Farhad Khorasheh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6452184/publications.pdf

Version: 2024-02-01

66 papers 1,496 citations

257450 24 h-index 36 g-index

66 all docs 66
docs citations

66 times ranked 1747 citing authors

#	Article	IF	CITATIONS
1	A catalyzed method to remove polychlorinated biphenyls from contaminated transformer oil. Environmental Science and Pollution Research, 2022, 29, 13253-13267.	5.3	2
2	Effect of Ni ratio on mesoporous Ni/MgO nanocatalyst synthesized by one-step hydrothermal method for thermal catalytic decomposition of CH4 to H2. International Journal of Hydrogen Energy, 2022, 47, 11539-11551.	7.1	14
3	Unraveling Cancer Metastatic Cascade Using Microfluidics-based Technologies. Biophysical Reviews, 2022, 14, 517-543.	3.2	5
4	Novel heterojunction magnetic composite MIL-53 (Fe)/ZnFe2O4: Synthesis and photocatalytic pollutant degradation. Korean Journal of Chemical Engineering, 2022, 39, 2713-2724.	2.7	2
5	Biodiesel production via transesterification of canola oil in the presence of Na–K doped CaO derived from calcined eggshell. Renewable Energy, 2021, 163, 1626-1636.	8.9	58
6	A new insight to deformability correlation of circulating tumor cells with metastatic behavior by application of a new deformability-based microfluidic chip. Analytica Chimica Acta, 2021, 1186, 339115.	5.4	12
7	Molecular Simulation Study of the Adsorption and Diffusion Properties of Terephthalic Acid in Various Metal Organic Frameworks. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 1643-1652.	3.7	11
8	Carbonaceous supports decorated with $Ptae$ TiO2 nanoparticles using electrostatic self-assembly method as a highly visible-light active photocatalyst for CO2 photoreduction. Renewable Energy, 2020, 145, 1862-1869.	8.9	32
9	Non-isothermal pyrolysis of used lubricating oil and the catalytic effect of carbon-based nanomaterials on the process performance. Journal of Thermal Analysis and Calorimetry, 2020, 139, 1025-1036.	3.6	9
10	Removal of terephthalic acid from aqueous solution using metal-organic frameworks; A molecular simulation study. Journal of Solid State Chemistry, 2020, 282, 121059.	2.9	5
11	Comparative process modeling and techno-economic evaluation of renewable hydrogen production by glycerol reforming in aqueous and gaseous phases. Energy Conversion and Management, 2020, 225, 113483.	9.2	37
12	Pt nanoparticles decorated Bi-doped TiO2 as an efficient photocatalyst for CO2 photo-reduction into CH4. Solar Energy, 2020, 211, 100-110.	6.1	58
13	Desulfurization of high sulfur petroleum coke by molten caustic leaching. Egyptian Journal of Petroleum, 2019, 28, 225-231.	2.6	4
14	Simulation of Methanol Carbonylation Reactor in Acetic Acid Production Plant: Selection of an Appropriate Correlation for Mass Transfer Coefficients. International Journal of Chemical Reactor Engineering, 2019, 17, .	1.1	1
15	Renewable hydrogen production over $Pt/Ala_{,,}Oa_{,f}$ nano-catalysts: Effect of M-promoting (M=Pd, Rh, Re, Ru,) Tj E	TQ9] 10	.784314 rg8⊤
16	Synthesis of Highly Dispersed Nanosized NiO/MgO-Al ₂ O ₃ Catalyst for the Production of Synthetic Natural Gas with Enhanced Activity and Resistance to Coke Formation. Industrial & Engineering Chemistry Research, 2018, 57, 12700-12714.	3.7	12
17	Renewable hydrogen production by ethylene glycol steam reforming over Al2O3 supported Ni-Pt bimetallic nano-catalysts. Renewable Energy, 2018, 128, 188-199.	8.9	45
18	Oxidation of toluene in humid air by metal oxides supported on \hat{I}^3 -alumina. Journal of Hazardous Materials, 2017, 333, 293-307.	12.4	27

