James M Tour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6453359/publications.pdf Version: 2024-02-01

		256	443
557	84,877	142	274
papers	citations	h-index	g-index
575	575	575	67065
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Large cale Syntheses of 2D Materials: Flash Joule Heating and Other Methods. Advanced Materials, 2022, 34, e2106970.	21.0	66
2	Phase controlled synthesis of transition metal carbide nanocrystals by ultrafast flash Joule heating. Nature Communications, 2022, 13, 262.	12.8	52
3	Sounds of Synthesis: Acoustic Realâ€Time Analysis of Laserâ€Induced Graphene. Advanced Functional Materials, 2022, 32, .	14.9	7
4	Machine Learning Guided Synthesis of Flash Graphene. Advanced Materials, 2022, 34, e2106506.	21.0	39
5	Molecular electronics sensors on a scalable semiconductor chip: A platform for single-molecule measurement of binding kinetics and enzyme activity. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	34
6	Abstract WP253: Increased Hydrogen Sulfide As A New Mechanism For Hyperglycemic Worsening Of Stroke Outcome. Stroke, 2022, 53, .	2.0	0
7	Atomic Molybdenum for Synthesis of Ammonia with 50% Faradic Efficiency. Small, 2022, 18, e2106327.	10.0	20
8	Heteroatom-Doped Flash Graphene. ACS Nano, 2022, 16, 6646-6656.	14.6	46
9	Plastic Waste Product Captures Carbon Dioxide in Nanometer Pores. ACS Nano, 2022, 16, 7284-7290.	14.6	32
10	Holey and Wrinkled Flash Graphene from Mixed Plastic Waste. ACS Nano, 2022, 16, 7804-7815.	14.6	20
11	Rare earth elements from waste. Science Advances, 2022, 8, eabm3132.	10.3	49
12	Advances in nanomaterials for sulfurized carbon cathodes. , 2022, , 241-270.		0
13	Upcycling end-of-life vehicle waste plastic into flash graphene. , 2022, 1, .		28
14	Inverted Conformation Stability of a Motor Molecule on a Metal Surface. Journal of Physical Chemistry C, 2022, 126, 9034-9040.	3.1	5
15	Light-activated molecular machines are fast-acting broad-spectrum antibacterials that target the membrane. Science Advances, 2022, 8, .	10.3	28
16	A Storm in a Primordial Teacup. Inference, 2022, 7, .	0.0	0
17	Brushed Metals for Rechargeable Metal Batteries. Advanced Materials, 2022, 34, .	21.0	11
18	Turbostratic Boron–Carbon–Nitrogen and Boron Nitride by Flash Joule Heating. Advanced Materials, 2022, 34, .	21.0	10

#	Article	IF	CITATIONS
19	Millisecond Conversion of Metastable 2D Materials by Flash Joule Heating. ACS Nano, 2021, 15, 1282-1290.	14.6	48
20	Hydrogen Peroxide Generation with 100% Faradaic Efficiency on Metal-Free Carbon Black. ACS Catalysis, 2021, 11, 2454-2459.	11.2	98
21	What Can be Expected from "Anodeâ€Free―Lithium Metal Batteries?. Advanced Energy and Sustainability Research, 2021, 2, 2000110.	5.8	36
22	Abstract P792: Therapeutic Catalytic Nanoantioxidants Derived From Activated Charcoal. Stroke, 2021, 52, .	2.0	0
23	Converting plastic waste pyrolysis ash into flash graphene. Carbon, 2021, 174, 430-438.	10.3	62
24	High-Resolution Laser-Induced Graphene from Photoresist. ACS Nano, 2021, 15, 8976-8983.	14.6	43
25	Metalâ€Free Electrocatalysts for Oxygen Reduction to Hydrogen Peroxide. Advanced Energy and Sustainability Research, 2021, 2, 2100021.	5.8	7
26	Bulk Production of Any Ratio ¹² C: ¹³ C Turbostratic Flash Graphene and Its Unusual Spectroscopic Characteristics. ACS Nano, 2021, 15, 10542-10552.	14.6	17
27	Ultrafast and Controllable Phase Evolution by Flash Joule Heating. ACS Nano, 2021, 15, 11158-11167.	14.6	38
28	Flash graphene from rubber waste. Carbon, 2021, 178, 649-656.	10.3	64
29	Ei-ichi Negishi 1935–2021: The carbon–carbon bond-maker. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2113149118.	7.1	0
30	Tuning Metal Elements in Open Frameworks for Efficient Oxygen Evolution and Oxygen Reduction Reaction Reaction Catalysts. ACS Applied Materials & amp; Interfaces, 2021, 13, 42715-42723.	8.0	17
31	Bioinspired Redox Mediator in Lithium–Oxygen Batteries. ACS Catalysis, 2021, 11, 1833-1840.	11.2	11
32	Urban mining by flash Joule heating. Nature Communications, 2021, 12, 5794.	12.8	35
33	The Future of Flash Graphene for the Sustainable Management of Solid Waste. ACS Nano, 2021, 15, 15461-15470.	14.6	40
34	Laser-induced graphene and carbon nanotubes as conductive carbon-based materials in environmental technology. Materials Today, 2020, 34, 115-131.	14.2	77
35	New insights into the mechanism of graphene oxide and radionuclide interaction. Carbon, 2020, 158, 291-302.	10.3	37
36	Revisiting the intersection of amyloid, pathologically modified tau and iron in Alzheimer's disease from a ferroptosis perspective. Progress in Neurobiology, 2020, 184, 101716.	5.7	98

#	Article	IF	CITATIONS
37	Top-down synthesis of graphene nanoribbons using different sources of carbon nanotubes. Carbon, 2020, 158, 615-623.	10.3	33
38	Quasi-Solid-State Li–O ₂ Batteries with Laser-Induced Graphene Cathode Catalysts. ACS Applied Energy Materials, 2020, 3, 1702-1709.	5.1	18
39	Light-Activated Organic Molecular Motors and Their Applications. Chemical Reviews, 2020, 120, 79-124.	47.7	152
40	Visible-Light-Activated Molecular Nanomachines Kill Pancreatic Cancer Cells. ACS Applied Materials & Interfaces, 2020, 12, 410-417.	8.0	24
41	Nanocars with Permanent Dipoles: Preparing for the Second International Nanocar Race. Journal of Organic Chemistry, 2020, 85, 13644-13654.	3.2	13
42	Antioxidant Carbon Nanoparticles Inhibit Fibroblast-Like Synoviocyte Invasiveness and Reduce Disease Severity in a Rat Model of Rheumatoid Arthritis. Antioxidants, 2020, 9, 1005.	5.1	3
43	Flash Graphene from Plastic Waste. ACS Nano, 2020, 14, 15595-15604.	14.6	132
44	CO ₂ to Formic Acid Using Cu–Sn on Laser-Induced Graphene. ACS Applied Materials & Interfaces, 2020, 12, 41223-41229.	8.0	48
45	Flash Graphene Morphologies. ACS Nano, 2020, 14, 13691-13699.	14.6	78
46	The Chemical Basis of Intracerebral Hemorrhage and Cell Toxicity With Contributions From Eryptosis and Ferroptosis. Frontiers in Cellular Neuroscience, 2020, 14, 603043.	3.7	17
47	Adsorption and Motion of Single Molecular Motors on TiO2(110). Journal of Physical Chemistry C, 2020, 124, 24776-24785.	3.1	5
48	Banning carbon nanotubes would be scientifically unjustified and damaging to innovation. Nature Nanotechnology, 2020, 15, 164-166.	31.5	69
49	Oxidized Activated Charcoal Nanoparticles as Catalytic Superoxide Dismutase Mimetics: Evidence for Direct Participation of an Intrinsic Radical. ACS Applied Nano Materials, 2020, 3, 6962-6971.	5.0	16
50	Laserâ€Induced Silicon Oxide for Anodeâ€Free Lithium Metal Batteries. Advanced Materials, 2020, 32, e2002850.	21.0	92
51	Molecular Nanomachines Can Destroy Tissue or Kill Multicellular Eukaryotes. ACS Applied Materials & Interfaces, 2020, 12, 13657-13670.	8.0	16
52	High-Resolution Laser-Induced Graphene. Flexible Electronics beyond the Visible Limit. ACS Applied Materials & Interfaces, 2020, 12, 10902-10907.	8.0	129
53	Pervasive Genomic Damage in Experimental Intracerebral Hemorrhage: Therapeutic Potential of a Mechanistic-Based Carbon Nanoparticle. ACS Nano, 2020, 14, 2827-2846.	14.6	45
54	Use of a bioengineered antioxidant in mouse models of metabolic syndrome. Expert Opinion on Investigational Drugs, 2020, 29, 209-219.	4.1	1

#	Article	IF	CITATIONS
55	Gram-scale bottom-up flash graphene synthesis. Nature, 2020, 577, 647-651.	27.8	438
56	Laminated Laser-Induced Graphene Composites. ACS Nano, 2020, 14, 7911-7919.	14.6	64
57	Liâ€Breathing Air Batteries Catalyzed by MnNiFe/Laserâ€Induced Graphene Catalysts. Advanced Materials Interfaces, 2019, 6, 1901035.	3.7	26
58	Stage Transitions in Graphite Intercalation Compounds: Role of the Graphite Structure. Journal of Physical Chemistry C, 2019, 123, 19246-19253.	3.1	32
59	Sustainable Synthesis of Bright Green Fluorescent Nitrogenâ€Doped Carbon Quantum Dots from Alkali Lignin. ChemSusChem, 2019, 12, 4202-4210.	6.8	92
60	Two-Dimensional Lateral Epitaxy of 2H (MoSe ₂)–1T′ (ReSe ₂) Phases. Nano Letters, 2019, 19, 6338-6345.	9.1	30
61	How to control single-molecule rotation. Nature Communications, 2019, 10, 4631.	12.8	61
62	Atomic Ru Immobilized on Porous h-BN through Simple Vacuum Filtration for Highly Active and Selective CO ₂ Methanation. ACS Catalysis, 2019, 9, 10077-10086.	11.2	93
63	Strain-controlled optical transmittance tuning of three-dimensional carbon nanotube architectures. Journal of Materials Chemistry C, 2019, 7, 1927-1933.	5.5	3
64	Pore Characteristics for Efficient CO ₂ Storage in Hydrated Carbons. ACS Applied Materials & Interfaces, 2019, 11, 44390-44398.	8.0	18
65	Critical Comparison of the Superoxide Dismutase-like Activity of Carbon Antioxidant Nanozymes by Direct Superoxide Consumption Kinetic Measurements. ACS Nano, 2019, 13, 11203-11213.	14.6	44
66	Graphene at Fifteen. ACS Nano, 2019, 13, 10872-10878.	14.6	92
67	Self-Sterilizing Laser-Induced Graphene Bacterial Air Filter. ACS Nano, 2019, 13, 11912-11920.	14.6	112
68	Doping Nanoscale Graphene Domains Improves Magnetism in Hexagonal Boron Nitride. Advanced Materials, 2019, 31, e1805778.	21.0	69
69	Functional and Structural Improvement with a Catalytic Carbon Nano-Antioxidant in Experimental Traumatic Brain Injury Complicated by Hypotension and Resuscitation. Journal of Neurotrauma, 2019, 36, 2139-2146.	3.4	6
70	Near-Infrared Light Activates Molecular Nanomachines to Drill into and Kill Cells. ACS Nano, 2019, 13, 6813-6823.	14.6	39
71	Catalytic oxidation and reduction reactions of hydrophilic carbon clusters with NADH and cytochrome C: features of an electron transport nanozyme. Nanoscale, 2019, 11, 10791-10807.	5.6	15
72	Laser-Induced Graphene Triboelectric Nanogenerators. ACS Nano, 2019, 13, 7166-7174.	14.6	181

