Stephen D Bell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6450830/publications.pdf Version: 2024-02-01

STEDHEN D RELL

#	Article	IF	CITATIONS
1	The combined DNA and RNA synthetic capabilities of archaeal DNA primase facilitate primer hand-off to the replicative DNA polymerase. Nature Communications, 2022, 13, 433.	12.8	5
2	Chromosome organization affects genome evolution in Sulfolobus archaea. Nature Microbiology, 2022, 7, 820-830.	13.3	12
3	Multi-scale architecture of archaeal chromosomes. Molecular Cell, 2021, 81, 473-487.e6.	9.7	24
4	Phenotypic Characterization of Sulfolobus islandicus Strains Lacking the B-Family DNA Polymerases PolB2 and PolB3 Individually and in Combination. Frontiers in Microbiology, 2021, 12, 666974.	3.5	2
5	Chromosome conformation capture assay combined with biotin enrichment for hyperthermophilic archaea. STAR Protocols, 2021, 2, 100576.	1.2	3
6	High-resolution analysis of chromosome conformation in hyperthermophilic archaea. STAR Protocols, 2021, 2, 100562.	1.2	4
7	Emerging views of genome organization in Archaea. Journal of Cell Science, 2020, 133, .	2.0	14
8	Archaeal DNA Replication. Annual Review of Microbiology, 2020, 74, 65-80.	7.3	25
9	Analysis of the Archaeal ESCRT Apparatus. Methods in Molecular Biology, 2019, 1998, 1-11.	0.9	4
10	Physical and Functional Compartmentalization of Archaeal Chromosomes. Cell, 2019, 179, 165-179.e18.	28.9	62
11	Initiating DNA replication: a matter of prime importance. Biochemical Society Transactions, 2019, 47, 351-356.	3.4	17
12	An archaeal primase functions as a nanoscale caliper to define primer length. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6697-6702.	7.1	77
13	The Structure, Function and Roles of the Archaeal ESCRT Apparatus. Sub-Cellular Biochemistry, 2017, 84, 357-377.	2.4	23
14	Identification and characterization of a heterotrimeric archaeal DNA polymerase holoenzyme. Nature Communications, 2017, 8, 15075.	12.8	31
15	Primer synthesis by a eukaryotic-like archaeal primase is independent of its Fe-S cluster. Nature Communications, 2017, 8, 1718.	12.8	22
16	A Complex Endomembrane System in the Archaeon Ignicoccus hospitalis Tapped by Nanoarchaeum equitans. Frontiers in Microbiology, 2017, 8, 1072.	3.5	52
17	Initiation of DNA Replication in the Archaea. Advances in Experimental Medicine and Biology, 2017, 1042, 99-115.	1.6	12
18	Archaeal DNA Replication Origins and Recruitment of the MCM Replicative Helicase. The Enzymes, 2016, 39, 169-190.	1.7	9

#	Article	IF	CITATIONS
19	Multiple consecutive initiation of replication producing novel brush-like intermediates at the termini of linear viral dsDNA genomes with hairpin ends. Nucleic Acids Research, 2016, 44, 8799-8809.	14.5	17
20	Archaeal orthologs of Cdc45 and GINS form a stable complex that stimulates the helicase activity of MCM. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13390-13395.	7.1	36
21	Hydroxyurea-Mediated Cytotoxicity Without Inhibition of Ribonucleotide Reductase. Cell Reports, 2016, 17, 1657-1670.	6.4	24
22	Mechanism of Archaeal MCM Helicase Recruitment to DNA Replication Origins. Molecular Cell, 2016, 61, 287-296.	9.7	36
23	The architecture of an Okazaki fragment-processing holoenzyme from the archaeon <i>Sulfolobus solfataricus</i> . Biochemical Journal, 2015, 465, 239-245.	3.7	11
24	Archaeal Chromosome Biology. Journal of Molecular Microbiology and Biotechnology, 2014, 24, 420-427.	1.0	9
25	Protein-Protein Interactions Leading to Recruitment of the Host DNA Sliding Clamp by the Hyperthermophilic Sulfolobus islandicus Rod-Shaped Virus 2. Journal of Virology, 2014, 88, 7105-7108.	3.4	16
26	Unique genome replication mechanism of the archaeal virus <scp>AFV</scp> 1. Molecular Microbiology, 2014, 92, 1313-1325.	2.5	16
27	MCM Loading—An Open-and-Shut Case?. Molecular Cell, 2013, 50, 457-458.	9.7	10
28	The Minichromosome Maintenance Replicative Helicase. Cold Spring Harbor Perspectives in Biology, 2013, 5, a012807-a012807.	5.5	94
29	Specificity and Function of Archaeal DNA Replication Initiator Proteins. Cell Reports, 2013, 3, 485-496.	6.4	64
30	Electron cryotomography of ESCRT assemblies and dividing <i>Sulfolobus</i> cells suggests that spiraling filaments are involved in membrane scission. Molecular Biology of the Cell, 2013, 24, 2319-2327.	2.1	88
31	Functional interplay between a virus and the ESCRT machinery in Archaea. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10783-10787.	7.1	62
32	Coordination of multiple enzyme activities by a single PCNA in archaeal Okazaki fragment maturation. EMBO Journal, 2012, 31, 1556-1567.	7.8	53
33	The sub-cellular localization of Sulfolobus DNA replication. Nucleic Acids Research, 2012, 40, 5487-5496.	14.5	30
34	Archaeal Orc1/Cdc6 Proteins. Sub-Cellular Biochemistry, 2012, 62, 59-69.	2.4	17
35	Structural and functional analyses of the interaction of archaeal RNA polymerase with DNA. Nucleic Acids Research, 2012, 40, 9941-9952.	14.5	33
36	Genome-wide Analysis Reveals Extensive Functional Interaction between DNA Replication Initiation and Transcription in the Genome of Trypanosoma brucei. Cell Reports, 2012, 2, 185-197.	6.4	93

