List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6451386/publications.pdf Version: 2024-02-01

7HIIIAN I CHEN

#	Article	IF	CITATIONS
1	TBK1 recruitment to STING mediates autoinflammatory arthritis caused by defective DNA clearance. Journal of Experimental Medicine, 2022, 219, .	4.2	18
2	Liquid phase separation of NEMO induced by polyubiquitin chains activates NF-κB. Molecular Cell, 2022, 82, 2415-2426.e5.	4.5	45
3	Epigenetic Repression of STING by MYC Promotes Immune Evasion and Resistance to Immune Checkpoint Inhibitors in Triple-Negative Breast Cancer. Cancer Immunology Research, 2022, 10, 829-843.	1.6	12
4	Nuclear speckle integrity and function require TAO2 kinase. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	2
5	MLH1 Deficiency-Triggered DNA Hyperexcision by Exonuclease 1 Activates the cGAS-STING Pathway. Cancer Cell, 2021, 39, 109-121.e5.	7.7	108
6	Nsp1 protein of SARS-CoV-2 disrupts the mRNA export machinery to inhibit host gene expression. Science Advances, 2021, 7, .	4.7	154
7	TBK1 recruitment to STING activates both IRF3 and NF-κB that mediate immune defense against tumors and viral infections. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	213
8	Phosphorylation and chromatin tethering prevent cGAS activation during mitosis. Science, 2021, 371, .	6.0	123
9	cGAS restricts colon cancer development by protecting intestinal barrier integrity. Proceedings of the United States of America, 2021, 118, .	3.3	31
10	Cooperative DNA binding mediated by KicGAS/ORF52 oligomerization allows inhibition of DNA-induced phase separation and activation of cGAS. Nucleic Acids Research, 2021, 49, 9389-9403.	6.5	22
11	Discovery of Small-Molecule Cyclic GMP-AMP Synthase Inhibitors. Journal of Organic Chemistry, 2020, 85, 1579-1600.	1.7	48
12	cGAS suppresses genomic instability as a decelerator of replication forks. Science Advances, 2020, 6, .	4.7	79
13	STEEP mediates STING ER exit and activation of signaling. Nature Immunology, 2020, 21, 868-879.	7.0	82
14	Structures and Mechanisms in the cGAS-STING Innate Immunity Pathway. Immunity, 2020, 53, 43-53.	6.6	325
15	P857â€ONM-500 – a novel STING-activating therapeutic nanovaccine platform for cancer immunotherapy. , 2020, , .		1
16	Type I Interferon Response in Radiation-Induced Anti-Tumor Immunity. Seminars in Radiation Oncology, 2020, 30, 129-138.	1.0	27
17	Old dogs, new trick: classic cancer therapies activate cGAS. Cell Research, 2020, 30, 639-648.	5.7	104

13.7 5

#	Article	IF	CITATIONS
19	Roles of the cGAS-STING Pathway in Cancer Immunosurveillance and Immunotherapy. Annual Review of Cancer Biology, 2019, 3, 323-344.	2.3	69
20	Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP–AMP. Nature, 2019, 567, 389-393.	13.7	392
21	Structural basis of STING binding with and phosphorylation by TBK1. Nature, 2019, 567, 394-398.	13.7	540
22	Autophagy induction via STING trafficking is a primordial function of the cGAS pathway. Nature, 2019, 567, 262-266.	13.7	717
23	cGAS in action: Expanding roles in immunity and inflammation. Science, 2019, 363, .	6.0	602
24	The cGAS–cGAMP–STING pathway connects DNA damage to inflammation, senescence, and cancer. Journal of Experimental Medicine, 2018, 215, 1287-1299.	4.2	786
25	A GTPase-activating protein–binding protein (G3BP1)/antiviral protein relay conveys arteriosclerotic Wnt signals in aortic smooth muscle cells. Journal of Biological Chemistry, 2018, 293, 7942-7968.	1.6	24
26	Cytosolic DNA Sensing Promotes Macrophage Transformation and Governs Myocardial Ischemic Injury. Circulation, 2018, 137, 2613-2634.	1.6	136
27	Ptdlns4P on dispersed trans-Golgi network mediates NLRP3 inflammasome activation. Nature, 2018, 564, 71-76.	13.7	423
28	Structural–functional interactions of NS1-BP protein with the splicing and mRNA export machineries for viral and host gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E12218-E12227.	3.3	21
29	Consensus report of the 8 and 9th Weinman Symposia on Gene x Environment Interaction in carcinogenesis: novel opportunities for precision medicine. Cell Death and Differentiation, 2018, 25, 1885-1904.	5.0	31
30	Detection of Microbial Infections Through Innate Immune Sensing of Nucleic Acids. Annual Review of Microbiology, 2018, 72, 447-478.	2.9	336
31	DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science, 2018, 361, 704-709.	6.0	615
32	BHLHE40, a third transcription factor required for insulin induction of SREBP-1c mRNA in rodent liver. ELife, 2018, 7, .	2.8	18
33	An Argonaute phosphorylation cycle promotes microRNA-mediated silencing. Nature, 2017, 542, 197-202.	13.7	232
34	cGAS is essential for the antitumor effect of immune checkpoint blockade. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1637-1642.	3.3	394
35	TLR sensing of bacterial spore-associated RNA triggers host immune responses with detrimental effects. Journal of Experimental Medicine, 2017, 214, 1297-1311.	4.2	33
36	A STING-activating nanovaccine for cancer immunotherapy. Nature Nanotechnology, 2017, 12, 648-654.	15.6	649