#	Article	IF	CITATIONS
73	Graphene Art. ACS Applied Nano Materials, 2019, 2, 3007-3011.	5.0	26
74	Less is more. Nature Nanotechnology, 2019, 14, 500-501.	31.5	4
75	Highly Oxidized Graphene Quantum Dots from Coal as Efficient Antioxidants. ACS Applied Materials & Interfaces, 2019, 11, 16815-16821.	8.0	61
76	Laser-Induced Graphene for Flexible and Embeddable Gas Sensors. ACS Nano, 2019, 13, 3474-3482.	14.6	226
77	Inducible lung epithelial resistance requires multisource reactive oxygen species generation to protect against bacterial infections. PLoS ONE, 2019, 14, e0208216.	2.5	22
78	Laser-Induced Graphene Composites as Multifunctional Surfaces. ACS Nano, 2019, 13, 2579-2586.	14.6	127
79	Detecting Li Dendrites in a Twoâ€Electrode Battery System. Advanced Materials, 2019, 31, e1807405.	21.0	38
80	Enteral Activation of WR-2721 Mediates Radioprotection and Improved Survival from Lethal Fractionated Radiation. Scientific Reports, 2019, 9, 1949.	3.3	13
81	Molecular Nanomachines Disrupt Bacterial Cell Wall, Increasing Sensitivity of Extensively Drug-Resistant <i>Klebsiella pneumoniae</i> to Meropenem. ACS Nano, 2019, 13, 14377-14387.	14.6	42
82	Enhancing Photostability of Fluorescent Dye-Attached Molecular Machines at Air–Glass Interface Using Cyclooctatetraene. Journal of Physical Chemistry C, 2019, 123, 3011-3018.	3.1	5
83	Laser-Induced Graphene Hybrid Catalysts for Rechargeable Zn-Air Batteries. ACS Applied Energy Materials, 2019, 2, 1460-1468.	5.1	55
84	Laserâ€induced Graphene: From Discovery to Translation. Advanced Materials, 2019, 31, e1803621.	21.0	512
85	Hybrid MoS2/h-BN Nanofillers As Synergic Heat Dissipation and Reinforcement Additives in Epoxy Nanocomposites. ACS Applied Materials & Interfaces, 2019, 11, 24485-24492.	8.0	38
86	Abstract WP352: Mitochondrial Electron Transport Support as a New Mechanism of Action of Carbon Nano-particles in the Treatment of Stroke. Stroke, 2019, 50, .	2.0	0
87	Time Out. Inference, 2019, 4, .	0.0	0
88	Manganese deception on graphene and implications in catalysis. Carbon, 2018, 132, 623-631.	10.3	54
89	Oxidized Laserâ€Induced Graphene for Efficient Oxygen Electrocatalysis. Advanced Materials, 2018, 30, e1707319.	21.0	94
90	Singular wavelength dependence on the sensitization of lanthanides by graphene quantum dots. Chemical Communications, 2018, 54, 4325-4328.	4.1	5

#	Article	IF	CITATIONS
91	In Situ Synthesis of Efficient Water Oxidation Catalysts in Laser-Induced Graphene. ACS Energy Letters, 2018, 3, 677-683.	17.4	91
92	Laser-Induced Graphene by Multiple Lasing: Toward Electronics on Cloth, Paper, and Food. ACS Nano, 2018, 12, 2176-2183.	14.6	607
93	Mechanical Properties of Ultralow Density Graphene Oxide/Polydimethylsiloxane Foams. MRS Advances, 2018, 3, 61-66.	0.9	2
94	High-yield single-step catalytic growth of graphene nanostripes by plasma enhanced chemical vapor deposition. Carbon, 2018, 129, 527-536.	10.3	20
95	Laser-Induced Conversion of Teflon into Fluorinated Nanodiamonds or Fluorinated Graphene. ACS Nano, 2018, 12, 1083-1088.	14.6	91
96	A fast and zero-biased photodetector based on GaTe–InSe vertical 2D p–n heterojunction. 2D Materials, 2018, 5, 025008.	4.4	81
97	Directly deposited porous two-dimensional MoS 2 films as electrocatalysts for hydrogen evolution reactions. Materials Letters, 2018, 225, 65-68.	2.6	17
98	Lowâ€Temperatureâ€Processed SiO <i>_x</i> One Diode–One Resistor Crossbar Array and Its Flexible Memory Application. Advanced Electronic Materials, 2018, 4, 1700665.	5.1	19
99	Electrochemical CO ₂ Reduction with Atomic Ironâ€Dispersed on Nitrogenâ€Doped Graphene. Advanced Energy Materials, 2018, 8, 1703487.	19.5	369
100	Revisiting the Mechanism of Oxidative Unzipping of Multiwall Carbon Nanotubes to Graphene Nanoribbons. ACS Nano, 2018, 12, 3985-3993.	14.6	88
101	Transfer of Dyes and Drugs into Cells Using EGFR-Targeted Nanosyringes. ACS Chemical Neuroscience, 2018, 9, 107-117.	3.5	4
102	Laser-induced graphene fibers. Carbon, 2018, 126, 472-479.	10.3	287
103	Sulfur-Doped Laser-Induced Porous Graphene Derived from Polysulfone-Class Polymers and Membranes. ACS Nano, 2018, 12, 289-297.	14.6	211
104	Ultra-Stiff Graphene Foams as Three-Dimensional Conductive Fillers for Epoxy Resin. ACS Nano, 2018, 12, 11219-11228.	14.6	37
105	Atomic approaches towards stability. Nature Catalysis, 2018, 1, 900-902.	34.4	10
106	Tip-Sonicated Red Phosphorus-Graphene Nanoribbon Composite for Full Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 38936-38943.	8.0	11
107	Suppressing Li Metal Dendrites Through a Solid Liâ€ŀon Backup Layer. Advanced Materials, 2018, 30, e1803869.	21.0	70
108	Efficient removal of bisphenol-A by ultra-high surface area porous activated carbon derived from asphalt. Carbon, 2018, 140, 441-448.	10.3	67

#	Article	IF	CITATIONS
109	Inducible Lung Epithelial Resistance Requires Multisource Reactive Oxygen Species Generation To Protect against Viral Infections. MBio, 2018, 9, .	4.1	32
110	Laminated Object Manufacturing of 3Dâ€Printed Laserâ€Induced Graphene Foams. Advanced Materials, 2018, 30, e1707416.	21.0	172
111	Toughening Graphene by Integrating Carbon Nanotubes. ACS Nano, 2018, 12, 7901-7910.	14.6	52
112	Diffusion of Nanocars on an Air–Glass Interface. Journal of Physical Chemistry C, 2018, 122, 19025-19036.	3.1	15
113	Laser-induced graphene synthesis of Co3O4 in graphene for oxygen electrocatalysis and metal-air batteries. Carbon, 2018, 139, 880-887.	10.3	91
114	Efficacy of Novel Carbon Nanoparticle Antioxidant Therapy in a Severe Model of Reversible Middle Cerebral Artery Stroke in Acutely Hyperglycemic Rats. Frontiers in Neurology, 2018, 9, 199.	2.4	37
115	Laser-Induced Graphene from Wood Impregnated with Metal Salts and Use in Electrocatalysis. ACS Applied Nano Materials, 2018, 1, 5053-5061.	5.0	95
116	Achieving Selfâ€Stiffening and Laser Healing by Interconnecting Graphene Oxide Sheets with Amineâ€Functionalized Ovalbumin. Advanced Materials Interfaces, 2018, 5, 1800932.	3.7	5
117	Laser-Induced Graphene. Accounts of Chemical Research, 2018, 51, 1609-1620.	15.6	441
118	Effect of Graphene Nanoribbons (TexasPEG) on locomotor function recovery in a rat model of lumbar spinal cord transection. Neural Regeneration Research, 2018, 13, 1440.	3.0	16
119	Oxidatively modified carbon as efficient material for removing radionuclides from water. Carbon, 2017, 115, 394-401.	10.3	27
120	Segregation of Amphiphilic Polymer-Coated Nanoparticles to Bicontinuous Oil/Water Microemulsion Phases. Energy & amp; Fuels, 2017, 31, 1339-1346.	5.1	23
121	Perylene Diimide as a Precise Graphene-like Superoxide Dismutase Mimetic. ACS Nano, 2017, 11, 2024-2032.	14.6	59
122	High Performance Electrocatalytic Reaction of Hydrogen and Oxygen on Ruthenium Nanoclusters. ACS Applied Materials & Interfaces, 2017, 9, 3785-3791.	8.0	108
123	In situ mechanical investigation of carbon nanotube–graphene junction in three-dimensional carbon nanostructures. Nanoscale, 2017, 9, 2916-2924.	5.6	41
124	Three-Dimensional Rebar Graphene. ACS Applied Materials & amp; Interfaces, 2017, 9, 7376-7384.	8.0	46
125	Graphene Carbon Nanotube Carpets Grown Using Binary Catalysts for High-Performance Lithium-Ion Capacitors. ACS Nano, 2017, 11, 2724-2733.	14.6	91
126	High Toughness in Ultralow Density Graphene Oxide Foam. Advanced Materials Interfaces, 2017, 4, 1700030.	3.7	20

#	Article	IF	CITATIONS
127	Laserâ€Induced Graphene in Controlled Atmospheres: From Superhydrophilic to Superhydrophobic Surfaces. Advanced Materials, 2017, 29, 1700496.	21.0	227
128	Lithium Batteries with Nearly Maximum Metal Storage. ACS Nano, 2017, 11, 6362-6369.	14.6	180
129	Laser-Induced Graphene Layers and Electrodes Prevents Microbial Fouling and Exerts Antimicrobial Action. ACS Applied Materials & Interfaces, 2017, 9, 18238-18247.	8.0	176
130	Three-Dimensional Printed Graphene Foams. ACS Nano, 2017, 11, 6860-6867.	14.6	172
131	Atomic H-Induced Mo ₂ C Hybrid as an Active and Stable Bifunctional Electrocatalyst. ACS Nano, 2017, 11, 384-394.	14.6	149
132	Increased solubility and fiber spinning of graphenide dispersions aided by crown-ethers. Chemical Communications, 2017, 53, 1498-1501.	4.1	6
133	Ultrafast Charging High Capacity Asphalt–Lithium Metal Batteries. ACS Nano, 2017, 11, 10761-10767.	14.6	80
134	Molecular machines open cell membranes. Nature, 2017, 548, 567-572.	27.8	257
135	Structurally Engineered Nanoporous Ta ₂ O _{5–<i>x</i>} Selector-Less Memristor for High Uniformity and Low Power Consumption. ACS Applied Materials & Interfaces, 2017, 9, 34015-34023.	8.0	18
136	Polyimide derived laser-induced graphene as adsorbent for cationic and anionic dyes. Carbon, 2017, 124, 515-524.	10.3	88
137	Laserâ€induced Graphene Formation on Wood. Advanced Materials, 2017, 29, 1702211.	21.0	397
138	Germanium on seamless graphene carbon nanotube hybrids for lithium ion anodes. Carbon, 2017, 123, 433-439.	10.3	35
139	DMFC catalyst with single Ru atoms on graphene matches Pt. Fuel Cells Bulletin, 2017, 2017, 15.	0.1	3
140	Efficient Water-Splitting Electrodes Based on Laser-Induced Graphene. ACS Applied Materials & Interfaces, 2017, 9, 26840-26847.	8.0	103
141	Lightweight Hexagonal Boron Nitride Foam for CO ₂ Absorption. ACS Nano, 2017, 11, 8944-8952.	14.6	56
142	Increased CO2 selectivity of asphalt-derived porous carbon through introduction of water into pore space. Nature Energy, 2017, 2, 932-938.	39.5	31
143	Synthesis of light-driven motorized nanocars for linear trajectories and their detailed NMR structural determination. Tetrahedron, 2017, 73, 4864-4873.	1.9	17
144	How to build and race a fast nanocar. Nature Nanotechnology, 2017, 12, 604-606.	31.5	56

