Renata Ivanek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/645169/publications.pdf

Version: 2024-02-01

85 papers 2,388 citations

172457 29 h-index 233421 45 g-index

88 all docs 88 docs citations

88 times ranked 2540 citing authors

#	Article	IF	CITATIONS
1	Risk Factors for Microbial Contamination in Fruits and Vegetables at the Preharvest Level: A Systematic Review. Journal of Food Protection, 2012, 75, 2055-2081.	1.7	163
2	Effect of a multi-species synbiotic formulation on fecal bacterial microbiota of healthy cats and dogs as evaluated by pyrosequencing. FEMS Microbiology Ecology, 2011, 78, 542-554.	2.7	116
3	Listeria monocytogenesin Multiple Habitats and Host Populations: Review of Available Data for Mathematical Modeling. Foodborne Pathogens and Disease, 2006, 3, 319-336.	1.8	105
4	Reproduction numbers for infections with free-living pathogens growing in the environment. Journal of Biological Dynamics, 2012, 6, 923-940.	1.7	96
5	Generic Escherichia coli Contamination of Spinach at the Preharvest Stage: Effects of Farm Management and Environmental Factors. Applied and Environmental Microbiology, 2013, 79, 4347-4358.	3.1	93
6	Temperature-Dependent Expression of Listeria monocytogenes Internalin and Internalin-Like Genes Suggests Functional Diversity of These Proteins among the Listeriae. Applied and Environmental Microbiology, 2007, 73, 2806-2814.	3.1	72
7	Quantitative Risk Assessment of Listeriosis-Associated Deaths Due to Listeria monocytogenes Contamination of Deli Meats Originating from Manufacture and Retail. Journal of Food Protection, 2010, 73, 620-630.	1.7	71
8	Listeria monocytogenes fecal shedding in dairy cattle shows high levels of day-to-day variation and includes outbreaks and sporadic cases of shedding of specific L. monocytogenes subtypes. Preventive Veterinary Medicine, 2007, 80, 287-305.	1.9	68
9	The Cost and Benefit ofListeria MonocytogenesFood Safety Measures. Critical Reviews in Food Science and Nutrition, 2005, 44, 513-523.	10.3	66
10	Estimating the Non-Monetary Burden of Neurocysticercosis in Mexico. PLoS Neglected Tropical Diseases, 2012, 6, e1521.	3.0	61
11	Quantitative Risk Assessment for Listeria monocytogenes in Selected Categories of Deli Meats: Impact of Lactate and Diacetate on Listeriosis Cases and Deaths. Journal of Food Protection, 2009, 72, 978-989.	1.7	60
12	Complex Interactions Between Weather, and Microbial and Physicochemical Water Quality Impact the Likelihood of Detecting Foodborne Pathogens in Agricultural Water. Frontiers in Microbiology, 2020, 11, 134.	3.5	57
13	Assessment of microbial risk factors and impact of meteorological conditions during production of baby spinach in the Southeast of Spain. Food Microbiology, 2015, 49, 173-181.	4.2	56
14	Modeling of Spatially Referenced Environmental and Meteorological Factors Influencing the Probability of <i>Listeria </i> Species Isolation from Natural Environments. Applied and Environmental Microbiology, 2009, 75, 5893-5909.	3.1	53
15	Modeling the effect of seasonal variation in ambient temperature on the transmission dynamics of a pathogen with a free-living stage: Example of Escherichia coli O157:H7 in a dairy herd. Preventive Veterinary Medicine, 2011, 102, 10-21.	1.9	45
16	New York State dairy farmers' perceptions of antibiotic use and resistance: A qualitative interview study. PLoS ONE, 2020, 15, e0232937.	2.5	42
17	Modeling On-Farm <i>Escherichia coli</i> O157:H7 Population Dynamics. Foodborne Pathogens and Disease, 2009, 6, 461-470.	1.8	39
18	Correlation between E.Âcoli levels and the presence of foodborne pathogens in surface irrigation water: Establishment of a sampling program. Water Research, 2018, 128, 226-233.	11.3	39