#	Article	IF	CITATIONS
37	cGAS is essential for cellular senescence. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4612-E4620.	3.3	681
38	Synthetic nanovaccines for immunotherapy. Journal of Controlled Release, 2017, 263, 200-210.	4.8	88
39	Innate Immune Activation by cGMP-AMP Nanoparticles Leads to Potent and Long-Acting Antiretroviral Response against HIV-1. Journal of Immunology, 2017, 199, 3840-3848.	0.4	39
40	STING Senses Microbial Viability to Orchestrate Stress-Mediated Autophagy of the Endoplasmic Reticulum. Cell, 2017, 171, 809-823.e13.	13.5	248
41	Dendritic Cells but Not Macrophages Sense Tumor Mitochondrial DNA for Cross-priming through Signal Regulatory Protein α Signaling. Immunity, 2017, 47, 363-373.e5.	6.6	209
42	Neddylation E2 UBE2F Promotes the Survival of Lung Cancer Cells by Activating CRL5 to Degrade NOXA via the K11 Linkage. Clinical Cancer Research, 2017, 23, 1104-1116.	3.2	88
43	Prion-Like Polymerization in Immunity and Inflammation. Cold Spring Harbor Perspectives in Biology, 2017, 9, a023580.	2.3	44
44	Influenza virus differentially activates mTORC1 and mTORC2 signaling to maximize late stage replication. PLoS Pathogens, 2017, 13, e1006635.	2.1	74
45	Regulation and function of the cGAS–STING pathway of cytosolic DNA sensing. Nature Immunology, 2016, 17, 1142-1149.	7.0	1,379
46	<scp>HSV</scp> â€1 <scp>ICP</scp> 27 targets the <scp>TBK</scp> 1â€activated STING signalsome to inhibit virusâ€induced type I <scp>IFN</scp> Âexpression. EMBO Journal, 2016, 35, 1385-1399.	3.5	173
47	K63-Ubiquitylation and TRAF6 Pathways Regulate Mammalian P-Body Formation and mRNA Decapping. Molecular Cell, 2016, 62, 943-957.	4.5	35
48	Streptococci Engage TLR13 on Myeloid Cells in a Site-Specific Fashion. Journal of Immunology, 2016, 196, 2733-2741.	0.4	20
49	Innate Immune Response to Streptococcus pyogenes Depends on the Combined Activation of TLR13 and TLR2. PLoS ONE, 2015, 10, e0119727.	1.1	37
50	Cyclic GMP-AMP Synthase Is an Innate Immune DNA Sensor for Mycobacterium tuberculosis. Cell Host and Microbe, 2015, 17, 820-828.	5.1	327
51	Editorial overview: Innate immunity. Current Opinion in Immunology, 2015, 32, v-vi.	2.4	0
52	Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science, 2015, 347, aaa2630.	6.0	1,280
53	Molecular basis for the specific recognition of the metazoan cyclic GMP-AMP by the innate immune adaptor protein STING. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8947-8952.	3.3	64
54	Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5699-705.	3.3	497

