
Scott L Carter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6453457/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature, 2013, 499, 214-218.	13.7	4,761
2	Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nature Biotechnology, 2013, 31, 213-219.	9.4	3,934
3	Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. New England Journal of Medicine, 2015, 372, 2481-2498.	13.9	2,582
4	The Mutational Landscape of Head and Neck Squamous Cell Carcinoma. Science, 2011, 333, 1157-1160.	6.0	2,225
5	Absolute quantification of somatic DNA alterations in human cancer. Nature Biotechnology, 2012, 30, 413-421.	9.4	1,710
6	Prospective Derivation of a Living Organoid Biobank of Colorectal Cancer Patients. Cell, 2015, 161, 933-945.	13.5	1,710
7	Pan-cancer patterns of somatic copy number alteration. Nature Genetics, 2013, 45, 1134-1140.	9.4	1,616
8	Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nature Genetics, 2012, 44, 685-689.	9.4	1,300
9	Evolution and Impact of Subclonal Mutations in Chronic Lymphocytic Leukemia. Cell, 2013, 152, 714-726.	13.5	1,202
10	Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nature Genetics, 2012, 44, 1104-1110.	9.4	1,186
11	The genomic complexity of primary human prostate cancer. Nature, 2011, 470, 214-220.	13.7	1,107
12	Sequence analysis of mutations and translocations across breast cancer subtypes. Nature, 2012, 486, 405-409.	13.7	1,107
13	Punctuated Evolution of Prostate Cancer Genomes. Cell, 2013, 153, 666-677.	13.5	1,107
14	An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nature Genetics, 2013, 45, 970-976.	9.4	1,023
15	A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nature Genetics, 2006, 38, 1043-1048.	9.4	1,002
16	The genetic landscape of high-risk neuroblastoma. Nature Genetics, 2013, 45, 279-284.	9.4	990
17	Mutations driving CLL and their evolution in progression and relapse. Nature, 2015, 526, 525-530.	13.7	868
18	A Tumor Suppressor Complex with GAP Activity for the Rag GTPases That Signal Amino Acid Sufficiency to mTORC1. Science, 2013, 340, 1100-1106.	6.0	863

2

SCOTT L CARTER

#	Article	IF	CITATIONS
19	Widespread Genetic Heterogeneity in Multiple Myeloma: Implications for Targeted Therapy. Cancer Cell, 2014, 25, 91-101.	7.7	847
20	Genomic Characterization of Brain Metastases Reveals Branched Evolution and Potential Therapeutic Targets. Cancer Discovery, 2015, 5, 1164-1177.	7.7	821
21	The Genetic Landscape of Clinical Resistance to RAF Inhibition in Metastatic Melanoma. Cancer Discovery, 2014, 4, 94-109.	7.7	782
22	Landscape of genomic alterations in cervical carcinomas. Nature, 2014, 506, 371-375.	13.7	708
23	Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature, 2012, 488, 106-110.	13.7	675
24	Melanoma genome sequencing reveals frequent PREX2 mutations. Nature, 2012, 485, 502-506.	13.7	671
25	Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nature Genetics, 2013, 45, 478-486.	9.4	671
26	Whole-exome sequencing and clinical interpretation of formalin-fixed, paraffin-embedded tumor samples to guide precision cancer medicine. Nature Medicine, 2014, 20, 682-688.	15.2	508
27	Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma. Cancer Cell, 2016, 29, 723-736.	7.7	482
28	High-resolution mapping of copy-number alterations with massively parallel sequencing. Nature Methods, 2009, 6, 99-103.	9.0	462
29	MAP Kinase Pathway Alterations in <i>BRAF</i> -Mutant Melanoma Patients with Acquired Resistance to Combined RAF/MEK Inhibition. Cancer Discovery, 2014, 4, 61-68.	7.7	419
30	The Genomic Landscape of Pediatric Ewing Sarcoma. Cancer Discovery, 2014, 4, 1326-1341.	7.7	415
31	Loss of PTEN Is Associated with Resistance to Anti-PD-1 Checkpoint Blockade Therapy in Metastatic Uterine Leiomyosarcoma. Immunity, 2017, 46, 197-204.	6.6	400
32	Complementary genomic approaches highlight the PI3K/mTOR pathway as a common vulnerability in osteosarcoma. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5564-73.	3.3	355
33	A remarkably simple genome underlies highly malignant pediatric rhabdoid cancers. Journal of Clinical Investigation, 2012, 122, 2983-2988.	3.9	347
34	Paired exome analysis of Barrett's esophagus and adenocarcinoma. Nature Genetics, 2015, 47, 1047-1055.	9.4	310
35	Response and Acquired Resistance to Everolimus in Anaplastic Thyroid Cancer. New England Journal of Medicine, 2014, 371, 1426-1433.	13.9	290
36	Somatic mutation of CDKN1B in small intestine neuroendocrine tumors. Nature Genetics, 2013, 45, 1483-1486.	9.4	275