#	Article	IF	CITATIONS
145	Single-Atomic Ruthenium Catalytic Sites on Nitrogen-Doped Graphene for Oxygen Reduction Reaction in Acidic Medium. ACS Nano, 2017, 11, 6930-6941.	14.6	435
146	Ultraâ€High Surface Area Activated Porous Asphalt for CO ₂ Capture through Competitive Adsorption at High Pressures. Advanced Energy Materials, 2017, 7, 1600693.	19.5	87
147	Physical and electrical characterization of TexasPEG: An electrically conductive neuronal scaffold. , 2017, 8, 84.		7
148	An Open Letter to My Colleagues. Inference, 2017, 3, .	0.0	2
149	The Importance of CISS. Inference, 2017, 3, .	0.0	0
150	Passive Anti-Icing and Active Deicing Films. ACS Applied Materials & amp; Interfaces, 2016, 8, 14169-14173.	8.0	143
151	Nitrogen-doped carbonized cotton for highly flexible supercapacitors. Carbon, 2016, 105, 260-267.	10.3	108
152	Synthesis and Photostability of Unimolecular Submersible Nanomachines: Toward Single-Molecule Tracking in Solution. Organic Letters, 2016, 18, 2343-2346.	4.6	11
153	Microwave Heating of Functionalized Graphene Nanoribbons in Thermoset Polymers for Wellbore Reinforcement. ACS Applied Materials & Interfaces, 2016, 8, 12985-12991.	8.0	29
154	Flexible Nanoporous WO _{3–<i>x</i>} Nonvolatile Memory Device. ACS Nano, 2016, 10, 7598-7603.	14.6	114
155	Silicon Nanowires and Lithium Cobalt Oxide Nanowires in Graphene Nanoribbon Papers for Full Lithium Ion Battery. Advanced Energy Materials, 2016, 6, 1600918.	19.5	80
156	Characterization of a novel MRâ€detectable nanoantioxidant that mitigates the recall immune response. NMR in Biomedicine, 2016, 29, 1436-1444.	2.8	5
157	Sandwich structured graphene-wrapped FeS-graphene nanoribbons with improved cycling stability for lithium ion batteries. Nano Research, 2016, 9, 2904-2911.	10.4	52
158	Preferential uptake of antioxidant carbon nanoparticles by T lymphocytes for immunomodulation. Scientific Reports, 2016, 6, 33808.	3.3	32
159	Light-Induced Translation of Motorized Molecules on a Surface. ACS Nano, 2016, 10, 10945-10952.	14.6	74
160	Highâ€Performance Pseudocapacitive Microsupercapacitors from Laserâ€Induced Graphene. Advanced Materials, 2016, 28, 838-845.	21.0	439
161	Highâ€Performance Hydrogen Evolution from MoS _{2(1–<i>x</i>)} P <i>_x</i> Solid Solution. Advanced Materials, 2016, 28, 1427-1432.	21.0	309
162	Mechanistic Study of the Conversion of Superoxide to Oxygen and Hydrogen Peroxide in Carbon Nanoparticles. ACS Applied Materials & Interfaces, 2016, 8, 15086-15092.	8.0	43

#	Article	IF	CITATIONS
163	Biochar as a renewable source for high-performance CO2 sorbent. Carbon, 2016, 107, 344-351.	10.3	94
164	Rivet Graphene. ACS Nano, 2016, 10, 7307-7313.	14.6	20
165	Composites of Graphene Nanoribbon Stacks and Epoxy for Joule Heating and Deicing of Surfaces. ACS Applied Materials & Interfaces, 2016, 8, 3551-3556.	8.0	114
166	Growth and Transfer of Seamless 3D Graphene–Nanotube Hybrids. Nano Letters, 2016, 16, 1287-1292.	9.1	26
167	Preparation of Three-Dimensional Graphene Foams Using Powder Metallurgy Templates. ACS Nano, 2016, 10, 1411-1416.	14.6	117
168	Growing Carbon Nanotubes from Both Sides of Graphene. ACS Applied Materials & Interfaces, 2016, 8, 7356-7362.	8.0	34
169	Graphene nanoribbon – Polymer composites: The critical role of edge functionalization. Carbon, 2016, 99, 444-450.	10.3	83
170	Chemical Mass Production of Graphene Nanoplatelets in â^¼100% Yield. ACS Nano, 2016, 10, 274-279.	14.6	139
171	Biocompatibility of reduced graphene oxide nanoscaffolds following acute spinal cord injury in rats. , 2016, 7, 75.		34
172	Spinal cord fusion with PEG-GNRs (TexasPEG): Neurophysiological recovery in 24 hours in rats. , 2016, 7, 632.		14
173	Animadversions of a Synthetic Chemist. Inference, 2016, 2, .	0.0	2
174	Two Experiments in Abiogenesis. Inference, 2016, 2, .	0.0	2
175	Chiral Induced Spin Selectivity. Inference, 2016, 2, .	0.0	0
176	Vertically Aligned WS ₂ Nanosheets for Water Splitting. Advanced Functional Materials, 2015, 25, 6199-6204.	14.9	108
177	Graphene Quantum Dots Doping of MoS ₂ Monolayers. Advanced Materials, 2015, 27, 5235-5240.	21.0	168
178	Enhanced Cycling Stability of Lithiumâ€lon Batteries Using Grapheneâ€Wrapped Fe ₃ O ₄ â€Graphene Nanoribbons as Anode Materials. Advanced Energy Materials, 2015, 5, 1500171.	19.5	133
179	Tungsten-based porous thin-films for electrocatalytic hydrogen generation. Journal of Materials Chemistry A, 2015, 3, 5798-5804.	10.3	43
180	Chemical Makeup and Hydrophilic Behavior of Graphene Oxide Nanoribbons after Low-Temperature Fluorination. ACS Nano, 2015, 9, 7009-7018.	14.6	41

#	Article	IF	CITATIONS
181	Three-dimensional patterning of solid microstructures through laser reduction of colloidal graphene oxide in liquid-crystalline dispersions. Nature Communications, 2015, 6, 7157.	12.8	56
182	Luminescent Polymer Composite Films Containing Coal-Derived Graphene Quantum Dots. ACS Applied Materials & Interfaces, 2015, 7, 26063-26068.	8.0	93
183	Tuning Electrical Conductivity of Inorganic Minerals with Carbon Nanomaterials. ACS Applied Materials & Interfaces, 2015, 7, 26079-26084.	8.0	3
184	Highly efficient conversion of superoxide to oxygen using hydrophilic carbon clusters. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2343-2348.	7.1	173
185	Boron- and Nitrogen-Substituted Graphene Nanoribbons as Efficient Catalysts for Oxygen Reduction Reaction. Chemistry of Materials, 2015, 27, 1181-1186.	6.7	219
186	Asphalt-Derived High Surface Area Activated Porous Carbons for Carbon Dioxide Capture. ACS Applied Materials & Interfaces, 2015, 7, 1376-1382.	8.0	108
187	Flexible and Stackable Laser-Induced Graphene Supercapacitors. ACS Applied Materials & Interfaces, 2015, 7, 3414-3419.	8.0	352
188	Carbon nanoparticles and oxidative stress: could an injection stop brain damage in minutes?. Nanomedicine, 2015, 10, 1677-1679.	3.3	20
189	Porous Cobaltâ€Based Thin Film as a Bifunctional Catalyst for Hydrogen Generation and Oxygen Generation. Advanced Materials, 2015, 27, 3175-3180.	21.0	460
190	Synthesis of a fluorescent BODIPY-tagged ROMP catalyst and initial polymerization-propelled diffusion studies. Tetrahedron, 2015, 71, 5965-5972.	1.9	12
191	Flexible Boron-Doped Laser-Induced Graphene Microsupercapacitors. ACS Nano, 2015, 9, 5868-5875.	14.6	542
192	Bandgap Engineering of Coal-Derived Graphene Quantum Dots. ACS Applied Materials & Interfaces, 2015, 7, 7041-7048.	8.0	182
193	Meniscus-Mask Lithography for Fabrication of Narrow Nanowires. Nano Letters, 2015, 15, 2933-2937.	9.1	14
194	Cobalt Nanoparticles Embedded in Nitrogen-Doped Carbon for the Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2015, 7, 8083-8087.	8.0	180
195	Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nature Communications, 2015, 6, 8668.	12.8	1,356
196	Three-Dimensional Networked Nanoporous Ta ₂ O _{5–<i>x</i>} Memory System for Ultrahigh Density Storage. Nano Letters, 2015, 15, 6009-6014.	9.1	50
197	The microRNA miR-22 inhibits the histone deacetylase HDAC4 to promote TH17 cell–dependent emphysema. Nature Immunology, 2015, 16, 1185-1194.	14.5	91
198	Synthesis of a Lightâ€Driven Motorized Nanocar. Asian Journal of Organic Chemistry, 2015, 4, 1308-1314.	2.7	15

#	Article	IF	CITATIONS
199	Carbon-Free Electrocatalyst for Oxygen Reduction and Oxygen Evolution Reactions. ACS Applied Materials & Interfaces, 2015, 7, 20607-20611.	8.0	39
200	<i>In Situ</i> Formation of Metal Oxide Nanocrystals Embedded in Laser-Induced Graphene. ACS Nano, 2015, 9, 9244-9251.	14.6	198
201	Nanosized Pt anchored onto 3D nitrogen-doped graphene nanoribbons towards efficient methanol electrooxidation. Journal of Materials Chemistry A, 2015, 3, 19696-19701.	10.3	60
202	Tin Disulfide Nanoplates on Graphene Nanoribbons for Full Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 26549-26556.	8.0	47
203	Unimolecular Submersible Nanomachines. Synthesis, Actuation, and Monitoring. Nano Letters, 2015, 15, 8229-8239.	9.1	47
204	Rebar Graphene from Functionalized Boron Nitride Nanotubes. ACS Nano, 2015, 9, 532-538.	14.6	29
205	Nanoparticulate carbon black in cigarette smoke induces DNA cleavage and Th17-mediated emphysema. ELife, 2015, 4, e09623.	6.0	59
206	Rice group shows graphene quantum dots beat Pt catalyst. Fuel Cells Bulletin, 2014, 2014, 13.	0.1	5
207	Magnetic defects in chemically converted graphene nanoribbons: electron spin resonance investigation. AIP Advances, 2014, 4, .	1.3	10
208	Laser-induced porous graphene films from commercial polymers. Nature Communications, 2014, 5, 5714.	12.8	1,645
209	Top-Down versus Bottom-Up Fabrication of Graphene-Based Electronics. Chemistry of Materials, 2014, 26, 163-171.	6.7	192
210	Rebar Graphene. ACS Nano, 2014, 8, 5061-5068.	14.6	178
211	Polymerâ€coated nanoparticles for enhanced oil recovery. Journal of Applied Polymer Science, 2014, 131,	2.6	297
212	Mechanism of Graphene Oxide Formation. ACS Nano, 2014, 8, 3060-3068.	14.6	705
213	Iron Oxide Nanoparticle and Graphene Nanoribbon Composite as an Anode Material for Highâ€Performance Liâ€ion Batteries. Advanced Functional Materials, 2014, 24, 2044-2048.	14.9	156
214	Scaling up exfoliation. Nature Materials, 2014, 13, 545-546.	27.5	36
215	Preparation of carbon-coated iron oxide nanoparticles dispersed on graphene sheets and applications as advanced anode materials for lithium-ion batteries. Nano Research, 2014, 7, 502-510.	10.4	102
216	Chemical Vapor Deposition of Graphene Single Crystals. Accounts of Chemical Research, 2014, 47, 1327-1337.	15.6	201