#	Article	IF	CITATIONS
55	Modified Vaccinia Virus Ankara Triggers Type I IFN Production in Murine Conventional Dendritic Cells via a cGAS/STING-Mediated Cytosolic DNA-Sensing Pathway. PLoS Pathogens, 2014, 10, e1003989.	2.1	148
56	Apoptotic Caspases Prevent the Induction of Type I Interferons by Mitochondrial DNA. Cell, 2014, 159, 1563-1577.	13.5	625
57	MAVS, cCAS, and endogenous retroviruses in T-independent B cell responses. Science, 2014, 346, 1486-1492.	6.0	105
58	STINC-Dependent Cytosolic DNA Sensing Promotes Radiation-Induced Type I Interferon-Dependent Antitumor Immunity in Immunogenic Tumors. Immunity, 2014, 41, 843-852.	6.6	1,468
59	Prion-like polymerization as a signaling mechanism. Trends in Immunology, 2014, 35, 622-630.	2.9	31
60	IKKβ is an IRF5 kinase that instigates inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17438-17443.	3.3	84
61	Pivotal role for the ubiquitin Y59-E51 loop in lysine 48 polyubiquitination. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8434-8439.	3.3	24
62	Prion-like Polymerization Underlies Signal Transduction in Antiviral Immune Defense and Inflammasome Activation. Cell, 2014, 156, 1207-1222.	13.5	489
63	Structural basis for ubiquitin-mediated antiviral signal activation by RIG-I. Nature, 2014, 509, 110-114.	13.7	284
64	The cGAS-cGAMP-STING Pathway of Cytosolic DNA Sensing and Signaling. Molecular Cell, 2014, 54, 289-296.	4.5	760
65	K33-Linked Polyubiquitination of Coronin 7 by Cul3-KLHL20ÂUbiquitin E3 Ligase Regulates Protein Trafficking. Molecular Cell, 2014, 54, 586-600.	4.5	129
66	Innate Immune Sensing and Signaling of Cytosolic Nucleic Acids. Annual Review of Immunology, 2014, 32, 461-488.	9.5	957
67	A Novel Mitochondrial MAVS/Caspase-8 Platform Links RNA Virus–Induced Innate Antiviral Signaling to Bax/Bak-Independent Apoptosis. Journal of Immunology, 2014, 192, 1171-1183.	0.4	70
68	The Cytosolic DNA Sensor cGAS Forms an Oligomeric Complex with DNA and Undergoes Switch-like Conformational Changes in the Activation Loop. Cell Reports, 2014, 6, 421-430.	2.9	351
69	A catalytic-independent role for the LUBAC in NF-κB activation upon antigen receptor engagement and in lymphoma cells. Blood, 2014, 123, 2199-2203.	0.6	105
70	Structural basis for the prion-like MAVS filaments in antiviral innate immunity. ELife, 2014, 3, e01489.	2.8	145
71	Pivotal Roles of cGAS-cGAMP Signaling in Antiviral Defense and Immune Adjuvant Effects. Science, 2013, 341, 1390-1394.	6.0	883
72	Cyclic GMP-AMP Synthase Is an Innate Immune Sensor of HIV and Other Retroviruses. Science, 2013, 341, 903-906.	6.0	837

