFN-ENEA regional centre. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 562, 76-84.	1.6	3
431	Results of the first performance tests * of the CMS electromagnetic calorimeter. European Physical Journal C, 2006, 44, 1-10.	3.9	38
432	Reconstruction of the signal amplitude of the CMS electromagnetic calorimeter. European Physical Journal C, 2006, 46, 23-35.	3.9	37

#	Article	lF	CITATIONS
433	Cross-calibration of two automatic quality control systems for the CMS ECAL crystals. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 523, 355-364.	1.6	5
434	The CMS Object-Oriented Simulation. , 0, , .		0