#	Article	IF	CITATIONS
19	Multifactorial Effects of Ambient Temperature, Precipitation, Farm Management, and Environmental Factors Determine the Level of Generic Escherichia coli Contamination on Preharvested Spinach. Applied and Environmental Microbiology, 2015, 81, 2635-2650.	3.1	38
20	Estimating the probability of an extinction or major outbreak for an environmentally transmitted infectious disease. Journal of Biological Dynamics, 2015, 9, 128-155.	1.7	37
21	Survival of Escherichia coli on Lettuce under Field Conditions Encountered in the Northeastern United States. Journal of Food Protection, 2017, 80, 1214-1221.	1.7	37
22	Design Elements of <i>Listeria</i> Environmental Monitoring Programs in Food Processing Facilities: A Scoping Review of Research and Guidance Materials. Comprehensive Reviews in Food Science and Food Safety, 2018, 17, 1156-1171.	11.7	35
23	Farm Management, Environment, and Weather Factors Jointly Affect the Probability of Spinach Contamination by Generic Escherichia coli at the Preharvest Stage. Applied and Environmental Microbiology, 2014, 80, 2504-2515.	3.1	34
24	Differential Regulation of <i>Listeria monocytogenes </i> li>Internalin and Internalin-Like Genes by $ f < \sup B as Revealed by Subgenomic Microarray Analyses. Foodborne Pathogens and Disease, 2008, 5, 417-435.$	1.8	32
25	Phylogenetic characterization of Escherichia coli O157 : H7 based on IS629 distribution and Shiga toxin genotype. Microbiology (United Kingdom), 2014, 160, 502-513.	1.8	32
26	Daily Variability of Listeria Contamination Patterns in a Cold-Smoked Salmon Processing Operation. Journal of Food Protection, 2006, 69, 2123-2133.	1.7	31
27	The effect of heterogeneous infectious period and contagiousness on the dynamics of <i>Salmonella </i> transmission in dairy cattle. Epidemiology and Infection, 2008, 136, 1496-1510.	2.1	31
28	Comparison of Public Health Impact of Listeria monocytogenes Product-to-Product and Environment-to-Product Contamination of Deli Meats at Retail. Journal of Food Protection, 2011, 74, 1860-1868.	1.7	31
29	Interobserver Agreement Using Histological Scoring of the Canine Liver. Journal of Veterinary Internal Medicine, 2017, 31, 778-783.	1.6	31
30	A Mathematical Model for the Transmission of Salmonella Typhimurium within a Grower-Finisher Pig Herd in Great Britain. Journal of Food Protection, 2004, 67, 2403-2409.	1.7	30
31	Mathematical Model of Listeria monocytogenes Cross-Contamination in a Fish Processing Plant. Journal of Food Protection, 2004, 67, 2688-2697.	1.7	30
32	Factors that contribute to persistent Listeria in food processing facilities and relevant interventions: A rapid review. Food Control, 2022, 133, 108579.	5.5	30
33	Quality of Life in Patients with Neurocysticercosis in Mexico. American Journal of Tropical Medicine and Hygiene, 2011, 84, 782-786.	1.4	28
34	Evolution of the Stx2-Encoding Prophage in Persistent Bovine Escherichia coli O157:H7 Strains. Applied and Environmental Microbiology, 2013, 79, 1563-1572.	3.1	28
35	EnABLe: An agent-based model to understand Listeria dynamics in food processing facilities. Scientific Reports, 2019, 9, 495.	3.3	27
36	Public perceptions of antibiotic use on dairy farms in the United States. Journal of Dairy Science, 2021, 104, 2807-2821.	3.4	27