#	Article	IF	CITATIONS
217	Three-Dimensional Nanoporous Fe ₂ O ₃ /Fe ₃ C-Graphene Heterogeneous Thin Films for Lithium-Ion Batteries. ACS Nano, 2014, 8, 3939-3946.	14.6	167
218	Radio-Frequency-Transparent, Electrically Conductive Graphene Nanoribbon Thin Films as Deicing Heating Layers. ACS Applied Materials & Interfaces, 2014, 6, 298-304.	8.0	49
219	Conducting-Interlayer SiO _{<i>x</i>} Memory Devices on Rigid and Flexible Substrates. ACS Nano, 2014, 8, 1410-1418.	14.6	27
220	Salt- and temperature-stable quantum dot nanoparticles for porous media flow. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 443, 492-500.	4.7	23
221	Silverâ€Graphene Nanoribbon Composite Catalyst for the Oxygen Reduction Reaction in Alkaline Electrolyte. Electroanalysis, 2014, 26, 164-170.	2.9	61
222	Edgeâ€Oriented MoS ₂ Nanoporous Films as Flexible Electrodes for Hydrogen Evolution Reactions and Supercapacitor Devices. Advanced Materials, 2014, 26, 8163-8168.	21.0	552
223	Vertically Aligned Carbon Nanotubes/Graphene Hybrid Electrode as a TCO- and Pt-Free Flexible Cathode for Application in Solar Cells. Journal of Materials Chemistry A, 2014, 2, 20902-20907.	10.3	47
224	High-Yield Synthesis of Boron Nitride Nanoribbons <i>via</i> Longitudinal Splitting of Boron Nitride Nanotubes by Potassium Vapor. ACS Nano, 2014, 8, 9867-9873.	14.6	27
225	Enhanced Electrocatalysis for Hydrogen Evolution Reactions from WS ₂ Nanoribbons. Advanced Energy Materials, 2014, 4, 1301875.	19.5	128
226	Enhanced Cycling Stability of Lithium Sulfur Batteries Using Sulfur–Polyaniline–Graphene Nanoribbon Composite Cathodes. ACS Applied Materials & Interfaces, 2014, 6, 15033-15039.	8.0	80
227	SnO2-reduced graphene oxide nanoribbons as anodes for lithium ion batteries with enhanced cycling stability. Nano Research, 2014, 7, 1319-1326.	10.4	66
228	Hydrophilic carbon clusters as therapeutic, high-capacity antioxidants. Trends in Biotechnology, 2014, 32, 501-505.	9.3	34
229	High thermal conductivity of suspended few-layer hexagonal boron nitride sheets. Nano Research, 2014, 7, 1232-1240.	10.4	211
230	Efficient Electrocatalytic Oxygen Evolution on Amorphous Nickel–Cobalt Binary Oxide Nanoporous Layers. ACS Nano, 2014, 8, 9518-9523.	14.6	359
231	Nanoporous Silicon Oxide Memory. Nano Letters, 2014, 14, 4694-4699.	9.1	62
232	Large Hexagonal Bi―and Trilayer Graphene Single Crystals with Varied Interlayer Rotations. Angewandte Chemie - International Edition, 2014, 53, 1565-1569.	13.8	82
233	Functionalized Graphene Nanoribbon Films as a Radiofrequency and Optically Transparent Material. ACS Applied Materials & Interfaces, 2014, 6, 16661-16668.	8.0	23
234	Seeds of selective nanotube growth. Nature, 2014, 512, 30-31.	27.8	15

#	Article	IF	CITATIONS
235	Boron- and Nitrogen-Doped Graphene Quantum Dots/Graphene Hybrid Nanoplatelets as Efficient Electrocatalysts for Oxygen Reduction. ACS Nano, 2014, 8, 10837-10843.	14.6	396
236	LiFePO4 nanoparticles encapsulated in graphene nanoshells for high-performance lithium-ion battery cathodes. Chemical Communications, 2014, 50, 7117.	4.1	47
237	Three-Dimensional Thin Film for Lithium-Ion Batteries and Supercapacitors. ACS Nano, 2014, 8, 7279-7287.	14.6	50
238	Capturing carbon dioxide as a polymer from natural gas. Nature Communications, 2014, 5, 3961.	12.8	51
239	Flexible Three-Dimensional Nanoporous Metal-Based Energy Devices. Journal of the American Chemical Society, 2014, 136, 6187-6190.	13.7	108
240	Molecular Wires. , 2014, , 2752-2769.		0
241	Biocompatibility of pristine graphene for neuronal interface. Journal of Neurosurgery: Pediatrics, 2013, 11, 575-583.	1.3	79
242	Meniscus-Mask Lithography for Narrow Graphene Nanoribbons. ACS Nano, 2013, 7, 6894-6898.	14.6	57
243	Effect of anchor and functional groups in functionalized graphene devices. Nano Research, 2013, 6, 138-148.	10.4	22
244	Highâ€Performance and Lowâ€Power Rewritable SiO <i>_x</i> 1 kbit One Diode–One Resistor Crossbar Memory Array. Advanced Materials, 2013, 25, 4789-4793.	21.0	66
245	Large Flake Graphene Oxide Fibers with Unconventional 100% Knot Efficiency and Highly Aligned Small Flake Graphene Oxide Fibers. Advanced Materials, 2013, 25, 4592-4597.	21.0	171
246	Nanocomposite of Polyaniline Nanorods Grown on Graphene Nanoribbons for Highly Capacitive Pseudocapacitors. ACS Applied Materials & Interfaces, 2013, 5, 6622-6627.	8.0	171
247	Thickness-dependent patterning of MoS2 sheets with well-oriented triangular pits by heating in air. Nano Research, 2013, 6, 703-711.	10.4	118
248	Design of Poly(ethylene Glycol)-Functionalized Hydrophilic Carbon Clusters for Targeted Therapy of Cerebrovascular Dysfunction in Mild Traumatic Brain Injury. Journal of Neurotrauma, 2013, 30, 789-796.	3.4	37
249	Grapheneâ€Wrapped MnO ₂ –Graphene Nanoribbons as Anode Materials for Highâ€Performance Lithium Ion Batteries. Advanced Materials, 2013, 25, 6298-6302.	21.0	355
250	Functionalized Low Defect Graphene Nanoribbons and Polyurethane Composite Film for Improved Gas Barrier and Mechanical Performances. ACS Nano, 2013, 7, 10380-10386.	14.6	124
251	Coal as an abundant source of graphene quantum dots. Nature Communications, 2013, 4, 2943.	12.8	686
252	Graphene Oxide. Origin of Acidity, Its Instability in Water, and a New Dynamic Structural Model. ACS Nano, 2013, 7, 576-588.	14.6	548

#	Article	IF	CITATIONS
253	Three-Dimensional Metal–Graphene–Nanotube Multifunctional Hybrid Materials. ACS Nano, 2013, 7, 58-64.	14.6	202
254	Graphene: Powder, Flakes, Ribbons, and Sheets. Accounts of Chemical Research, 2013, 46, 2307-2318.	15.6	114
255	Calculating the Hydrodynamic Volume of Poly(ethylene oxylated) Single-Walled Carbon Nanotubes and Hydrophilic Carbon Clusters. Journal of Physical Chemistry B, 2013, 117, 343-354.	2.6	23
256	Graphene oxide for effective radionuclide removal. Physical Chemistry Chemical Physics, 2013, 15, 2321.	2.8	361
257	3-Dimensional Graphene Carbon Nanotube Carpet-Based Microsupercapacitors with High Electrochemical Performance. Nano Letters, 2013, 13, 72-78.	9.1	672
258	Increased Solubility, Liquid-Crystalline Phase, and Selective Functionalization of Single-Walled Carbon Nanotube Polyelectrolyte Dispersions. ACS Nano, 2013, 7, 4503-4510.	14.6	86
259	Synthesis and Single-Molecule Imaging of Highly Mobile Adamantane-Wheeled Nanocars. ACS Nano, 2013, 7, 35-41.	14.6	79
260	Functionalized Graphene Nanoribbons via Anionic Polymerization Initiated by Alkali Metal-Intercalated Carbon Nanotubes. ACS Nano, 2013, 7, 2669-2675.	14.6	35
261	Direct Real-Time Monitoring of Stage Transitions in Graphite Intercalation Compounds. ACS Nano, 2013, 7, 2773-2780.	14.6	153
262	Graphene Nanoribbons as an Advanced Precursor for Making Carbon Fiber. ACS Nano, 2013, 7, 1628-1637.	14.6	117
263	Splitting of a Vertical Multiwalled Carbon Nanotube Carpet to a Graphene Nanoribbon Carpet and Its Use in Supercapacitors. ACS Nano, 2013, 7, 5151-5159.	14.6	71
264	Graphene Nanoribbon and Nanostructured SnO ₂ Composite Anodes for Lithium Ion Batteries. ACS Nano, 2013, 7, 6001-6006.	14.6	421
265	Patterning graphene nanoribbons using copper oxide nanowires. Applied Physics Letters, 2012, 100, 103106.	3.3	24
266	Highly stable carbon nanoparticles designed for downhole hydrocarbon detection. Energy and Environmental Science, 2012, 5, 8304.	30.8	42
267	A seamless three-dimensional carbon nanotube graphene hybrid material. Nature Communications, 2012, 3, 1225.	12.8	456
268	Synthesis of Dispersible Ferromagnetic Graphene Nanoribbon Stacks with Enhanced Electrical Percolation Properties in a Magnetic Field. ACS Nano, 2012, 6, 10396-10404.	14.6	21
269	Carbon Nanotube and Graphene Nanoribbon-Coated Conductive Kevlar Fibers. ACS Applied Materials & Interfaces, 2012, 4, 131-136.	8.0	86
270	Graphene Oxide as a High-Performance Fluid-Loss-Control Additive in Water-Based Drilling Fluids. ACS Applied Materials & Interfaces, 2012, 4, 222-227.	8.0	239