#	Article	IF	CITATIONS
37	Identification of ORC1/CDC6-Interacting Factors in Trypanosoma brucei Reveals Critical Features of Origin Recognition Complex Architecture. PLoS ONE, 2012, 7, e32674.	2.5	47
38	Cell cycles and cell division in the archaea. Current Opinion in Microbiology, 2011, 14, 350-356.	5.1	26
39	Molecular and Structural Basis of ESCRT-III Recruitment to Membranes during Archaeal Cell Division. Molecular Cell, 2011, 41, 186-196.	9.7	102
40	The interplay of DNA binding, ATP hydrolysis and helicase activities of the archaeal MCM helicase. Biochemical Journal, 2011, 436, 409-414.	3.7	9
41	Archaeal RNA polymerase: the influence of the protruding stalk in crystal packing and preliminary biophysical analysis of the Rpo13 subunit. Biochemical Society Transactions, 2011, 39, 25-30.	3.4	10
42	The role of the DNA sliding clamp in Okazaki fragment maturation in archaea and eukaryotes. Biochemical Society Transactions, 2011, 39, 70-76.	3.4	19
43	Replication termination and chromosome dimer resolution in the archaeon <i>Sulfolobus solfataricus</i> . EMBO Journal, 2011, 30, 145-153.	7.8	38
44	Molecular machines in archaeal DNA replication. Current Opinion in Chemical Biology, 2011, 15, 614-619.	6.1	35
45	DNA replication: archaeal oriGINS. BMC Biology, 2011, 9, 36.	3.8	14
46	Molecular determinants of origin discrimination by Orc1 initiators in archaea. Nucleic Acids Research, 2011, 39, 3621-3631.	14.5	42
47	Archaeal Chromatin Organization. , 2010, , 205-217.		10
48	Evolution of diverse cell division and vesicle formation systems in Archaea. Nature Reviews Microbiology, 2010, 8, 731-741.	28.6	212
49	Three Domains Of Life. , 2010, , 27-37.		1
50	Chromatin Assembly, Cohesion, and Modification. , 2010, , 135-167.		0
51	Intersubunit allosteric communication mediated by a conserved loop in the MCM helicase. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1051-1056.	7.1	43
52	Evolution of Complex RNA Polymerases: The Complete Archaeal RNA Polymerase Structure. PLoS Biology, 2009, 7, e1000102.	5.6	109
53	Structural insight into recruitment of translesion DNA polymerase Dpo4 to sliding clamp PCNA. Molecular Microbiology, 2009, 71, 678-691.	2.5	69
54	The Glutamate Switch Is Present in All Seven Clades of AAA+ Protein. Biochemistry, 2009, 48, 8774-8775.	2.5	13

