YinThai Chan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6449525/publications.pdf

Version: 2024-02-01

201674 182427 2,716 61 27 51 citations h-index g-index papers 64 64 64 3897 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A Low-Threshold, High-Efficiency Microfluidic Waveguide Laser. Journal of the American Chemical Society, 2005, 127, 8952-8953.	13.7	297
2	Incorporation of Luminescent Nanocrystals into Monodisperse Core-Shell Silica Microspheres. Advanced Materials, 2004, 16, 2092-2097.	21.0	215
3	Whispering-Gallery-Mode Lasing from a Semiconductor Nanocrystal/Microsphere Resonator Composite. Advanced Materials, 2005, 17, 1131-1136.	21.0	186
4	Blue semiconductor nanocrystal laser. Applied Physics Letters, 2005, 86, 073102.	3.3	154
5	Ultralow-Threshold Two-Photon Pumped Amplified Spontaneous Emission and Lasing from Seeded CdSe/CdS Nanorod Heterostructures. ACS Nano, 2012, 6, 10835-10844.	14.6	124
6	Transient photoluminescence and simultaneous amplified spontaneous emission from multiexciton states inCdSequantum dots. Physical Review B, 2004, 70, .	3.2	114
7	Ultralow-threshold multiphoton-pumped lasing from colloidal nanoplatelets in solution. Nature Communications, 2015, 6, 8513.	12.8	108
8	Stable, Ultralow Threshold Amplified Spontaneous Emission from CsPbBr ₃ Nanoparticles Exhibiting Trion Gain. Nano Letters, 2018, 18, 4976-4984.	9.1	103
9	pH-Responsive Quantum Dots via an Albumin Polymer Surface Coating. Journal of the American Chemical Society, 2010, 132, 5012-5014.	13.7	94
10	Asymmetric Dumbbells from Selective Deposition of Metals on Seeded Semiconductor Nanorods. Angewandte Chemie - International Edition, 2010, 49, 2888-2892.	13.8	88
11	Light-Induced Selective Deposition of Metals on Gold-Tipped CdSe-Seeded CdS Nanorods. Journal of the American Chemical Society, 2011, 133, 672-675.	13.7	87
12	Multiexciton fluorescence from semiconductor nanocrystals. Chemical Physics, 2005, 318, 71-81.	1.9	78
13	Soft-Lithographically Embossed, Multilayered Distributed-Feedback Nanocrystal Lasers. Advanced Materials, 2004, 16, 2137-2141.	21.0	73
14	Multiexcitonic two-state lasing in a CdSe nanocrystal laser. Applied Physics Letters, 2004, 85, 2460-2462.	3.3	72
15	Highâ€Performance Hybrid Solar Cell Made from CdSe/CdTe Nanocrystals Supported on Reduced Graphene Oxide and PCDTBT. Advanced Functional Materials, 2014, 24, 1904-1910.	14.9	56
16	Dual Wavelength Electroluminescence from CdSe/CdS Tetrapods. ACS Nano, 2014, 8, 2873-2879.	14.6	56
17	Unusual Selectivity of Metal Deposition on Tapered Semiconductor Nanostructures. Chemistry of Materials, 2012, 24, 2040-2046.	6.7	52
18	A Solvent-Stable Nanocrystal-Silica Composite Laser. Journal of the American Chemical Society, 2006, 128, 3146-3147.	13.7	45

#	Article	IF	CITATIONS
19	Three-Photon Absorption in Seeded CdSe/CdS Nanorod Heterostructures. Journal of Physical Chemistry C, 2011, 115, 17711-17716.	3.1	43
20	Sub-Picosecond Auger-Mediated Hole-Trapping Dynamics in Colloidal CdSe/CdS Core/Shell Nanoplatelets. ACS Nano, 2016, 10, 9370-9378.	14.6	43
21	Aqueous-Phase Reactions on Hollow Silica-Encapsulated Semiconductor Nanoheterostructures. Journal of the American Chemical Society, 2012, 134, 8754-8757.	13.7	37
22	Low Threshold, Amplified Spontaneous Emission from Coreâ€Seeded Semiconductor Nanotetrapods Incorporated into a Solâ€"Gel Matrix. Advanced Materials, 2012, 24, OP159-64.	21.0	37
23	Continuous Shape Tuning of Nanotetrapods: Toward Shape-Mediated Self-Assembly. Chemistry of Materials, 2016, 28, 1187-1195.	6.7	36
24	Enhanced tunability of the multiphoton absorption cross-section in seeded CdSe/CdS nanorod heterostructures. Applied Physics Letters, 2010, 97, .	3.3	35
25	Promoting 2D Growth in Colloidal Transition Metal Sulfide Semiconductor Nanostructures via Halide Ions. Chemistry of Materials, 2014, 26, 6120-6126.	6.7	32
26	Understanding the features in the ultrafast transient absorption spectra of CdSe quantum dots. Chemical Physics, 2016, 481, 157-164.	1.9	32
27	Solution-Processed 2D PbS Nanoplates with Residual Cu ₂ S Exhibiting Low Resistivity and High Infrared Responsivity. Chemistry of Materials, 2016, 28, 9132-9138.	6.7	29
28	Observation of an Excitonic Quantum Coherence in CdSe Nanocrystals. Nano Letters, 2015, 15, 6875-6882.	9.1	28
29	Delayed Exciton Formation Involving Energetically Shallow Trap States in Colloidal CsPbBr ₃ Quantum Dots. Journal of Physical Chemistry C, 2017, 121, 28498-28505.	3.1	26
30	Engineering Fluorescence in Auâ€Tipped, CdSeâ€Seeded CdS Nanoheterostructures. Small, 2011, 7, 2847-2852.	10.0	24
31	Formation of Hollow Iron Oxide Tetrapods via a Shapeâ€Preserving Nanoscale Kirkendall Effect. Small, 2014, 10, 667-673.	10.0	22
32	Efficient Color-Tunable Multiexcitonic Dual Wavelength Emission from Type II Semiconductor Tetrapods. ACS Nano, 2014, 8, 9349-9357.	14.6	22
33	Non-linear transduction strategies for chemo/biosensing on small length scales. Journal of Materials Chemistry, 2005, 15, 2697.	6.7	20
34	Dual n-type doped reduced graphene oxide field effect transistors controlled by semiconductor nanocrystals. Chemical Communications, 2012, 48, 4052.	4.1	19
35	Multifunctional Semiconductor Nanoheterostructures via Siteâ€Selective Silica Encapsulation. Small, 2013, 9, 1908-1915.	10.0	18
36	Solution-based green amplified spontaneous emission from colloidal perovskite nanocrystals exhibiting high stability. Applied Physics Letters, 2019, 114, .	3.3	18