#	Article	IF	CITATIONS
19	Transesterification of canola oil and methanol by lithium impregnated CaO–La 2 O 3 mixed oxide for biodiesel synthesis. Journal of Industrial and Engineering Chemistry, 2017, 47, 399-404.	5.8	40
20	Removal of benzoic acid from industrial wastewater using metal organic frameworks: equilibrium, kinetic and thermodynamic study. Journal of Porous Materials, 2017, 24, 165-178.	2.6	20
21	Kinetic modelling of enzymatic biodiesel production from castor oil: Temperature dependence of the Ping Pong parameters. Canadian Journal of Chemical Engineering, 2016, 94, 512-517.	1.7	15
22	Preparation and study of bi-supported Ziegler-Natta catalyst with nano graphene oxide and magnesium ethoxide supports for polymerization of polyethylene. Polymer Science - Series B, 2016, 58, 271-277.	0.8	5
23	Highly selective doped PtMgO nano-sheets for renewable hydrogen production from APR of glycerol. International Journal of Hydrogen Energy, 2016, 41, 17390-17398.	7.1	24
24	Improvement of the Thermal Cracking Product Quality of Heavy Vacuum Residue Using Solvent Deasphalting Pretreatment. Energy & Energy & 2016, 30, 10322-10329.	5.1	15
25	Aqueous phase reforming of glycerol using highly active and stable Pt0.05CexZr0.95-xO2 ternary solid solution catalysts. Applied Catalysis A: General, 2016, 523, 230-240.	4.3	28
26	Hydrogenation of crude terephthalic acid by supported Pd and Pd–Sn catalysts on functionalized multiwall carbon nanotubes. Chemical Engineering Research and Design, 2016, 109, 41-52.	5.6	9
27	Kinetic Modeling of Thermal Hydrocracking of a Paraffinic Feedstock. Energy & Energy	5.1	0
28	Modeling-based optimization of a fixed-bed industrial reactor for oxidative dehydrogenation of propane. Chinese Journal of Chemical Engineering, 2016, 24, 612-622.	3.5	34
29	Studies on the catalyst preparation methods and kinetic behavior of supported cobalt catalysts forÂthe complete oxidation of cyclohexane. Reaction Kinetics, Mechanisms and Catalysis, 2015, 114, 611-628.	1.7	14
30	Supported copper and cobalt oxides on activated carbon for simultaneous oxidation of toluene and cyclohexane in air. RSC Advances, 2015, 5, 5107-5122.	3.6	44
31	Hydro-purification of crude terephthalic acid using palladium catalyst supported on multi-wall carbon nanotubes. Journal of Industrial and Engineering Chemistry, 2015, 28, 202-210.	5.8	15
32	Preparation, characterization and kinetic behavior of supported copper oxide catalysts on almond shell-based activated carbon for oxidation of toluene in air. Journal of Porous Materials, 2015, 22, 101-118.	2.6	22
33	Effect of Operating Conditions and Additives on the Product Yield and Sulfur Content in Thermal Cracking of a Vacuum Residue from the Abadan Refinery. Energy & Samp; Fuels, 2015, 29, 5452-5457.	5.1	12
34	Effects of nano graphene oxide as support on the product properties and performance of Ziegler–Natta catalyst in production of UHMWPE. Polymers for Advanced Technologies, 2015, 26, 315-321.	3.2	24
35	Prediction of Henry's constant in polymer solutions using PCOR equation of state coupled with an activity coefficient model. Chinese Journal of Chemical Engineering, 2015, 23, 528-535.	3.5	1
36	Morphological investigations of nanostructured V ₂ O ₅ over graphene used for the ODHP reaction: from synthesis to physiochemical evaluations. Catalysis Science and Technology, 2015, 5, 910-924.	4.1	54