4

#	Article	IF	CITATIONS
55	Ancient ESCRTs and the evolution of binary fission. Trends in Microbiology, 2009, 17, 507-513.	7.7	64
56	Termination Structures in the Escherichia coli Chromosome Replication Fork Trap. Journal of Molecular Biology, 2009, 387, 532-539.	4.2	71
57	Evolution and assembly of ESCRTs. Biochemical Society Transactions, 2009, 37, 151-155.	3.4	20
58	Structures of monomeric, dimeric and trimeric PCNA: PCNA-ring assembly and opening. Acta Crystallographica Section D: Biological Crystallography, 2008, 64, 941-949.	2.5	33
59	Extra-chromosomal elements and the evolution of cellular DNA replication machineries. Nature Reviews Molecular Cell Biology, 2008, 9, 569-574.	37.0	31
60	On the mechanism of loading the PCNA sliding clamp by RFC. Molecular Microbiology, 2008, 68, 216-222.	2.5	44
61	The replication fork trap and termination of chromosome replication. Molecular Microbiology, 2008, 70, 1323-1333.	2.5	104
62	A Role for the ESCRT System in Cell Division in Archaea. Science, 2008, 322, 1710-1713.	12.6	339
63	Chromosome replication dynamics in the archaeon <i>Sulfolobus acidocaldarius</i> . Proceedings of the United States of America, 2008, 105, 16737-16742.	7.1	80
64	Response of the Hyperthermophilic Archaeon <i>Sulfolobus solfataricus</i> to UV Damage. Journal of Bacteriology, 2007, 189, 8708-8718.	2.2	128
65	MCM Forked Substrate Specificity Involves Dynamic Interaction with the 5′-Tail. Journal of Biological Chemistry, 2007, 282, 34229-34234.	3.4	83
66	Archaeal MCM has separable processivity, substrate choice and helicase domains. Nucleic Acids Research, 2007, 35, 988-998.	14.5	75
67	Extrachromosomal element capture and the evolution of multiple replication origins in archaeal chromosomes. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5806-5811.	7.1	101
68	ATPase Site Architecture and Helicase Mechanism of an Archaeal MCM. Molecular Cell, 2007, 28, 304-314.	9.7	100
69	Replication Origin Recognition and Deformation by a Heterodimeric Archaeal Orc1 Complex. Science, 2007, 317, 1210-1213.	12.6	131
70	Sister chromatid junctions in the hyperthermophilic archaeon Sulfolobus solfataricus. EMBO Journal, 2007, 26, 816-824.	7.8	60
71	The Extracellular Matrix Protein TGFBI Induces Microtubule Stabilization and Sensitizes Ovarian Cancers to Paclitaxel. Cancer Cell, 2007, 12, 514-527.	16.8	202
72	The Bre5/Ubp3 ubiquitin protease complex from budding yeast contributes to the cellular response to DNA damage. DNA Repair, 2007, 6, 1471-1484.	2.8	27

#	Article	IF	CITATIONS
73	Influence of Chromatin and Single Strand Binding Proteins on the Activity of an Archaeal MCM. Journal of Molecular Biology, 2006, 357, 1345-1350.	4.2	24
74	Structure of an archaeal PCNA1–PCNA2–FEN1 complex: elucidating PCNA subunit and client enzyme specificity. Nucleic Acids Research, 2006, 34, 4515-4526.	14.5	64
75	Prime-time progress. Nature, 2006, 439, 542-543.	27.8	6
76	GINS, a central nexus in the archaeal DNA replication fork. EMBO Reports, 2006, 7, 539-545.	4.5	121
77	A novel archaeal regulatory protein, Sta1, activates transcription from viral promoters. Nucleic Acids Research, 2006, 34, 4837-4845.	14.5	38
78	The Chromosome Replication Machinery of the Archaeon Sulfolobus solfataricus. Journal of Biological Chemistry, 2006, 281, 15029-15032.	3.4	31
79	DNA Replication in the Archaea. Microbiology and Molecular Biology Reviews, 2006, 70, 876-887.	6.6	252
80	Characterization of an archaeal family 4 uracil DNA glycosylase and its interaction with PCNA and chromatin proteins. Biochemical Journal, 2005, 387, 859-863.	3.7	49
81	Structure of the heterodimeric core primase. Nature Structural and Molecular Biology, 2005, 12, 1137-1144.	8.2	73
82	Organization of the archaeal MCM complex on DNA and implications for the helicase mechanism. Nature Structural and Molecular Biology, 2005, 12, 756-762.	8.2	160
83	Origins of DNA replication in the three domains of life. FEBS Journal, 2005, 272, 3757-3766.	4.7	85
84	The promiscuous primase. Trends in Genetics, 2005, 21, 568-572.	6.7	47
85	Sir2 and the Acetyltransferase, Pat, Regulate the Archaeal Chromatin Protein, Alba. Journal of Biological Chemistry, 2005, 280, 21122-21128.	3.4	82
86	Eukaryotic/Archaeal Primase and MCM Proteins Encoded in a Bacteriophage Genome. Cell, 2005, 120, 167-168.	28.9	30
87	Archaeal transcriptional regulation – variation on a bacterial theme?. Trends in Microbiology, 2005, 13, 262-265.	7.7	68
88	The loader of the rings. Nature, 2004, 429, 708-709.	27.8	6
89	Physical and functional interaction of the archaeal single-stranded DNA-binding protein SSB with RNA polymerase. Nucleic Acids Research, 2004, 32, 1065-1074.	14.5	48
90	Chromosomes and expression mechanisms Molecular transactions governing genome maintenance and expression. Current Opinion in Genetics and Development, 2004, 14, 103-105.	3.3	0