#	Article	IF	CITATIONS
271	Large-Area Bernal-Stacked Bi-, Tri-, and Tetralayer Graphene. ACS Nano, 2012, 6, 9790-9796.	14.6	163
272	Toward the Synthesis of Wafer-Scale Single-Crystal Graphene on Copper Foils. ACS Nano, 2012, 6, 9110-9117.	14.6	537
273	Effect of Tether Conductivity on the Efficiency of Photoisomerization of Azobenzene-Functionalized Molecules on Au{111}. Journal of Physical Chemistry Letters, 2012, 3, 2388-2394.	4.6	23
274	Noncovalent Assembly of Targeted Carbon Nanovectors Enables Synergistic Drug and Radiation Cancer Therapy <i>in Vivo</i> . ACS Nano, 2012, 6, 2497-2505.	14.6	26
275	Nonlinear Photoluminescence Imaging of Isotropic and Liquid Crystalline Dispersions of Graphene Oxide. ACS Nano, 2012, 6, 8060-8066.	14.6	38
276	Highly transparent nonvolatile resistive memory devices from silicon oxide and graphene. Nature Communications, 2012, 3, 1101.	12.8	162
277	Antioxidant Carbon Particles Improve Cerebrovascular Dysfunction Following Traumatic Brain Injury. ACS Nano, 2012, 6, 8007-8014.	14.6	108
278	New Routes to Graphene, Graphene Oxide and Their Related Applications. Advanced Materials, 2012, 24, 4924-4955.	21.0	329
279	<i>In Situ</i> Intercalation Replacement and Selective Functionalization of Graphene Nanoribbon Stacks. ACS Nano, 2012, 6, 4231-4240.	14.6	106
280	Reversible Formation of Ammonium Persulfate/Sulfuric Acid Graphite Intercalation Compounds and Their Peculiar Raman Spectra. ACS Nano, 2012, 6, 7842-7849.	14.6	95
281	Pristine Graphite Oxide. Journal of the American Chemical Society, 2012, 134, 2815-2822.	13.7	393
282	Toward a Light-Driven Motorized Nanocar: Synthesis and Initial Imaging of Single Molecules. ACS Nano, 2012, 6, 592-597.	14.6	110
283	Nanoscale frictional characteristics of graphene nanoribbons. Applied Physics Letters, 2012, 101, 123104.	3.3	14
284	Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene. Nano Letters, 2012, 12, 3711-3715.	9.1	235
285	In situ imaging of the conducting filament in a silicon oxide resistive switch. Scientific Reports, 2012, 2, 242.	3.3	153
286	Controlled Ambipolarâ€toâ€Unipolar Conversion in Graphene Fieldâ€Effect Transistors Through Surface Coating with Poly(ethylene imine)/Poly(ethylene glycol) Films. Small, 2012, 8, 59-62.	10.0	33
287	Genesis of Creativity. ACS Nano, 2012, 6, 3649-3654.	14.6	1
288	Highly water soluble multi-layer graphene nanoribbons and related honey-comb carbon nanostructures. Chemical Communications, 2012, 48, 5602.	4.1	11

#	Article	IF	CITATIONS
289	Non-oxide boost. Nature Photonics, 2012, 6, 72-73.	31.4	16
290	Antibody-Targeted Nanovectors for the Treatment of Brain Cancers. ACS Nano, 2012, 6, 3114-3120.	14.6	24
291	Chemical Approaches to Produce Graphene Oxide and Related Materials. , 2012, , 205-234.		5
292	Quantitative Analysis of Structure and Bandgap Changes in Graphene Oxide Nanoribbons during Thermal Annealing. Journal of the American Chemical Society, 2012, 134, 11774-11780.	13.7	55
293	The Chemical Synthesis of Graphene Nanoribbons—A Tutorial Review. Macromolecular Chemistry and Physics, 2012, 213, 1033-1050.	2.2	41
294	Graphene–Ni–α-MnO2 and –Cu–α-MnO2 nanowire blends as highly active non-precious metal catalysts for the oxygen reduction reaction. Chemical Communications, 2012, 48, 7931.	4.1	84
295	Noncovalent Functionalization of Carbon Nanovectors with an Antibody Enables Targeted Drug Delivery. ACS Nano, 2011, 5, 6643-6650.	14.6	45
296	Engineered nanoparticles for hydrocarbon detection in oil-field rocks. Energy and Environmental Science, 2011, 4, 505-509.	30.8	72
297	Controlled Modulation of Electronic Properties of Graphene by Self-Assembled Monolayers on SiO ₂ Substrates. ACS Nano, 2011, 5, 1535-1540.	14.6	100
298	Longitudinal Splitting of Boron Nitride Nanotubes for the Facile Synthesis of High Quality Boron Nitride Nanoribbons. Nano Letters, 2011, 11, 3221-3226.	9.1	122
299	Low-Loss, High-Permittivity Composites Made from Graphene Nanoribbons. ACS Applied Materials & Interfaces, 2011, 3, 4657-4661.	8.0	61
300	Terahertz and infrared conductivity of large-area graphene. , 2011, , .		0
301	Cyclotron resonance in graphene at ultrahigh magnetic fields. , 2011, , .		0
302	Large-Scale Growth and Characterizations of Nitrogen-Doped Monolayer Graphene Sheets. ACS Nano, 2011, 5, 4112-4117.	14.6	590
303	High Throughput Preparation of Large Area Transparent Electrodes Using Non-Functionalized Graphene Nanoribbons. Chemistry of Materials, 2011, 23, 935-939.	6.7	22
304	Interface Toughness of Carbon Nanotube Reinforced Epoxy Composites. ACS Applied Materials & Interfaces, 2011, 3, 129-134.	8.0	91
305	Growth of Bilayer Graphene on Insulating Substrates. ACS Nano, 2011, 5, 8187-8192.	14.6	269
306	In situ Synthesis of Polymer-Modified Mesoporous Carbon CMK-3 Composites for CO ₂ Sequestration. ACS Applied Materials & Interfaces, 2011, 3, 4782-4786.	8.0	45

#	Article	IF	CITATIONS
307	Rational Design of Hybrid Graphene Films for High-Performance Transparent Electrodes. ACS Nano, 2011, 5, 6472-6479.	14.6	290
308	Highly Conductive Graphene Nanoribbons by Longitudinal Splitting of Carbon Nanotubes Using Potassium Vapor. ACS Nano, 2011, 5, 968-974.	14.6	204
309	Silicon Oxide: A Non-innocent Surface for Molecular Electronics and Nanoelectronics Studies. Journal of the American Chemical Society, 2011, 133, 941-948.	13.7	52
310	Growth of Graphene from Food, Insects, and Waste. ACS Nano, 2011, 5, 7601-7607.	14.6	454
311	Toward Chemical Propulsion: Synthesis of ROMP-Propelled Nanocars. ACS Nano, 2011, 5, 85-90.	14.6	26
312	Direct Growth of Bilayer Graphene on SiO ₂ Substrates by Carbon Diffusion through Nickel. ACS Nano, 2011, 5, 8241-8247.	14.6	260
313	Vibrational and electronic heating in nanoscale junctions. Nature Nanotechnology, 2011, 6, 33-38.	31.5	208
314	Spatially resolving edge states of chiral grapheneÂnanoribbons. Nature Physics, 2011, 7, 616-620.	16.7	628
315	Is graphene's future in the hands of the chemist?. Materials Today, 2011, 14, 454.	14.2	2
316	Towards hybrid superlattices in graphene. Nature Communications, 2011, 2, 559.	12.8	145
317	Layer-by-Layer Removal of Graphene for Device Patterning. Science, 2011, 331, 1168-1172.	12.6	221
318	Liquid crystals of aqueous, giant graphene oxide flakes. Soft Matter, 2011, 7, 11154.	2.7	175
319	Graphene Chemistry: Synthesis and Manipulation. Journal of Physical Chemistry Letters, 2011, 2, 2425-2432.	4.6	237
320	Intrinsic resistive switching and memory effects in silicon oxide. Applied Physics A: Materials Science and Processing, 2011, 102, 835-839.	2.3	43
321	Plasmons in nanoscale metal junctions: optical rectification and thermometry. , 2011, , .		2
322	Transport Study of Nanoparticles for Oilfield Application. , 2010, , .		30
323	Resistive Switches and Memories from Silicon Oxide. Nano Letters, 2010, 10, 4105-4110.	9.1	293
324	Improved Synthesis of Graphene Oxide. ACS Nano, 2010, 4, 4806-4814.	14.6	10,035

#	Article	IF	CITATIONS
325	Reduction of Graphene Oxide <i>via</i> Bacterial Respiration. ACS Nano, 2010, 4, 4852-4856.	14.6	539
326	Radical addition of perfluorinated alkyl iodides to multi-layered graphene and single-walled carbon nanotubes. Nano Research, 2010, 3, 138-145.	10.4	44
327	Soluble graphene through edge-selective functionalization. Nano Research, 2010, 3, 117-125.	10.4	128
328	Theoretical Efficiency of Nanostructured Grapheneâ€Based Photovoltaics. Small, 2010, 6, 313-318.	10.0	97
329	Growth of graphene from solid carbon sources. Nature, 2010, 468, 549-552.	27.8	1,234
330	Green carbon as a bridge to renewable energy. Nature Materials, 2010, 9, 871-874.	27.5	131
331	Is nanotechnology too broad to practise?. Nature Nanotechnology, 2010, 5, 168-169.	31.5	20
332	Spontaneous high-concentration dispersions and liquid crystals of graphene. Nature Nanotechnology, 2010, 5, 406-411.	31.5	532
333	Development of novel drug delivery vehicles. Nanomedicine, 2010, 5, 1487-1489.	3.3	5
334	Corrugation of Chemically Converted Graphene Monolayers on SiO ₂ . ACS Nano, 2010, 4, 3095-3102.	14.6	42
335	Synthesis of Fluorescent Dye-Tagged Nanomachines for Single-Molecule Fluorescence Spectroscopy. Journal of Organic Chemistry, 2010, 75, 6631-6643.	3.2	15
336	Kinetics of Diazonium Functionalization of Chemically Converted Graphene Nanoribbons. ACS Nano, 2010, 4, 1949-1954.	14.6	333
337	Solution-Phase Synthesis of Heteroatom-Substituted Carbon Scaffolds for Hydrogen Storage. Journal of the American Chemical Society, 2010, 132, 15246-15251.	13.7	47
338	Graphene Nanoribbon Thin Films Using Layer-by-Layer Assembly. Nano Letters, 2010, 10, 4356-4362.	9.1	64
339	Synthesis of Highly Fluorescent BODIPY-Based Nanocars. Organic Letters, 2010, 12, 1464-1467.	4.6	82
340	Bottom-up Assembly of Molecular Wagons on a Surface. Journal of the American Chemical Society, 2010, 132, 16848-16854.	13.7	80
341	Patterning Graphene through the Self-Assembled Templates: Toward Periodic Two-Dimensional Graphene Nanostructures with Semiconductor Properties. Journal of the American Chemical Society, 2010, 132, 14730-14732.	13.7	165
342	Graphene Nanoribbon Devices Produced by Oxidative Unzipping of Carbon Nanotubes. ACS Nano, 2010, 4, 5405-5413.	14.6	130

#	Article	IF	CITATIONS
343	Diameter-Dependent Solubility of Single-Walled Carbon Nanotubes. ACS Nano, 2010, 4, 3063-3072.	14.6	65
344	Lower-Defect Graphene Oxide Nanoribbons from Multiwalled Carbon Nanotubes. ACS Nano, 2010, 4, 2059-2069.	14.6	539
345	Graphene Nanoribbon Composites. ACS Nano, 2010, 4, 7415-7420.	14.6	264
346	Two-Terminal Molecular Memories from Solution-Deposited C60 Films in Vertical Silicon Nanogaps. ACS Nano, 2010, 4, 1879-1888.	14.6	27
347	Effective Drug Delivery, <i>In Vitro</i> and <i>In Vivo</i> , by Carbon-Based Nanovectors Noncovalently Loaded with Unmodified Paclitaxel. ACS Nano, 2010, 4, 4621-4636.	14.6	85
348	Influence of the Substrate on the Mobility of Individual Nanocars. Journal of Physical Chemistry Letters, 2010, 1, 3288-3291.	4.6	24
349	Decoration, Migration, and Aggregation of Palladium Nanoparticles on Graphene Sheets. Chemistry of Materials, 2010, 22, 5695-5699.	6.7	186
350	Wet Catalyst-Support Films for Production of Vertically Aligned Carbon Nanotubes. ACS Applied Materials & Interfaces, 2010, 2, 1851-1856.	8.0	17
351	Polarizabilities of Adsorbed and Assembled Molecules: Measuring the Conductance through Buried Contacts. ACS Nano, 2010, 4, 7630-7636.	14.6	36
352	Controlling transistor threshold voltages using molecular dipoles. Journal of Applied Physics, 2009, 105, .	2.5	13
353	Electronic transport in monolayer graphene nanoribbons produced by chemical unzipping of carbon nanotubes. Applied Physics Letters, 2009, 95, .	3.3	74
354	Accurately determining single molecule trajectories of molecular motion on surfaces. Journal of Chemical Physics, 2009, 130, 164710.	3.0	29
355	Vapor Sensing Using Conjugated Molecule-Linked Au Nanoparticles in a Silica Matrix. Journal of Nanomaterials, 2009, 2009, 1-9.	2.7	6
356	Synthesis of a nanocar with organometallic wheels. Tetrahedron Letters, 2009, 50, 1427-1430.	1.4	42
357	Resistive Switching in Nanogap Systems on SiO ₂ Substrates. Small, 2009, 5, 2910-2915.	10.0	68
358	Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature, 2009, 458, 872-876.	27.8	3,246
359	Environmentally friendly functionalization of single walled carbon nanotubes in molten urea. Carbon, 2009, 47, 3215-3218.	10.3	29
360	Fullerene/Thiol-Terminated Molecules. Journal of Organic Chemistry, 2009, 74, 7885-7897.	3.2	34