#	Article	IF	CITATIONS
73	Regulation of NF-κB by ubiquitination. Current Opinion in Immunology, 2013, 25, 4-12.	2.4	222
74	Cyclic GMP-AMP Synthase Is a Cytosolic DNA Sensor That Activates the Type I Interferon Pathway. Science, 2013, 339, 786-791.	6.0	3,305
75	Cyclic GMP-AMP Is an Endogenous Second Messenger in Innate Immune Signaling by Cytosolic DNA. Science, 2013, 339, 826-830.	6.0	1,778
76	IKKε-Mediated Tumorigenesis Requires K63-Linked Polyubiquitination by a cIAP1/cIAP2/TRAF2 E3ÂUbiquitin Ligase Complex. Cell Reports, 2013, 3, 724-733.	2.9	56
77	Competing E3ÂUbiquitin Ligases Govern Circadian Periodicity by Degradation of CRY in Nucleus and Cytoplasm. Cell, 2013, 152, 1091-1105.	13.5	280
78	Cyclic GMP-AMP Containing Mixed Phosphodiester Linkages Is An Endogenous High-Affinity Ligand for STING. Molecular Cell, 2013, 51, 226-235.	4.5	819
79	Regulation of WASH-Dependent Actin Polymerization and Protein Trafficking by Ubiquitination. Cell, 2013, 152, 1051-1064.	13.5	201
80	RNA Helicase Signaling Is Critical for Type I Interferon Production and Protection against Rift Valley Fever Virus during Mucosal Challenge. Journal of Virology, 2013, 87, 4846-4860.	1.5	20
81	Both K63 and K48 ubiquitin linkages signal lysosomal degradation of the LDL receptor. Journal of Lipid Research, 2013, 54, 1410-1420.	2.0	46
82	MAVS recruits multiple ubiquitin E3 ligases to activate antiviral signaling cascades. ELife, 2013, 2, e00785.	2.8	282
83	Human Metapneumovirus M2-2 Protein Inhibits Innate Cellular Signaling by Targeting MAVS. Journal of Virology, 2012, 86, 13049-13061.	1.5	44
84	A20 Ubiquitin Ligase–Mediated Polyubiquitination of RIP1 Inhibits Caspase-8 Cleavage and TRAIL-Induced Apoptosis in Glioblastoma. Cancer Discovery, 2012, 2, 140-155.	7.7	104
85	Differential Roles for RIG-I–like Receptors and Nucleic Acid-Sensing TLR Pathways in Controlling a Chronic Viral Infection. Journal of Immunology, 2012, 188, 4432-4440.	0.4	26
86	STING Specifies IRF3 Phosphorylation by TBK1 in the Cytosolic DNA Signaling Pathway. Science Signaling, 2012, 5, ra20.	1.6	938
87	Structural insights into the activation of RIGâ€I, a nanosensor for viral RNAs. EMBO Reports, 2012, 13, 7-8.	2.0	25
88	Sequence specific detection of bacterial 23S ribosomal RNA by TLR13. ELife, 2012, 1, e00102.	2.8	116
89	Ubiquitin-Induced Oligomerization of the RNA Sensors RIG-I and MDA5 Activates Antiviral Innate Immune Response. Immunity, 2012, 36, 959-973.	6.6	337
90	Cyclic di-GMP Sensing via the Innate Immune Signaling Protein STING. Molecular Cell, 2012, 46, 735-745.	4.5	241

#	Article	IF	CITATIONS
91	Intrinsic antiviral immunity. Nature Immunology, 2012, 13, 214-222.	7.0	439
92	The role of ubiquitylation in immune defence and pathogen evasion. Nature Reviews Immunology, 2012, 12, 35-48.	10.6	286
93	Ubiquitination in signaling to and activation of IKK. Immunological Reviews, 2012, 246, 95-106.	2.8	340
94	Getting to grips with hepatitis. ELife, 2012, 1, e00301.	2.8	7
95	Blood Vessel Tubulogenesis Requires Rasip1 Regulation of GTPase Signaling. Developmental Cell, 2011, 20, 526-539.	3.1	148
96	Direct, Noncatalytic Mechanism of IKK Inhibition by A20. Molecular Cell, 2011, 44, 559-571.	4.5	222
97	Cc2d1a, a C2 domain containing protein linked to nonsyndromic mental retardation, controls functional maturation of central synapses. Journal of Neurophysiology, 2011, 105, 1506-1515.	0.9	31
98	Expanding role of ubiquitination in NF- $\hat{I}^{\circ}B$ signaling. Cell Research, 2011, 21, 6-21.	5.7	217
99	MAVS Forms Functional Prion-like Aggregates to Activate and Propagate Antiviral Innate Immune Response. Cell, 2011, 146, 448-461.	13.5	1,018
100	NLRX1 Negatively Regulates TLR-Induced NF-κB Signaling by Targeting TRAF6 and IKK. Immunity, 2011, 34, 843-853.	6.6	241
101	Viperin Links Lipid Bodies to Immune Defense. Immunity, 2011, 34, 285-287.	6.6	21
102	Persistent Stimulation with Interleukin-17 Desensitizes Cells Through SCF ^{β-TrCP} -Mediated Degradation of Act1. Science Signaling, 2011, 4, ra73.	1.6	44
103	Mitochondrial antiviral signaling protein (MAVS) monitors commensal bacteria and induces an immune response that prevents experimental colitis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17390-17395.	3.3	80
104	HSV Infection Induces Production of ROS, which Potentiate Signaling from Pattern Recognition Receptors: Role for S-glutathionylation of TRAF3 and 6. PLoS Pathogens, 2011, 7, e1002250.	2.1	107
105	CC2D1A, a DM14 and C2 Domain Protein, Activates NF-κB through the Canonical Pathway. Journal of Biological Chemistry, 2010, 285, 24372-24380.	1.6	32
106	Murine Gamma-Herpesvirus 68 Hijacks MAVS and IKKβ to Initiate Lytic Replication. PLoS Pathogens, 2010, 6, e1001001.	2.1	57
107	ATM- and NEMO-Dependent ELKS Ubiquitination Coordinates TAK1-Mediated IKK Activation inÂResponse to Genotoxic Stress. Molecular Cell, 2010, 40, 75-86.	4.5	184
108	SnapShot: Pathways of Antiviral Innate Immunity. Cell, 2010, 140, 436-436.e2.	13.5	65

