Vladimir S Borodkin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6453056/publications.pdf

Version: 2024-02-01

21 papers 1,152 citations

16 h-index 677142 22 g-index

22 all docs 22 docs citations

times ranked

22

1004 citing authors

#	Article	IF	CITATIONS
1	Proteome Wide Purification and Identification of <i>O</i> -GlcNAc-Modified Proteins Using Click Chemistry and Mass Spectrometry. Journal of Proteome Research, 2013, 12, 927-936.	3.7	151
2	GlcNAcstatin:Â a Picomolar, SelectiveO-GlcNAcase Inhibitor That Modulates IntracellularO-GlcNAcylation Levels. Journal of the American Chemical Society, 2006, 128, 16484-16485.	13.7	136
3	O-GlcNAc transferase invokes nucleotide sugar pyrophosphate participation in catalysis. Nature Chemical Biology, 2012, 8, 969-974.	8.0	123
4	The active site of O-GlcNAc transferase imposes constraints on substrate sequence. Nature Structural and Molecular Biology, 2015, 22, 744-750.	8.2	114
5	GlcNAcstatins are nanomolar inhibitors of human <i>O</i> -GlcNAcase inducing cellular hyper- <i>O</i> -GlcNAcylation. Biochemical Journal, 2009, 420, 221-227.	3.7	83
6	Human OGA binds substrates in a conserved peptide recognition groove. Biochemical Journal, 2010, 432, 1-12.	3.7	58
7	Catalytic deficiency of O-GlcNAc transferase leads to X-linked intellectual disability. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14961-14970.	7.1	58
8	Bisubstrate UDP–peptide conjugates as human O-GlcNAc transferase inhibitors. Biochemical Journal, 2014, 457, 497-502.	3.7	57
9	Cell-Penetrant, Nanomolar O-GlcNAcase Inhibitors Selective against Lysosomal Hexosaminidases. Chemistry and Biology, 2010, 17, 1250-1255.	6.0	52
10	Genetic recoding to dissect the roles of site-specific protein O-GlcNAcylation. Nature Structural and Molecular Biology, 2019, 26, 1071-1077.	8.2	50
11	Synergy of Peptide and Sugar in O-GlcNAcase Substrate Recognition. Chemistry and Biology, 2012, 19, 173-178.	6.0	48
12	Recognition of a glycosylation substrate by the O-GlcNAc transferase TPR repeats. Open Biology, 2017, 7, 170078.	3.6	48
13	A Structural and Biochemical Model of Processive Chitin Synthesis. Journal of Biological Chemistry, 2014, 289, 23020-23028.	3.4	46
14	Thio-Linked UDP–Peptide Conjugates as O-GlcNAc Transferase Inhibitors. Bioconjugate Chemistry, 2018, 29, 1834-1840.	3.6	34
15	Proteolysis of HCF-1 by Ser/Thr glycosylation-incompetent <i>O</i> -GlcNAc transferase:UDP-GlcNAc complexes. Genes and Development, 2016, 30, 960-972.	5.9	21
16	A mechanism-inspired UDP- <i>N</i> -acetylglucosamine pyrophosphorylase inhibitor. RSC Chemical Biology, 2020, 1, 13-25.	4.1	20
17	Synthesis of potential bisubstrate inhibitors of Leishmania elongating α-d-mannosyl phosphate transferase. Tetrahedron Letters, 2004, 45, 857-862.	1.4	16
18	An efficient and versatile synthesis of GlcNAcstatinsâ€"potent and selective O-GlcNAcase inhibitors built on the tetrahydroimidazo[1,2-a]pyridine scaffold. Tetrahedron, 2010, 66, 7838-7849.	1.9	9

#	Article	IF	CITATIONS
19	O-GlcNAcase Fragment Discovery with Fluorescence Polarimetry. ACS Chemical Biology, 2018, 13, 1353-1360.	3.4	8
20	The conserved threonine-rich region of the HCF-1PRO repeat activates promiscuous OGT:UDP-GlcNAc glycosylation and proteolysis activities. Journal of Biological Chemistry, 2018, 293, 17754-17768.	3.4	7
21	The Chemical Synthesis of Glycosylphosphatidylinositol Anchors from Trypanosoma cruzi Trypomastigote Mucins. ACS Symposium Series, 2007, , 285-306.	0.5	4