#	Article	IF	CITATIONS
361	Aggressively Oxidized Ultra-Short Single-Walled Carbon Nanotubes Having Oxidized Sidewalls. Chemistry of Materials, 2009, 21, 3917-3923.	6.7	46
362	Micrometer-Scale Translation and Monitoring of Individual Nanocars on Glass. ACS Nano, 2009, 3, 351-356.	14.6	69
363	Synthesis of Single-Molecule Nanocars. Accounts of Chemical Research, 2009, 42, 473-487.	15.6	200
364	Antioxidant Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2009, 131, 3934-3941.	13.7	157
365	Controllable Molecular Modulation of Conductivity in Silicon-Based Devices. Journal of the American Chemical Society, 2009, 131, 10023-10030.	13.7	47
366	Nanoengineered Carbon Scaffolds for Hydrogen Storage. Journal of the American Chemical Society, 2009, 131, 723-728.	13.7	75
367	Transforming Carbon Nanotube Devices into Nanoribbon Devices. Journal of the American Chemical Society, 2009, 131, 13460-13463.	13.7	90
368	Mechanically Assisted Exfoliation and Functionalization of Thermally Converted Graphene Sheets. Chemistry of Materials, 2009, 21, 3045-3047.	6.7	92
369	High-Yield Organic Dispersions of Unfunctionalized Graphene. Nano Letters, 2009, 9, 3460-3462.	9.1	481
370	Two-Terminal Nonvolatile Memories Based on Single-Walled Carbon Nanotubes. ACS Nano, 2009, 3, 4122-4126.	14.6	57
371	Molecular Machinery: Synthesis of a "Nanodragster― Organic Letters, 2009, 11, 5602-5605.	4.6	47
372	Lithographic Graphitic Memories. ACS Nano, 2009, 3, 2760-2766.	14.6	52
373	Graphite Oxide Flame-Retardant Polymer Nanocomposites. ACS Applied Materials & Interfaces, 2009, 1, 2256-2261.	8.0	245
374	Covalent Functionalization of Surfactant-Wrapped Graphene Nanoribbons. Chemistry of Materials, 2009, 21, 5284-5291.	6.7	148
375	Fluoride-Decorated Oxides for Large Enhancement of Conductivity in Intrinsic Silicon Nanowires. Journal of Nanoscience and Nanotechnology, 2009, 9, 6470-6477.	0.9	1
376	Nanotrains and self-assembled two-dimensional arrays built from carboranes linked by hydrogen bonding of dipyridones. Nano Research, 2008, 1, 412-419.	10.4	37
377	Preparation of singleâ€walled carbon nanotubesâ€induced poly(<i>p</i> â€oxybenzoyl) crystals. Journal of Polymer Science Part A, 2008, 46, 1265-1277.	2.3	2
378	<i>In vitro</i> cytotoxicity of singleâ€walled carbon nanotube/biodegradable polymer nanocomposites. Journal of Biomedical Materials Research - Part A, 2008, 86A, 813-823.	4.0	75

#	Article	IF	CITATIONS
379	Reversible Modulation of Conductance in Silicon Devices via UV/Visible‣ight Irradiation. Advanced Materials, 2008, 20, 4541-4546.	21.0	9
380	The assembly line: self-assembling nanocars. Tetrahedron, 2008, 64, 8522-8529.	1.9	22
381	Diazonium Functionalization of Surfactant-Wrapped Chemically Converted Graphene Sheets. Journal of the American Chemical Society, 2008, 130, 16201-16206.	13.7	926
382	Selective Photochemical Functionalization of Surfactant-Dispersed Single Wall Carbon Nanotubes in Water. Journal of the American Chemical Society, 2008, 130, 14227-14233.	13.7	38
383	Surface Grafting of Ferrocene-Containing Triazene Derivatives on Si(100). Chemistry of Materials, 2008, 20, 7352-7355.	6.7	28
384	The fourth element. Nature, 2008, 453, 42-43.	27.8	459
385	Electronic two-terminal bistable graphitic memories. Nature Materials, 2008, 7, 966-971.	27.5	137
386	Synthesis and Self-Assembly of Thio Derivatives of Calix[4]arene on Noble Metal Surfaces. Langmuir, 2008, 24, 11523-11532.	3.5	27
387	Molecular Dynamics of Surface-Moving Thermally Driven Nanocars. Journal of Chemical Theory and Computation, 2008, 4, 652-656.	5.3	81
388	Synthesis and Photoisomerization of Fullereneâ^ and Oligo(phenylene ethynylene)â^ Azobenzene Derivatives. ACS Nano, 2008, 2, 97-106.	14.6	48
389	Simultaneous Measurements of Electronic Conduction and Raman Response in Molecular Junctions. Nano Letters, 2008, 8, 919-924.	9.1	270
390	Synthesis of a Porphyrin-Fullerene Pinwheel. Organic Letters, 2008, 10, 1377-1380.	4.6	21
391	Chemical Reactions in Monolayer Aromatic Films on Silicon Surfaces. Chemistry of Materials, 2008, 20, 61-64.	6.7	18
392	Reversible Photo-Switching of Single Azobenzene Molecules in Controlled Nanoscale Environments. Nano Letters, 2008, 8, 1644-1648.	9.1	258
393	Silicon/Molecule Interfacial Electronic Modifications. Journal of the American Chemical Society, 2008, 130, 1699-1710.	13.7	83
394	Synthesis of a New Photoactive Nanovehicle:  A Nanoworm. Organic Letters, 2008, 10, 897-900.	4.6	79
395	Synthesis of a Nanocar with an Angled Chassis. Toward Circling Movement. Organic Letters, 2008, 10, 229-232.	4.6	40
396	Experimental and Theoretical Identification of Valence Energy Levels and Interface Dipole Trends for a Family of (Oligo)Phenylene-ethynylenethiols Adsorbed on Gold. Journal of Physical Chemistry C, 2008, 112, 13215-13225.	3.1	21

#	Article	IF	CITATIONS
397	Etching-dependent reproducible memory switching in vertical SiO2 structures. Applied Physics Letters, 2008, 93, .	3.3	30
398	CHARGE TRANSPORT THROUGH CARBON NANOTUBE OR FULLERENE–MOLECULE–SILICON JUNCTIONS. Na 2007, 02, 285-294.	no. 1.0	1
399	Vapor phase deposition of oligo(phenylene ethynylene) molecules for use in molecular electronic devices. Journal of Vacuum Science & Technology B, 2007, 25, 252.	1.3	5
400	Investigating the motion of molecular machines on surfaces by STM: The nanocar and beyond. , 2007, , .		12
401	Synthesis, Grafting, and Film Formation of Porphyrins on Silicon Surfaces Using Triazenes. Chemistry of Materials, 2007, 19, 4447-4453.	6.7	22
402	Repetitive Functionalization of Water-Soluble Single-Walled Carbon Nanotubes. Addition of Acid-Sensitive Addends. Chemistry of Materials, 2007, 19, 3491-3498.	6.7	59
403	Tunable Permittivity of Polymer Composites through Incremental Blending of Raw and Functionalized Single-Wall Carbon Nanotubes. Journal of Physical Chemistry C, 2007, 111, 17751-17754.	3.1	14
404	Real-Time Measurements of Conductance Switching and Motion of Single Oligo(phenylene ethynylene) Molecules. Journal of the American Chemical Society, 2007, 129, 10352-10353.	13.7	65
405	Copolymer of Single-Walled Carbon Nanotubes and Poly(p-phenylene benzobisoxazole). Chemistry of Materials, 2007, 19, 291-300.	6.7	32
406	Synthetic Routes toward Carborane-Wheeled Nanocars. Journal of Organic Chemistry, 2007, 72, 9481-9490.	3.2	72
407	Transition to Organic Materials Science. Passive, Active, and Hybrid Nanotechnologies. Journal of Organic Chemistry, 2007, 72, 7477-7496.	3.2	54
408	Synthesis of a dipolar nanocar. Tetrahedron Letters, 2007, 48, 5821-5824.	1.4	53
409	Synthesis of a single-molecule nanotruck. Tetrahedron Letters, 2007, 48, 5817-5820.	1.4	51
410	"Hairy―Singleâ€Walled Carbon Nanotubes Prepared by Atom Transfer Radical Polymerization. Small, 2007, 3, 1803-1810.	10.0	58
411	Nanotube composites. Nature, 2007, 447, 1066-1068.	27.8	720
412	Characterization of Self-Assembled Monolayers of Fullerene Derivatives on Gold Surfaces:Â Implications for Device Evaluations. Journal of the American Chemical Society, 2006, 128, 13479-13489.	13.7	90
413	Controlled Modulation of Conductance in Silicon Devices by Molecular Monolayers. Journal of the American Chemical Society, 2006, 128, 14537-14541.	13.7	101
414	Single Wall Carbon Nanotube Amplification:Â En Route to a Type-Specific Growth Mechanism. Journal of the American Chemical Society, 2006, 128, 15824-15829.	13.7	209

#	Article	IF	CITATIONS
415	Functionalization of Single-Walled Carbon Nanotubes "On Water― Journal of the American Chemical Society, 2006, 128, 12899-12904.	13.7	196
416	Metal-free silicon–molecule–nanotube testbed and memory device. Nature Materials, 2006, 5, 63-68.	27.5	96
417	In Situ Polymerization Initiated by Single-Walled Carbon Nanotube Salts. Chemistry of Materials, 2006, 18, 4764-4767.	6.7	62
418	Recent progress on nanovehicles. Chemical Society Reviews, 2006, 35, 1043.	38.1	241
419	Triazenes as a Stable Diazonium Source for Use in Functionalizing Carbon Nanotubes in Aqueous Suspensions. Chemistry of Materials, 2006, 18, 2766-2770.	6.7	63
420	Soluble Ultra-Short Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2006, 128, 10568-10571.	13.7	119
421	Molecular Engineering and Measurements To Test Hypothesized Mechanisms in Single Molecule Conductance Switching. Journal of the American Chemical Society, 2006, 128, 1959-1967.	13.7	134
422	Attaching Electronically Active Oligoanilines to Silicon Surfaces. Chemistry of Materials, 2006, 18, 4513-4518.	6.7	15
423	Electrochemical Origin of Voltage-Controlled Molecular Conductance Switching. Journal of the American Chemical Society, 2006, 128, 14828-14835.	13.7	105
424	Surface-Rolling Molecules. Journal of the American Chemical Society, 2006, 128, 4854-4864.	13.7	200
425	Effects of hydration on molecular junction transport. Nature Materials, 2006, 5, 901-908.	27.5	110
426	Analytical techniques for characterization of organic molecular assemblies in molecular electronics devices. Analytica Chimica Acta, 2006, 568, 2-19.	5.4	11
427	Single-molecule transistors: Electron transfer in the solid state. Chemical Physics, 2006, 324, 267-275.	1.9	63
428	Syntheses of new functionalized azobenzenes for potential molecular electronic devices. Tetrahedron, 2006, 62, 10303-10310.	1.9	72
429	Injectable Nanocomposites of Single-Walled Carbon Nanotubes and Biodegradable Polymers for Bone Tissue Engineering. Biomacromolecules, 2006, 7, 2237-2242.	5.4	175
430	Individualized Single Walled Carbon Nanotubes from Bulk Material Using 96% Sulfuric Acid as Solvent. Chemistry of Materials, 2006, 18, 374-377.	6.7	78
431	En Route to a Motorized Nanocar. Organic Letters, 2006, 8, 1713-1716.	4.6	191
432	Biocompatibility of Native and Functionalized Single-Walled Carbon Nanotubes for Neuronal Interface. Journal of Nanoscience and Nanotechnology, 2006, 6, 1365-1374.	0.9	132