#	Article	IF	CITATIONS
37	Model or meal? Farm animal populations as models for infectious diseases of humans. Nature Reviews Microbiology, 2010, 8, 139-148.	28.6	25
38	A high-throughput open-array qPCR gene panel to identify, virulotype, and subtype O157 and non-O157 enterohemorrhagic Escherichia coli. Molecular and Cellular Probes, 2011, 25, 222-230.	2.1	25
39	Salmonella Fecal Shedding and Immune Responses are Dose- and Serotype- Dependent in Pigs. PLoS ONE, 2012, 7, e34660.	2.5	24
40	Spatio-temporal epidemiology of Tritrichomonas foetus infection in Texas bulls based on state-wide diagnostic laboratory data. Veterinary Parasitology, 2012, 186, 450-455.	1.8	22
41	Identifying Areas of High Risk of Human Exposure to Coccidioidomycosis in Texas Using Serology Data from Dogs. Zoonoses and Public Health, 2013, 60, 174-181.	2.2	21
42	The prevalence of Escherichia coli O157:H7 fecal shedding in feedlot pens is affected by the water-to-cattle ratio: A randomized controlled trial. PLoS ONE, 2018, 13, e0192149.	2.5	20
43	Assessment of the Variation Associated with Repeated Measurement of Gastrointestinal Transit Times and Assessment of the Effect of Oral Ranitidine on Gastrointestinal Transit Times Using a Wireless Motility Capsule System in Dogs. Veterinary Medicine International, 2012, 2012, 1-8.	1.5	19
44	Survey of perceptions and attitudes of an international group of veterinarians regarding antibiotic use and resistance on dairy cattle farms. Preventive Veterinary Medicine, 2021, 188, 105253.	1.9	19
45	Markov chain approach to analyze the dynamics of pathogen fecal sheddingâ€"Example of Listeria monocytogenes shedding in a herd of dairy cattle. Journal of Theoretical Biology, 2007, 245, 44-58.	1.7	18
46	The risk and control of <i>Salmonella</i> outbreaks in calf-raising operations: a mathematical modeling approach. Veterinary Research, 2008, 39, 61.	3.0	17
47	Differences in Colonization and Shedding Patterns after Oral Challenge of Cattle with Three Escherichia coli O157:H7 Strains. Applied and Environmental Microbiology, 2012, 78, 8045-8055.	3.1	17
48	Effect of Weather on the Die-Off of Escherichia coli and Attenuated Salmonella enterica Serovar Typhimurium on Preharvest Leafy Greens following Irrigation with Contaminated Water. Applied and Environmental Microbiology, 2020, 86, .	3.1	17
49	Effectiveness of environmental decontamination as an infection control measure. Epidemiology and Infection, 2012, 140, 542-553.	2.1	16
50	A stochastic model for transmission, extinction and outbreak of Escherichia coli O157:H7 in cattle as affected by ambient temperature and cleaning practices. Journal of Mathematical Biology, 2014, 69, 501-532.	1.9	16
51	An Assessment of Listeriosis Risk Associated with a Contaminated Production Lot of Frozen Vegetables Consumed Under Alternative Consumer Handling Scenarios. Journal of Food Protection, 2019, 82, 2174-2193.	1.7	13
52	New York State dairy veterinarians' perceptions of antibiotic use and resistance: A qualitative interview study. Preventive Veterinary Medicine, 2021, 194, 105428.	1.9	13
53	The strain-specific dynamics of (i>Escherichia coli (/i>O157:H7 faecal shedding in cattle post inoculation. Journal of Biological Dynamics, 2012, 6, 1052-1066.	1.7	12
54	Re-emergence of Pigeon Fever (Corynebacterium pseudotuberculosis) Infection in Texas Horses: Epidemiologic Investigation of Laboratory-Diagnosed Cases. Journal of Equine Veterinary Science, 2014, 34, 281-287.	0.9	12