SCOTT L CARTER

#	Article	IF	CITATIONS
37	Real-time Genomic Characterization of Advanced Pancreatic Cancer to Enable Precision Medicine. Cancer Discovery, 2018, 8, 1096-1111.	7.7	256
38	Genetic and Clonal Dissection of Murine Small Cell Lung Carcinoma Progression by Genome Sequencing. Cell, 2014, 156, 1298-1311.	13.5	241
39	Genomic characterization of human brain metastases identifies drivers of metastatic lung adenocarcinoma. Nature Genetics, 2020, 52, 371-377.	9.4	177
40	The genomic landscape and evolution of endometrial carcinoma progression and abdominopelvic metastasis. Nature Genetics, 2016, 48, 848-855.	9.4	174
41	Genomic evolution and chemoresistance in germ-cell tumours. Nature, 2016, 540, 114-118.	13.7	139
42	Somatic rearrangements across cancer reveal classes of samples with distinct patterns of DNA breakage and rearrangement-induced hypermutability. Genome Research, 2013, 23, 228-235.	2.4	124
43	Redefinition of Affymetrix probe sets by sequence overlap with cDNA microarray probes reduces cross-platform inconsistencies in cancer-associated gene expression measurements. BMC Bioinformatics, 2005, 6, 107.	1.2	113
44	Detection of Mutations in Barrett's Esophagus Before Progression to High-Grade Dysplasia or Adenocarcinoma. Gastroenterology, 2018, 155, 156-167.	0.6	110
45	Distinct genetic pathways define pre-malignant versus compensatory clonal hematopoiesis in Shwachman-Diamond syndrome. Nature Communications, 2021, 12, 1334.	5.8	103
46	Germline and somatic BAP1 mutations in high-grade rhabdoid meningiomas. Neuro-Oncology, 2017, 19, now235.	0.6	99
47	Resistance to CDK2 Inhibitors Is Associated with Selection of Polyploid Cells in <i>CCNE1</i> Amplified Ovarian Cancer. Clinical Cancer Research, 2013, 19, 5960-5971.	3.2	97
48	Landscape of Genomic Alterations in Pituitary Adenomas. Clinical Cancer Research, 2017, 23, 1841-1851.	3.2	94
49	Single-arm, open-label phase 2 trial of pembrolizumab in patients with leptomeningeal carcinomatosis. Nature Medicine, 2020, 26, 1280-1284.	15.2	83
50	MYD88 L265P mutation and CDKN2A loss are early mutational events in primary central nervous system diffuse large B-cell lymphomas. Blood Advances, 2019, 3, 375-383.	2.5	77
51	Targeting the PI3K/Akt/mTOR pathway with the pan-Akt inhibitor GDC-0068 in PIK3CA-mutant breast cancer brain metastases. Neuro-Oncology, 2019, 21, 1401-1411.	0.6	70
52	DMD genomic deletions characterize a subset of progressive/higher-grade meningiomas with poor outcome. Acta Neuropathologica, 2018, 136, 779-792.	3.9	66
53	Integrative Molecular Characterization of Resistance to Neoadjuvant Chemoradiation in Rectal Cancer. Clinical Cancer Research, 2019, 25, 5561-5571.	3.2	64
54	Long-term Benefit of PD-L1 Blockade in Lung Cancer Associated with <i>JAK3</i> Activation. Cancer Immunology Research, 2015, 3, 855-863.	1.6	60

SCOTT L CARTER

#	Article	IF	CITATIONS
55	The Dual PI3K/mTOR Pathway Inhibitor GDC-0084 Achieves Antitumor Activity in <i>PIK3CA</i> -Mutant Breast Cancer Brain Metastases. Clinical Cancer Research, 2019, 25, 3374-3383.	3.2	57
56	Inactivation of <i>Fbxw7</i> Impairs dsRNA Sensing and Confers Resistance to PD-1 Blockade. Cancer Discovery, 2020, 10, 1296-1311.	7.7	49
57	Genomic Correlate of Exceptional Erlotinib Response in Head and Neck Squamous Cell Carcinoma. JAMA Oncology, 2015, 1, 238.	3.4	44
58	Genomic Evolution after Chemoradiotherapy in Anal Squamous Cell Carcinoma. Clinical Cancer Research, 2017, 23, 3214-3222.	3.2	44
59	Phase II study of ipilimumab and nivolumab in leptomeningeal carcinomatosis. Nature Communications, 2021, 12, 5954.	5.8	35
60	Systematic genomic and translational efficiency studies of uveal melanoma. PLoS ONE, 2017, 12, e0178189.	1.1	34
61	Detection of Leptomeningeal Disease Using Cell-Free DNA From Cerebrospinal Fluid. JAMA Network Open, 2021, 4, e2120040.	2.8	27
62	Palbociclib demonstrates intracranial activity in progressive brain metastases harboring cyclin-dependent kinase pathway alterations. Nature Cancer, 2021, 2, 498-502.	5.7	26
63	Genomic and transcriptomic correlates of immunotherapy response within the tumor microenvironment of leptomeningeal metastases. Nature Communications, 2021, 12, 5955.	5.8	25
64	Genomic Heterogeneity and Exceptional Response to Dual Pathway Inhibition in Anaplastic Thyroid Cancer. Clinical Cancer Research, 2017, 23, 2367-2373.	3.2	24
65	Temozolomide in secondary prevention of HER2-positive breast cancer brain metastases. Future Oncology, 2020, 16, 899-909.	1.1	22
66	A comparative assessment of clinical whole exome and transcriptome profiling across sequencing centers: implications for precision cancer medicine. Oncotarget, 2016, 7, 52888-52899.	0.8	18
67	Microenvironmental Landscape of Human Melanoma Brain Metastases in Response to Immune Checkpoint Inhibition. Cancer Immunology Research, 2022, 10, 996-1012.	1.6	18
68	Stathmin is superior to AKT and phosphoâ€AKT staining for the detection of phosphoinositide 3â€kinase activation and aggressive endometrial cancer. Histopathology, 2010, 57, 641-646.	1.6	16
69	Brain Metastasis: Clinical Implications of Branched Evolution. Trends in Cancer, 2016, 2, 332-337.	3.8	16
70	Genomic Resistance Patterns to Second-Generation Androgen Blockade in Paired Tumor Biopsies of Metastatic Castration-Resistant Prostate Cancer. JCO Precision Oncology, 2017, 1, 1-11.	1.5	13
71	CNGPLD: case–control copy-number analysis using Gaussian process latent difference. Bioinformatics, 2022, , .	1.8	0