#	Article	IF	CITATIONS
37	Pump-Power Dependence of Coherent Acoustic Phonon Frequencies in Colloidal CdSe/CdS Core/Shell Nanoplatelets. Nano Letters, 2017, 17, 3312-3319.	9.1	17
38	Multi-color lasing in chemically open droplet cavities. Scientific Reports, 2018, 8, 14088.	3.3	14
39	Thermochromism from Ultrathin Colloidal Sb ₂ Se ₃ Nanowires Undergoing Reversible Growth and Dissolution in an Amine–Thiol Mixture. Advanced Materials, 2019, 31, e1806164.	21.0	14
40	Semiconductor nanocrystals in sol–gel derived matrices. Physical Chemistry Chemical Physics, 2013, 15, 13694.	2.8	12
41	Facet to Facet Linking of Shape Anisotropic Inorganic Nanocrystals with Site Specific and Stoichiometric Control. Nano Letters, 2016, 16, 6431-6436.	9.1	12
42	Embedding liquid lasers within or around aqueous microfluidic droplets. Lab on A Chip, 2018, 18, 197-205.	6.0	12
43	Synthesis and Characterization of Dually Labeled Pickering-Type Stabilized Polymer Nanoparticles in a Downscaled Miniemulsion System. Langmuir, 2012, 28, 9347-9354.	3.5	11
44	Branched Heterostructured Semiconductor Nanocrystals with Various Branch Orders <i>via</i> a Facet-to-Facet Linking Process. ACS Nano, 2020, 14, 10337-10345.	14.6	10
45	Subwavelength Plasmonic Color Tuning of Quantum Dot Emission. ACS Photonics, 2019, 6, 93-98.	6.6	9
46	Immobilisation of quantum dots by bio-orthogonal PCR amplification and labelling for direct gene detection and quantitation. Chemical Communications, 2012, 48, 5467.	4.1	8
47	Measuring the Ultrafast Spectral Diffusion Dynamics of Colloidal CdSe Nanomaterials. MRS Advances, 2019, 4, 1-7.	0.9	7
48	Pulsed Laser Photopatterning of Cesium Lead Halide Perovskite Structures as Robust Solutionâ€Processed Optical Gain Media. Advanced Materials Technologies, 2020, 5, 2000104.	5.8	7
49	Tuning the Emission Colors of Self-Assembled Quantum Dot Monolayers via One-Step Heat Treatment for Display Applications. ACS Applied Nano Materials, 2020, 3, 3214-3222.	5.0	7
50	2D-Oriented Attachment of 1D Colloidal Semiconductor Nanocrystals via an Etchant. Nano Letters, 2022, 22, 942-947.	9.1	7
51	Gene Detection in Complex Biological Media Using Semiconductor Nanorods within an Integrated Microfluidic Device. Analytical Chemistry, 2015, 87, 10292-10298.	6.5	6
52	Wetâ€Chemically Synthesized Colloidal Semiconductor Nanostructures as Optical Gain Media. ChemPhysChem, 2016, 17, 582-597.	2.1	5
53	Highly fluorescent, monolithic semiconductor nanorod clusters for ultrasensitive biodetection. Chemical Communications, 2018, 54, 11352-11355.	4.1	4
54	How to make microscale pores on a self-assembled Ag nanoparticle monolayer. Colloids and Interface Science Communications, 2019, 30, 100175.	4.1	4

#	Article	IF	CITATIONS
55	Layer Number-Dependent Enhanced Photoluminescence from a Quantum Dot Metamaterial Optical Resonator. ACS Applied Electronic Materials, 2021, 3, 468-475.	4.3	4
56	Hierarchical Multicomponent Nanoheterostructures via Facet-to-Facet Attachment of Anisotropic Semiconductor Nanoparticles. Chemistry of Materials, 2017, 29, 9075-9083.	6.7	3
57	Fluorescent Semiconductor Nanorods for the Solid-Phase Polymerase Chain Reaction-Based, Multiplexed Gene Detection of <i>Mycobacterium tuberculosis</i> Interfaces, 2021, 13, 35294-35305.	8.0	3
58	HETEROSTRUCTURED HYBRID COLLOIDAL SEMICONDUCTOR NANOCRYSTALS. Cosmos, 2010, 06, 235-245.	0.4	0
59	Tunable multi-photon absorption cross-sections using seeded CdSe/CdS nanorod heterostructures. , 2011, , .		0
60	Tunable Giant Multi-Photon Absorption using Seeded CdSe/CdS Nanorod Heterostructures., 2012,,.		0
61	Facet-to-facet Linking of Shape-anisotropic Colloidal Cadmium Chalcogenide Nanostructures. Journal of Visualized Experiments, 2017, , .	0.3	0