#	Article	IF	CITATIONS
109	Reconstitution of the RIG-I Pathway Reveals a Signaling Role of Unanchored Polyubiquitin Chains in Innate Immunity. Cell, 2010, 141, 315-330.	13.5	521
110	NLRC5 Negatively Regulates the NF-κB and Type I Interferon Signaling Pathways. Cell, 2010, 141, 483-496.	13.5	365
111	Peroxisomes Are Signaling Platforms for Antiviral Innate Immunity. Cell, 2010, 141, 668-681.	13.5	717
112	Emerging Role of ISG15 in Antiviral Immunity. Cell, 2010, 143, 187-190.	13.5	184
113	Endocytic pathway is required for <i>Drosophila</i> Toll innate immune signaling. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8322-8327.	3.3	74
114	Ubiquitin-Mediated Regulation of Protein Kinases in NFκB Signaling. , 2010, , 633-644.		0
115	MAVS-Mediated Apoptosis and Its Inhibition by Viral Proteins. PLoS ONE, 2009, 4, e5466.	1.1	177
116	Herpes simplex virus infection is sensed by both Toll-like receptors and retinoic acid-inducible gene- like receptors, which synergize to induce type I interferon production. Journal of General Virology, 2009, 90, 74-78.	1.3	106
117	Act1, a U-box E3 Ubiquitin Ligase for IL-17 Signaling. Science Signaling, 2009, 2, ra63.	1.6	179
118	Ubiquitylation in innate and adaptive immunity. Nature, 2009, 458, 430-437.	13.7	535
119	Direct activation of protein kinases by unanchored polyubiquitin chains. Nature, 2009, 461, 114-119.	13.7	487
120	The Role of Ubiquitin in NF-κB Regulatory Pathways. Annual Review of Biochemistry, 2009, 78, 769-796.	5.0	447
121	Ubiquitin in NF-κB Signaling. Chemical Reviews, 2009, 109, 1549-1560.	23.0	57
122	Diversity of Polyubiquitin Chains. Developmental Cell, 2009, 16, 485-486.	3.1	59
123	RNA Polymerase III Detects Cytosolic DNA and Induces Type I Interferons through the RIG-I Pathway. Cell, 2009, 138, 576-591.	13.5	1,026
124	Nonproteolytic Functions of Ubiquitin in Cell Signaling. Molecular Cell, 2009, 33, 275-286.	4.5	783
125	Key Role of Ubc5 and Lysine-63 Polyubiquitination in Viral Activation of IRF3. Molecular Cell, 2009, 36, 315-325.	4.5	149
126	A Ubiquitin Replacement Strategy in Human Cells Reveals Distinct Mechanisms of IKK Activation by TNFα and IL-1β. Molecular Cell, 2009, 36, 302-314.	4.5	224