3

#	Article	IF	CITATIONS
37	Kinetic modeling of oxidative dehydrogenation of propane (ODHP) over a vanadium–graphene catalyst: Application of the DOE and ANN methodologies. Journal of Industrial and Engineering Chemistry, 2014, 20, 2236-2247.	5.8	50
38	A new approach to estimate parameters of a lumped kinetic model for hydroconversion of heavy residue. Fuel, 2014, 134, 343-353.	6.4	27
39	Neural network modeling the effect of oxygenate additives on the performance of Pt–Sn/γ-Al2O3 catalyst in propane dehydrogenation. Applied Petrochemical Research, 2013, 3, 47-54.	1.3	34
40	Application of multi-criterion robust optimization in water-flooding of oil reservoir. Journal of Petroleum Science and Engineering, 2013, 109, 1-11.	4.2	63
41	Investigating the effect of calcination repetitions on the lifetime of $Co\hat{l}^3$ -Al2O3 catalysts in Fischerâ \in "Tropsch synthesis utilising the precursor's solution affinities. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44, 205-213.	5.3	8
42	Modeling of Pt-Sn/ \hat{I}^3 -Al2O3 deactivation in propane dehydrogenation with oxygenated additives. Korean Journal of Chemical Engineering, 2013, 30, 55-61.	2.7	19
43	Vanadium Pentoxide Catalyst over Carbon-Based Nanomaterials for the Oxidative Dehydrogenation of Propane. Industrial &	3.7	42
44	Effect of lanthanum doping on the lifetime of $Co\hat{l}^3$ -Al2O3 catalysts in Fischer-Tropsch synthesis. Journal of the Taiwan Institute of Chemical Engineers, 2012, 43, 704-710.	5.3	16
45	Cobalt supported on CNTs-covered \hat{I}^3 - and nano-structured alumina catalysts utilized for wax selective Fischer-Tropsch synthesis. Journal of Natural Gas Chemistry, 2012, 21, 713-721.	1.8	8
46	Thermal Degradation Behavior and Kinetic Analysis of Ultra High Molecular Weight Polyethylene Based Multi-Walled Carbon Nanotube Nanocomposites Prepared Via <i>in-situ</i> Polymerization. Journal of Macromolecular Science - Pure and Applied Chemistry, 2012, 49, 749-757.	2.2	12
47	Kinetic modeling of propane dehydrogenation over an industrial catalyst in the presence of oxygenated compounds. Reaction Kinetics, Mechanisms and Catalysis, 2012, 107, 141-155.	1.7	36
48	Simulation of activity loss of fixed bed catalytic reactor of MTO conversion using percolation theory. Chemical Engineering Science, 2011, 66, 6199-6208.	3.8	17
49	Equilibrium modeling of xylene adsorption on molecular sieves. Fluid Phase Equilibria, 2010, 298, 54-59.	2.5	9
50	Effect of heating profile on desorption curve in temperature programmed desorption analysis: case study of acid sites distribution of SAPO-34. Journal of Porous Materials, 2009, 16, 599-603.	2.6	6
51	Kinetic modeling of pyrolysis of scrap tires. Journal of Analytical and Applied Pyrolysis, 2009, 84, 157-164.	5. 5	22
52	Effect of SAPO-34's composition on its physico-chemical properties and deactivation in MTO process. Applied Catalysis A: General, 2009, 364, 48-56.	4.3	137
53	A Monte Carlo simulation of nutrient diffusion and reaction in immobilized cell systems. Chemical Physics, 2006, 321, 34-40.	1.9	2
54	Dependency of gastrointestinal toxicity on release rate of tiaprofenic acid: a novel pharmacokinetic-pharmacodynamic model. Pharmaceutical Research, 1999, 16, 123-129.	3.5	6

#	Article	IF	CITATIONS
55	Computer generation of representative molecules for heavy hydrocarbon mixtures. Fuel, 1998, 77, 247-253.	6.4	22
56	Mechanism Discrimination in Heterogeneous Catalytic Reactions: Â Fractal Analysis. Industrial & Engineering Chemistry Research, 1998, 37, 362-366.	3.7	6
57	Thermal Hydrocracking of n-Hexadecane in Benzene. Energy & Samp; Fuels, 1994, 8, 507-512.	5.1	1
58	High-pressure thermal cracking of n-hexadecane. Industrial & Engineering Chemistry Research, 1993, 32, 1853-1863.	3.7	76
59	High-pressure thermal cracking of n-hexadecane in aromatic solvents. Industrial & Engineering Chemistry Research, 1993, 32, 1864-1876.	3.7	35
60	High-pressure thermal cracking of n-hexadecane in Tetralin. Energy & Samp; Fuels, 1993, 7, 960-967.	5.1	29
61	Role of catalyst in hydrocracking of residues from Alberta bitumens. Energy & Energy	5.1	28
62	Correlation of reactivity with chemical structure: Thermal hydrogenation of gas oils. Canadian Journal of Chemical Engineering, 1989, 67, 628-634.	1.7	0
63	Methods for prediction of Kov $ ilde{A}_i$ ts retention indices of hydrocarbons. Journal of Separation Science, 1989, 1, 174-181.	1.0	0
64	Correlation for kov \tilde{A}_i ts retention index of C9 \hat{i} —,C26 mono-alkyl and polymethyl alkanes and alkenes. Journal of Chromatography A, 1989, 481, 1-16.	3.7	22
65	Interactions between thermal and catalytic reactions in mild hydrocracking of gas oil. Energy & Fuels, 1989, 3, 716-722.	5.1	25
66	Nanomaterial-assisted pyrolysis of used lubricating oil and fuel recovery. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-15.	2.3	4