#	Article	IF	CITATIONS
91	The Heterodimeric Primase of the Hyperthermophilic Archaeon Sulfolobus solfataricus Possesses DNA and RNA Primase, Polymerase and 3′-terminal Nucleotidyl Transferase Activities. Journal of Molecular Biology, 2004, 344, 1251-1263.	4.2	69
92	Identification of Two Origins of Replication in the Single Chromosome of the Archaeon Sulfolobus solfataricus. Cell, 2004, 116, 25-38.	28.9	243
93	An archaeal XPF repair endonuclease dependent on a heterotrimeric PCNA. Molecular Microbiology, 2003, 48, 361-371.	2.5	78
94	A Heterotrimeric PCNA in the Hyperthermophilic Archaeon Sulfolobus solfataricus. Molecular Cell, 2003, 11, 275-282.	9.7	215
95	Regulation of Minichromosome Maintenance Helicase Activity by Cdc6. Journal of Biological Chemistry, 2003, 278, 38059-38067.	3.4	57
96	DNA replication in the hyperthermophilic archaeon Sulfolobus solfataricus. Biochemical Society Transactions, 2003, 31, 674-676.	3.4	20
97	The Sulfolobus solfataricus Lrp-like Protein LysM Regulates Lysine Biosynthesis in Response to Lysine Availability. Journal of Biological Chemistry, 2002, 277, 29537-29549.	3.4	98
98	Structural Basis for the NAD-dependent Deacetylase Mechanism of Sir2. Journal of Biological Chemistry, 2002, 277, 34489-34498.	3.4	84
99	The Interaction of Alba, a Conserved Archaeal Chromatin Protein, with Sir2 and Its Regulation by Acetylation. Science, 2002, 296, 148-151.	12.6	271
100	Holding it together: chromatin in the Archaea. Trends in Genetics, 2002, 18, 621-626.	6.7	124
101	Structure of Alba: an archaeal chromatin protein modulated by acetylation. EMBO Journal, 2002, 21, 4654-4662.	7.8	146
102	The archaeal TFIIEα homologue facilitates transcription initiation by enhancing TATAâ€box recognition. EMBO Reports, 2001, 2, 133-138.	4.5	86
103	Mechanism and regulation of transcription in archaea. Current Opinion in Microbiology, 2001, 4, 208-213.	5.1	191
104	Basal and regulated transcription in Archaea. Biochemical Society Transactions, 2001, 29, 392-395.	3.4	61
105	[19] Preparation of components of archaeal transcription preinitiation complex. Methods in Enzymology, 2001, 334, 227-239.	1.0	9
106	Identification of a Conserved Archaeal RNA Polymerase Subunit Contacted by the Basal Transcription Factor TFB. Journal of Biological Chemistry, 2001, 276, 46693-46696.	3.4	35
107	Charting a course through RNA polymerase. , 2000, 7, 703-705.		123
	Mechanism of Autoregulation by an Archaeal Transcriptional Repressor, Journal of Biological		

#	Article	IF	CITATIONS
109	The Role of Transcription Factor B in Transcription Initiation and Promoter Clearance in the Archaeon Sulfolobus acidocaldarius. Journal of Biological Chemistry, 2000, 275, 12934-12940.	3.4	63
110	Orientation of the transcription preinitiation complex in Archaea. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 13662-13667.	7.1	149
111	Transcriptional Regulation of an Archaeal Operon In Vivo and In Vitro. Molecular Cell, 1999, 4, 971-982.	9.7	105
112	Transcription and translation in Archaea: a mosaic of eukaryal and bacterial features. Trends in Microbiology, 1998, 6, 222-228.	7.7	182
113	Temperature, template topology, and factor requirements of archaeal transcription. Proceedings of the United States of America, 1998, 95, 15218-15222.	7.1	72
114	Factor requirements for transcription in the Archaeon Sulfolobus shibatae. EMBO Journal, 1997, 16, 2927-2936.	7.8	129
115	Trypanosome nuclear factors which bind to internal promoter elements of tRNA genes. Nucleic Acids Research, 1995, 23, 3103-3110.	14.5	6
116	DNA Replication and the Cell Cycle. , 0, , 159-169.		0
117	DNA Replication and Cell Cycle. , 0, , 93-109.		3