#	Article	IF	CITATIONS
127	A host type I interferon response is induced by cytosolic sensing of the bacterial second messenger cyclic-di-GMP. Journal of Experimental Medicine, 2009, 206, 1899-1911.	4.2	267
128	A critical role of TAK1 in B-cell receptor–mediated nuclear factor κB activation. Blood, 2009, 113, 4566-4574.	0.6	75
129	NLRX1 is a regulator of mitochondrial antiviral immunity. Nature, 2008, 451, 573-577.	13.7	501
130	T cell antigen receptor stimulation induces MALT1 paracaspase–mediated cleavage of the NF-κB inhibitor A20. Nature Immunology, 2008, 9, 263-271.	7.0	409
131	MITAgating Viral Infection. Immunity, 2008, 29, 513-515.	6.6	18
132	Linking Retroelements to Autoimmunity. Cell, 2008, 134, 569-571.	13.5	25
133	Pellino 3b Negatively Regulates Interleukin-1-induced TAK1-dependent NFήB Activation. Journal of Biological Chemistry, 2008, 283, 14654-14664.	1.6	41
134	MAVS and MyD88 are essential for innate immunity but not cytotoxic T lymphocyte response against respiratory syncytial virus. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14046-14051.	3.3	135
135	Vaccinia Virus Subverts a Mitochondrial Antiviral Signaling Protein-Dependent Innate Immune Response in Keratinocytes through Its Double-Stranded RNA Binding Protein, E3. Journal of Virology, 2008, 82, 10735-10746.	1.5	49
136	Cigarette smoke selectively enhances viral PAMP– and virus-induced pulmonary innate immune and remodeling responses in mice. Journal of Clinical Investigation, 2008, 118, 2771-84.	3.9	194
137	Type I Interferon Production during Herpes Simplex Virus Infection Is Controlled by Cell-Type-Specific Viral Recognition through Toll-Like Receptor 9, the Mitochondrial Antiviral Signaling Protein Pathway, and Novel Recognition Systems. Journal of Virology, 2007, 81, 13315-13324.	1.5	145
138	E1-L2 Activates Both Ubiquitin and FAT10. Molecular Cell, 2007, 27, 1014-1023.	4.5	158
139	Ubiquitin-mediated activation of TAK1 and IKK. Oncogene, 2007, 26, 3214-3226.	2.6	394
140	Smads keep TABs on inflammation. Nature Immunology, 2007, 8, 477-478.	7.0	5
141	TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature, 2007, 446, 916-920.	13.7	1,405
142	Ubiquitination and TRAF signaling. , 2007, 597, 80-92.		50
143	Sorting out Toll Signals. Cell, 2006, 125, 834-836.	13.5	88
144	Activation of IKK by TNFα Requires Site-Specific Ubiquitination of RIP1 and Polyubiquitin Binding by NEMO. Molecular Cell, 2006, 22, 245-257.	4.5	911