#	Article	IF	CITATIONS
433	Molecular Wires and Devices. , 2005, , 235-253.		0
434	Self-Assembled Molecular Electronics. , 2005, , 79-98.		8
435	Directional Control in Thermally Driven Single-Molecule Nanocars. Nano Letters, 2005, 5, 2330-2334.	9.1	432
436	Rheological behaviour and mechanical characterization of injectable poly(propylene) Tj ETQq0 0 0 rgBT /Overlock 2005, 16, S531-S538.	10 Tf 50 6 2.6	27 Td (fuma 109
437	Molecularly inherent voltage-controlled conductance switching. Nature Materials, 2005, 4, 167-172.	27.5	352
438	Synthesis, Spectroscopic and Nonlinear Optical Properties of Multiple [60]Fullerene-Oligo(p-phenylene ethynylene) Hybrids. Chemistry - A European Journal, 2005, 11, 3643-3658.	3.3	82
439	Separation of Single-Walled Carbon Nanotubes on Silica Gel. Materials Morphology and Raman Excitation Wavelength Affect Data Interpretation. Journal of the American Chemical Society, 2005, 127, 4497-4509.	13.7	101
440	Molecular Wires. Topics in Current Chemistry, 2005, 257, 33-62.	4.0	150
441	Molecular Engineering of the Polarity and Interactions of Molecular Electronic Switches. Journal of the American Chemical Society, 2005, 127, 17421-17426.	13.7	125
442	Fabrication of Carbon Nanotubeâ^'Moleculeâ^'Silicon Junctions. Journal of the American Chemical Society, 2005, 127, 8918-8919.	13.7	74
443	Molecular Grafting to Silicon Surfaces in Air Using Organic Triazenes as Stable Diazonium Sources and HF as a Constant Hydride-Passivation Source. Chemistry of Materials, 2005, 17, 4832-4836.	6.7	95
444	Reversible Bistable Switching in Nanoscale Thiol-Substituted Oligoaniline Molecular Junctions. Nano Letters, 2005, 5, 2365-2372.	9.1	108
445	Cross-Step Place-Exchange of Oligo(phenyleneâ^'ethynylene) Molecules. Nano Letters, 2005, 5, 2292-2297.	9.1	38
446	Mechanistic Implications of the Assembly of Organic Thiocyanates on Precious Metals. Chemistry of Materials, 2005, 17, 5684-5690.	6.7	48
447	Synthesis of Fluorinated Oligomers toward Physical Vapor Deposition Molecular Electronics Candidates. Chemistry of Materials, 2005, 17, 1331-1345.	6.7	30
448	Effect of Local Environment on Molecular Conduction:Â Isolated Molecule versus Self-Assembled Monolayer. Nano Letters, 2005, 5, 61-65.	9.1	206
449	Green Chemical Functionalization of Single-Walled Carbon Nanotubes in Ionic Liquids. Journal of the American Chemical Society, 2005, 127, 14867-14870.	13.7	186
450	Diazonium-Based Functionalization of Carbon Nanotubes: XPS and GC-MS Analysis and Mechanistic Implications. Synlett, 2004, 2004, 155-160.	1.8	27

#	Article	IF	CITATIONS
451	Clustering Effects on Discontinuous Gold Film NanoCells. Journal of Nanoscience and Nanotechnology, 2004, 4, 907-917.	0.9	34
452	Covalent Functionalization of Single-Walled Carbon Nanotubes for Materials Applications. Journal of Physical Chemistry A, 2004, 108, 11151-11159.	2.5	617
453	Synthesis and Testing of New End-Functionalized Oligomers for Molecular Electronics ChemInform, 2004, 35, no.	0.0	0
454	Synthesis of Terphenyl Oligomers as Molecular Electronic Device Candidates ChemInform, 2004, 35, no.	0.0	0
455	Overcoming the Insolubility of Carbon Nanotubes through High Degrees of Sidewall Functionalization. ChemInform, 2004, 35, no.	0.0	0
456	Overcoming the Insolubility of Carbon Nanotubes Through High Degrees of Sidewall Functionalization. Chemistry - A European Journal, 2004, 10, 812-817.	3.3	418
457	Synthesis of terphenyl oligomers as molecular electronic device candidates. Tetrahedron, 2004, 60, 81-92.	1.9	43
458	Electrons Are Transported through Phenyleneâ^'Ethynylene Oligomer Monolayers via Localized Molecular Orbitals. Journal of the American Chemical Society, 2004, 126, 2568-2573.	13.7	77
459	Mediating Stochastic Switching of Single Molecules Using Chemical Functionality. Journal of the American Chemical Society, 2004, 126, 12214-12215.	13.7	101
460	Effects of Hindered Internal Rotation on Packing and Conductance of Self-Assembled Monolayers. Journal of Physical Chemistry B, 2004, 108, 16761-16767.	2.6	40
461	Valence Electron Orbitals of an Oligo(p-phenylene-ethynylene)thiol on Gold. Journal of the American Chemical Society, 2004, 126, 3420-3421.	13.7	24
462	Direct Covalent Grafting of Conjugated Molecules onto Si, GaAs, and Pd Surfaces from Aryldiazonium Salts. Journal of the American Chemical Society, 2004, 126, 370-378.	13.7	339
463	Optical Characterization of Oligo(phenyleneâ~'ethynylene) Self-Assembled Monolayers on Gold. Journal of Physical Chemistry B, 2004, 108, 12547-12559.	2.6	62
464	Comparative Study of Electrochemically Directed Assembly versus Conventional Self-Assembly of Thioacetyl-Terminated Oligo(phenylene ethynylene)s on Gold and Platinum Surfaces. Langmuir, 2004, 20, 1335-1341.	3.5	38
465	Formation and Analysis of Self-Assembled Monolayers from U-Shaped Oligo(phenylene ethynylene)s as Candidates for Molecular Electronics. Chemistry of Materials, 2004, 16, 2987-2997.	6.7	31
466	Spontaneous Assembly of Organic Thiocyanates on Gold Sufaces. Alternative Precursors for Gold Thiolate Assemblies. Journal of the American Chemical Society, 2004, 126, 13172-13173.	13.7	105
467	Facile Synthesis of Multifullerene-OPE Hybrids via in Situ Ethynylation. Organic Letters, 2004, 6, 2129-2132.	4.6	69
468	Water-Soluble, Exfoliated, Nonroping Single-Wall Carbon Nanotubes. Journal of the American Chemical Society, 2004, 126, 11158-11159.	13.7	212

#	Article	IF	CITATIONS
469	Magnetite (Fe3O4) Coreâ^'Shell Nanowires:  Synthesis and Magnetoresistance. Nano Letters, 2004, 4, 2151-2155.	9.1	320
470	Electrical Measurements in Molecular Electronics. Chemistry of Materials, 2004, 16, 4423-4435.	6.7	191
471	Synthesis of Nitrile-Terminated Potential Molecular Electronic Devices ChemInform, 2003, 34, no.	0.0	0
472	Improved and New Syntheses of Potential Molecular Electronics Devices ChemInform, 2003, 34, no.	0.0	0
473	Biphenyl- and Fluorenyl-Based Potential Molecular Electronic Devices ChemInform, 2003, 34, no.	0.0	0
474	Synthesis and testing of new end-functionalized oligomers for molecular electronics. Tetrahedron, 2003, 59, 8555-8570.	1.9	55
475	Synthesis of thiol substituted oligoanilines for molecular device candidates. Tetrahedron Letters, 2003, 44, 6699-6702.	1.4	19
476	Synthesis of nitrile-terminated potential molecular electronic devices. Tetrahedron, 2003, 59, 287-293.	1.9	36
477	Improved and new syntheses of potential molecular electronics devices. Tetrahedron, 2003, 59, 2497-2518.	1.9	69
478	Biphenyl- and fluorenyl-based potential molecular electronic devices. Tetrahedron, 2003, 59, 3131-3156.	1.9	52
479	Glass transition of polymer/single-walled carbon nanotube composite films. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 3339-3345.	2.1	148
480	Novel flame retardant polyarylethers: synthesis and testing. Polymer, 2003, 44, 3709-3714.	3.8	18
481	En Route to Surface-Bound Electric Field-Driven Molecular Motors. Journal of Organic Chemistry, 2003, 68, 5091-5103.	3.2	164
482	Self-Assembled Oligo(phenylene-ethynylene) Molecular Electronic Switch Monolayers on Gold:Â Structures and Chemical Stability. Langmuir, 2003, 19, 8245-8255.	3.5	144
483	NanoCell Electronic Memories. Journal of the American Chemical Society, 2003, 125, 13279-13283.	13.7	100
484	Control of Alkanethiolate Monolayer Structure Using Vapor-Phase Annealing. Journal of the American Chemical Society, 2003, 125, 11462-11463.	13.7	61
485	Arts and Sciences Reunite in Nanoput: Communicating Synthesis and the Nanoscale to the Layperson. Journal of Chemical Education, 2003, 80, 395.	2.3	25
486	Unbundled and Highly Functionalized Carbon Nanotubes from Aqueous Reactions. Nano Letters, 2003, 3, 1215-1218.	9.1	391

#	Article	IF	CITATIONS
487	Electronic Structure Control of Single-Walled Carbon Nanotube Functionalization. Science, 2003, 301, 1519-1522.	12.6	1,270
488	Solvent-Free Functionalization of Carbon Nanotubes. Journal of the American Chemical Society, 2003, 125, 1156-1157.	13.7	509
489	Charge Transport through Self-Assembled Monolayers of Compounds of Interest in Molecular Electronics. Journal of the American Chemical Society, 2002, 124, 5550-5560.	13.7	351
490	Chemical and Potential-Assisted Assembly of Thiolacetyl-Terminated Oligo(phenylene ethynylene)s on Gold Surfaces. Chemistry of Materials, 2002, 14, 2905-2909.	6.7	111
491	Ozonation of Single-Walled Carbon Nanotubes and Their Assemblies on Rigid Self-Assembled Monolayers. Chemistry of Materials, 2002, 14, 4235-4241.	6.7	153
492	Covalent chemistry of single-wall carbon nanotubes. Journal of Materials Chemistry, 2002, 12, 1952-1958.	6.7	841
493	Combinatorial synthesis of oligo(phenylene ethynylene)s. Tetrahedron, 2002, 58, 10387-10405.	1.9	62
494	Dispersion of Functionalized Carbon Nanotubes in Polystyrene. Macromolecules, 2002, 35, 8825-8830.	4.8	579
495	Highly Functionalized Carbon Nanotubes Using in Situ Generated Diazonium Compounds. Chemistry of Materials, 2001, 13, 3823-3824.	6.7	652
496	Functionalization of Carbon Nanotubes by Electrochemical Reduction of Aryl Diazonium Salts:  A Bucky Paper Electrode. Journal of the American Chemical Society, 2001, 123, 6536-6542.	13.7	1,364
497	Determination of the Molecular Electrical Properties of Self-Assembled Monolayers of Compounds of Interest in Molecular Electronics. Journal of the American Chemical Society, 2001, 123, 2454-2455.	13.7	87
498	Dissolution of small diameter single-wall carbon nanotubes in organic solvents?. Chemical Communications, 2001, , 193-194.	4.1	525
499	Benzyltriethylammonium Dichloroiodate/Sodium Bicarbonate Combination as an Inexpensive, Environmentally Friendly, and Mild Iodinating Reagent for Anilines. Organic Letters, 2001, 3, 991-992.	4.6	22
500	Solid-phase approaches toward cyclic oligomers. Tetrahedron, 2001, 57, 9055-9065.	1.9	11
501	Synthesis of potential molecular electronic devices containing pyridine units. Tetrahedron Letters, 2001, 42, 3057-3060.	1.4	32
502	Synthesis and Preliminary Testing of Molecular Wires and Devices. Chemistry - A European Journal, 2001, 7, 5118-5134.	3.3	236
503	Phenylene Ethynylene Diazonium Salts as Potential Self-Assembling Molecular Devices. Organic Letters, 2001, 3, 993-995.	4.6	37
504	Accoutrements of a molecular computer: switches, memory components and alligator clips. Tetrahedron, 2001, 57, 5109-5121.	1.9	52