#	Article	IF	CITATIONS
55	Crossâ€Sectional Serosurvey of Avian Influenza Antibodies Presence in Domestic Ducks of <scp>K</scp> athmandu, <scp>N</scp> epal. Zoonoses and Public Health, 2014, 61, 442-448.	2.2	12
56	Understanding the role of cleaning in the control of Salmonella Typhimurium in grower-finisher pigs: a modelling approach. Epidemiology and Infection, 2014, 142, 1034-1049.	2.1	12
57	Transmission of Escherichia coli O157: H7 in cattle is influenced by the level of environmental contamination. Epidemiology and Infection, 2015, 143, 274-287.	2.1	12
58	Formation of Escherichia coli O157:H7 Persister Cells in the Lettuce Phyllosphere and Application of Differential Equation Models To Predict Their Prevalence on Lettuce Plants in the Field. Applied and Environmental Microbiology, 2020, 86, .	3.1	12
59	Consumer perceptions of antimicrobial use in animal husbandry: A scoping review. PLoS ONE, 2021, 16, e0261010.	2.5	12
60	Putative precipitating factors for hepatic encephalopathy in dogs: 118 cases (1991–2014). Journal of the American Veterinary Medical Association, 2015, 247, 176-183.	0.5	11
61	Development of a LAMP assay for rapid detection of different intimin variants of attaching and effacing microbial pathogens. Journal of Medical Microbiology, 2013, 62, 1665-1672.	1.8	10
62	Exploratory spatial analysis of Lyme disease in Texas $\hat{a}\in\text{``what can we learn from the reported cases?}$. BMC Public Health, 2015, 15, 924.	2.9	10
63	Foal-Level Risk Factors Associated With Development of Rhodococcus equi Pneumonia at a Quarter Horse Breeding Farm. Journal of Equine Veterinary Science, 2019, 72, 89-96.	0.9	9
64	Interacting Effects of Newcastle Disease Transmission and Illegal Trade on a Wild Population of White-Winged Parakeets in Peru: A Modeling Approach. PLoS ONE, 2016, 11, e0147517.	2.5	8
65	Cul o 2 specific IgG3/5 antibodies predicted Culicoides hypersensitivity in a group imported Icelandic horses. BMC Veterinary Research, 2020, 16, 283.	1.9	8
66	Cost–benefit analysis of avian influenza control in Nepal. OIE Revue Scientifique Et Technique, 2015, 34, 813-827.	1.2	8
67	Environmental surveillance and adverse neonatal health outcomes in foals born near unconventional natural gas development activity. Science of the Total Environment, 2020, 731, 138497.	8.0	7
68	Editorial perspective: Viruses in wastewater: Wading into the knowns and unknowns. Environmental Research, 2021, 196, 110255.	7.5	7
69	<i>In Silico</i> Models for Design and Optimization of Science-Based <i>Listeria</i> Environmental Monitoring Programs in Fresh-Cut Produce Facilities. Applied and Environmental Microbiology, 2021, 87, e0079921.	3.1	7
70	Using agent-based modeling to compare corrective actions for Listeria contamination in produce packinghouses. PLoS ONE, 2022, 17, e0265251.	2.5	6
71	Fecal shedding of, antimicrobial resistance in, and serologic response to Salmonella Typhimurium in dairy calves. Journal of the American Veterinary Medical Association, 2009, 235, 739-748.	0.5	5
72	From the bench to modeling – RO at the interface between empirical and theoretical approaches in epidemiology of environmentally transmitted infectious diseases. Preventive Veterinary Medicine, 2015, 118, 196-206.	1.9	5

#	Article	IF	CITATIONS
73	How does public perception of antibiotic use on dairy farms contribute to selfâ€reported purchasing of organic?. Journal of Food Science, 2021, 86, 2045-2060.	3.1	5
74	Public health impact of foodborne exposure to naturally occurring virulence-attenuated Listeria monocytogenes: inference from mouse and mathematical models. Interface Focus, 2020, 10, 20190046.	3.0	4
75	Comparison of different biomass methodologies to adjust sales data on veterinary antimicrobials in the USA. Journal of Antimicrobial Chemotherapy, 2022, 77, 827-842.	3.0	4
76	Extreme value theory in analysis of differential expression in microarrays where either only up- or down-regulated genes are relevant or expected. Genetical Research, 2008, 90, 347-361.	0.9	3
77	How University Researchers Can Contribute to Farm-to-Table Risk Assessments: <i>Listeria monocytogenes </i> as an Example. Foodborne Pathogens and Disease, 2007, 4, 527-537.	1.8	2
78	Gene markers of generic Escherichia coli associated with colonization and persistence of Escherichia coli O157 in cattle. Preventive Veterinary Medicine, 2014, 117, 140-148.	1.9	2
79	Optimal levels of inputs to controlListeria monocytogenes contamination at a smoked fish plant. Agribusiness, 2007, 23, 229-244.	3.4	1
80	Understanding the effects of intermittent shedding on the transmission of infectious diseases: example of salmonellosis in pigs. Journal of Biological Dynamics, 2017, 11, 436-460.	1.7	1
81	Geographical Information Systems: A Tool to Map and Analyze Disease Spread. Online Journal of Public Health Informatics, 2013, 5, .	0.7	1
82	The distribution of drinking water-to-cattle ratios in the summer across four feedlots in the Texas High Plains. Agricultural Sciences, 2013, 04, 282-286.	0.3	1
83	Growth and survival of aerobic and Gram-negative bacteria on fresh spinach in a Chinese supply chain from harvest through distribution and refrigerated storage. International Journal of Food Microbiology, 2022, 370, 109639.	4.7	1
84	The effect of neonatal dysphagia on subsequent racing performance in Standardbred horses. Equine Veterinary Journal, 2021, 53, 481-487.	1.7	0
85	Predictors of Willingness to Reduce Carbon Footprint and Effects of Survey Question Phrasing. Journal of Student Research, 2020, 9, .	0.1	O