#	Article	IF	CITATIONS
145	Cecile M. Pickart (1954–2006). Molecular Cell, 2006, 22, 571-573.	4.5	Ο
146	The Specific and Essential Role of MAVS in Antiviral Innate Immune Responses. Immunity, 2006, 24, 633-642.	6.6	550
147	Antiviral innate immunity pathways. Cell Research, 2006, 16, 141-147.	5.7	401
148	Essential role of TAK1 in thymocyte development and activation. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11677-11682.	3.3	140
149	Ubiquitin signalling in the NF-κB pathway. Nature Cell Biology, 2005, 7, 758-765.	4.6	1,092
150	The Role of Ubiquitination in Drosophila Innate Immunity. Journal of Biological Chemistry, 2005, 280, 34048-34055.	1.6	116
151	CELL BIOLOGY: Kinasing and Clipping Down the NF-Â B Trail. Science, 2005, 308, 65-66.	6.0	30
152	TRAF2: A Double-Edged Sword?. Science Signaling, 2005, 2005, pe7-pe7.	1.6	60
153	Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17717-17722.	3.3	744
154	Protein Ubiquitination: CHIPping Away the Symmetry. Molecular Cell, 2005, 20, 653-655.	4.5	17
155	Identification and Characterization of MAVS, a Mitochondrial Antiviral Signaling Protein that Activates NF-κB and IRF3. Cell, 2005, 122, 669-682.	13.5	2,839
156	Ubiquitin-Dependent Activation of NF-kappaB: K63-Linked Ubiquitin Chains—a Link to Cancer?. Cancer Biology and Therapy, 2004, 3, 286-288.	1.5	12
157	Elucidation of the c-Jun N-Terminal Kinase Pathway Mediated by Epstein-Barr Virus-Encoded Latent Membrane Protein 1. Molecular and Cellular Biology, 2004, 24, 192-199.	1.1	70
158	TIFA activates IÂB kinase (IKK) by promoting oligomerization and ubiquitination of TRAF6. Proceedings of the United States of America, 2004, 101, 15318-15323.	3.3	117
159	The novel functions of ubiquitination in signaling. Current Opinion in Cell Biology, 2004, 16, 119-126.	2.6	403
160	TAB2 and TAB3 Activate the NF-κB Pathway through Binding to Polyubiquitin Chains. Molecular Cell, 2004, 15, 535-548.	4.5	775
161	The TRAF6 Ubiquitin Ligase and TAK1 Kinase Mediate IKK Activation by BCL10 and MALT1 in T Lymphocytes. Molecular Cell, 2004, 14, 289-301.	4.5	640
162	Nuclear Factor-κB Protects the Adult Cardiac Myocyte Against Ischemia-Induced Apoptosis in a Murine Model of Acute Myocardial Infarction. Circulation, 2003, 108, 3075-3078.	1.6	131

ZHIJIAN J CHEN

#	Article	IF	CITATIONS
163	Vps9p CUE Domain Ubiquitin Binding Is Required for Efficient Endocytic Protein Traffic. Journal of Biological Chemistry, 2003, 278, 19826-19833.	1.6	59
164	Activation of the Interferon-βPromoter During Hepatitis C Virus RNA Replication. Viral Immunology, 2002, 15, 29-40.	0.6	57
165	Hijacking of Host Cell IKK Signalosomes by the Transforming Parasite Theileria. Science, 2002, 298, 1033-1036.	6.0	126
166	The essential role of MEKK3 in TNF-induced NF-κB activation. Nature Immunology, 2001, 2, 620-624.	7.0	381
167	TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature, 2001, 412, 346-351.	13.7	1,850
168	Activation of Nuclear Factor-κB. , 2001, , 203-227.		0
169	Activation of the lκB Kinase Complex by TRAF6 Requires a Dimeric Ubiquitin-Conjugating Enzyme Complex and a Unique Polyubiquitin Chain. Cell, 2000, 103, 351-361.	13.5	1,707
170	Signal-induced ubiquitination of Ikappa Balpha by the F-box protein Slimb/beta -TrCP. Genes and Development, 1999, 13, 284-294.	2.7	394
171	Role of the Ubiquitinâ€"Proteasome Pathway in NF-κB Activation. , 1998, , 303-322.		7
172	Activation of the ll̂ºBl̂± Kinase Complex by MEKK1, a Kinase of the JNK Pathway. Cell, 1997, 88, 213-222.	13.5	721
173	Site-Specific Phosphorylation of lκBα by a Novel Ubiquitination-Dependent Protein Kinase Activity. Cell, 1996, 84, 853-862.	13.5	945
174	Signal-induced degradation of I kappa B alpha requires site-specific ubiquitination Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 11259-11263.	3.3	543
175	Kinetic studies of isopeptidase T: modulation of peptidase activity by ubiquitin. Biochemistry, 1995, 34, 12616-12623.	1.2	65
176	Signal-induced site-specific phosphorylation targets I kappa B alpha to the ubiquitin-proteasome pathway Genes and Development, 1995, 9, 1586-1597.	2.7	1,193
177	STRUCTURE OF A DIUBIQUITIN CONJUGATE AND A MODEL FOR INTERACTION WITH UBIQUITIN CONJUGATING ENZYME (E2). , 1992, 267, 16467-71.		163
150	Mitashandrial Antiviral Signaling 0, 20,50		0

178 Mitochondrial Antiviral Signaling. , 0, , 39-50.