#	Article	IF	CITATIONS
505	Electrochemical Testing of Potential Molecular Devices. Materials Research Society Symposia Proceedings, 2000, 660, 1.	0.1	0
506	Electrochemical Testing of Potential Molecular Devices. Materials Research Society Symposia Proceedings, 2000, 636, 741.	0.1	0
507	Self-Assembly of Phenylene Ethynylene Diazonium Salts on Metal Surfaces as Potential Molecular Wires. Materials Research Society Symposia Proceedings, 2000, 660, .	0.1	0
508	Electrochemical Testing of Potential Molecular Devices. Materials Research Society Symposia Proceedings, 2000, 660, .	0.1	0
509	Computing with Molecules. Scientific American, 2000, 282, 86-93.	1.0	239
510	Self-Assembly of Phenylene Ethynylene Diazonium Salts on Metal Surfaces as Potential Molecular Wires. Materials Research Society Symposia Proceedings, 2000, 660, 1.	0.1	0
511	Molecular Electronics. Synthesis and Testing of Components. Accounts of Chemical Research, 2000, 33, 791-804.	15.6	1,263
512	Oxidation of Electron-Deficient Anilines by HOF. A Route to Nitro-Containing Compounds for Molecular Electronic Devices. Organic Letters, 2000, 2, 3405-3406.	4.6	31
513	Theoretical Study of a Molecular Resonant Tunneling Diode. Journal of the American Chemical Society, 2000, 122, 3015-3020.	13.7	431
514	Synthesis and Self-Assembly of an Oligonucleotide-Modified Cyclobutadiene Complex. Organometallics, 2000, 19, 368-370.	2.3	16
515	Synthesis of Porphyrins Bearing trans-Thiols. Organic Letters, 2000, 2, 111-113.	4.6	32
516	Synthesis and testing of nonhalogenated alkyne/phosphorus-containing polymer additives: Potent condensed-phase flame retardants. Journal of Applied Polymer Science, 1999, 73, 707-718.	2.6	25
517	Self-Assembling Supramolecular Nanostructures from a C60 Derivative: Nanorods and Vesicles. Angewandte Chemie - International Edition, 1999, 38, 2403-2405.	13.8	152
518	Synthesis of Imine-Bridged Phenylenepyridine Ladder Polymers. Optical Band Gap Widening through Intramolecular Charge Transfer in Planar Polymers. Macromolecules, 1999, 32, 2455-2461.	4.8	40
519	Rapid Solid-Phase Synthesis of Oligo(1,4-phenylene ethynylene)s by a Divergent/Convergent Tripling Strategy. Journal of the American Chemical Society, 1999, 121, 4908-4909.	13.7	75
520	Lowest Energy States of Small Pd Clusters Using Density Functional Theory and Standard ab Initio Methods. A Route to Understanding Metallic Nanoprobes. Journal of Physical Chemistry A, 1999, 103, 7692-7700.	2.5	63
521	Rapid Solid-Phase Syntheses of Conjugated Homooligomers and [AB] Alternating Block Cooligomers of Precise Length and Constitution. Journal of Organic Chemistry, 1999, 64, 8898-8906.	3.2	67
522	Molecular Alligator Clips for Single Molecule Electronics. Studies of Group 16 and Isonitriles Interfaced with Au Contacts. Journal of the American Chemical Society, 1999, 121, 411-416.	13.7	140

#	Article	IF	CITATIONS
523	Molecular Currentâ^`Voltage Characteristics. Journal of Physical Chemistry A, 1999, 103, 7883-7887.	2.5	85
524	Ab initio Methods for the Study of Molecular Systems for Nanometer Technology: Toward the First-Principles Design of Molecular Computers. Annals of the New York Academy of Sciences, 1998, 852, 68-94.	3.8	15
525	Recent Advances in Molecular Scale Electronics. Annals of the New York Academy of Sciences, 1998, 852, 197-204.	3.8	30
526	The Coordination and Structure of a Thiolate-Terminated "Molecular-Scale Wire―Linked to a Triosmium Cluster. European Journal of Inorganic Chemistry, 1998, 1998, 429-431.	2.0	9
527	Assembly of DNA/Fullerene Hybrid Materials. Angewandte Chemie - International Edition, 1998, 37, 1528-1531.	13.8	115
528	Molecular Scale Electronics:Â A Synthetic/Computational Approach to Digital Computing. Journal of the American Chemical Society, 1998, 120, 8486-8493.	13.7	252
529	Alternating Donor/Acceptor Repeat Units in Polythiophenes. Intramolecular Charge Transfer for Reducing Band Gaps in Fully Substituted Conjugated Polymers. Journal of the American Chemical Society, 1998, 120, 5355-5362.	13.7	306
530	Theoretical Interpretation of Conductivity Measurements of a Thiotolane Sandwich. A Molecular Scale Electronic Controller. Journal of the American Chemical Society, 1998, 120, 3970-3974.	13.7	161
531	Protecting Groups for Organoselenium Compounds. Journal of Organic Chemistry, 1998, 63, 2397-2400.	3.2	44
532	Preparative Benchtop Enrichment of C60, C70, and the Higher Fullerene Allotropes Using a Brominated Polystyrene Stationary Phase. Journal of Organic Chemistry, 1997, 62, 2310-2311.	3.2	8
533	Rapid Syntheses of Oligo(2,5-thiophene ethynylene)s with Thioester Termini:Â Potential Molecular Scale Wires with Alligator Clips. Journal of Organic Chemistry, 1997, 62, 1376-1387.	3.2	198
534	Rapid Solution and Solid Phase Syntheses of Oligo(1,4-phenylene ethynylene)s with Thioester Termini:Â Molecular Scale Wires with Alligator Clips. Derivation of Iterative Reaction Efficiencies on a Polymer Support. Journal of Organic Chemistry, 1997, 62, 1388-1410.	3.2	233
535	Systematic study of the lowest energy states of Aun (n=1-4) using DFT. International Journal of Quantum Chemistry, 1997, 65, 749-758.	2.0	49
536	Conjugated Macromolecules of Precise Length and Constitution. Organic Synthesis for the Construction of Nanoarchitectures. Chemical Reviews, 1996, 96, 537-554.	47.7	1,002
537	Convergent Synthetic Routes to Orthogonally Fused Conjugated Oligomers Directed toward Molecular Scale Electronic Device Applications. Journal of Organic Chemistry, 1996, 61, 6906-6921.	3.2	265
538	Potential molecular wires and molecular alligator clips. Nanotechnology, 1996, 7, 430-433.	2.6	16
539	Solid-Phase Synthesis of Potential Molecular Wires. Attachment of Molecular Alligator Clips. Materials Research Society Symposia Proceedings, 1995, 413, 401.	0.1	0
540	Self-Assembled Monolayers and Multilayers of Conjugated Thiols, .alpha.,.omegaDithiols, and Thioacetyl-Containing Adsorbates. Understanding Attachments between Potential Molecular Wires and Gold Surfaces. Journal of the American Chemical Society, 1995, 117, 9529-9534.	13.7	710

#	Article	IF	CITATIONS
541	Iterative Divergent/Convergent Approach to Linear Conjugated Oligomers by Successive Doubling of the Molecular Length: A Rapid Route to a 128ÃLong Potential Molecular Wire. Angewandte Chemie International Edition in English, 1994, 33, 1360-1363.	4.4	253
542	Synthese linearer konjugierter Oligomere mit einer iterativen, divergenten/konvergenten Methode zur Verdopplung der Monomereinheiten: ein rascher Zugang zu einem 128 Ã langen, potentiell leitenden molekularen Draht. Angewandte Chemie, 1994, 106, 1445-1448.	2.0	78
543	ESR Characterization of Oligomeric Thiophene Materials. Chemistry of Materials, 1994, 6, 327-332.	6.7	20
544	Imine-Bridged Planar Poly(p-phenylene) Derivatives for Maximization of Extended .piConjugation. The Common Intermediate Approach. Journal of the American Chemical Society, 1994, 116, 11723-11736.	13.7	150
545	Synthesis of 14C-Labeled C60, Its Suspension in Water, and Its Uptake by Human Keratinocytes. Journal of the American Chemical Society, 1994, 116, 4517-4518.	13.7	237
546	Synthesis of a chiral nonracemic segmented screwlike oligomer. An unusual form of molecular chirality. Macromolecules, 1994, 27, 622-624.	4.8	26
547	Single Column Purification of Gram Quantities of C70. Journal of the American Chemical Society, 1994, 116, 6939-6940.	13.7	40
548	High surface area silica xerogels produced using triethoxysilane under non-supercritical conditions. Molecular hydrogen proposed as the high surface area promoter. Advanced Materials, 1993, 5, 47-49.	21.0	10
549	Synthesis of planar poly(p-phenylene) derivatives for maximization of extended .piconjugation. Journal of the American Chemical Society, 1993, 115, 4935-4936.	13.7	99
550	Electrochemical and electronic properties of neutral and oxidized soluble orthogonally fused thiophene oligomers. Journal of the American Chemical Society, 1993, 115, 1869-1874.	13.7	79
551	Purification of gram quantities of C60. A new inexpensive and facile method. Journal of the American Chemical Society, 1992, 114, 7917-7919.	13.7	189
552	Orthogonally fused conducting oligomers for molecular electronic devices. AlP Conference Proceedings, 1992, , .	0.4	4
553	Synthesis of gram quantities of C60 by plasma discharge in a modified round-bottomed flask. Key parameters for yield optimization and purification. Journal of Organic Chemistry, 1992, 57, 6932-6936.	3.2	54
554	Metal-catalyzed alkynylation of (bromophenyl)-oligophenylene. A rapid route to thermoset precursors of high density monolithic glass-like carbon. Advanced Materials, 1992, 4, 570-572.	21.0	11
555	Extended orthogonally fused conducting oligomers for molecular electronic devices. Journal of the American Chemical Society, 1991, 113, 7064-7066.	13.7	111
556	Approaches to orthogonally fused conducting polymers for molecular electronics. Journal of the American Chemical Society, 1990, 112, 5662-5663.	13.7	115
557	A zirconium-promoted methylenation of aldehydes, ketones, and enones. Tetrahedron Letters, 1989, 30, 3927-3930.	1.4	45