
Liliana Rodolfi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/644950/publications.pdf Version: 2024-02-01

LILIANA RODOLEL

#	Article	lF	CITATIONS
1	Protein, phycocyanin, and polysaccharide production by Arthrospira platensis grown with LED light in annular photobioreactors. Journal of Applied Phycology, 2022, 34, 1189-1199.	2.8	10
2	Iron Speciation and Iron Binding Proteins in ArthrospiraÂplatensis Grown in Media Containing Different Iron Concentrations. International Journal of Molecular Sciences, 2022, 23, 6283.	4.1	4
3	Effects of cyanobacterial-based biostimulants on plant growth and development: a case study on basil (Ocimum basilicum L.). Journal of Applied Phycology, 2022, 34, 2063-2073.	2.8	11
4	Lipids from algal biomass provide new (nonlamellar) nanovectors with high carrier potentiality for natural antioxidants. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 158, 410-416.	4.3	9
5	Vegetable oils protect phycocyanin from thermal degradation during cooking of spirulina-based "crostiniâ€: LWT - Food Science and Technology, 2021, 138, 110776.	5.2	5
6	Cell wall and organelle modifications during nitrogen starvation in Nannochloropsis oceanica F&M-M24. Journal of Applied Phycology, 2021, 33, 2069-2080.	2.8	7
7	Plant Biostimulants from Cyanobacteria: An Emerging Strategy to Improve Yields and Sustainability in Agriculture. Plants, 2021, 10, 643.	3.5	49
8	Microbes: Food for the Future. Foods, 2021, 10, 971.	4.3	40
9	A Comparative In Vitro Evaluation of the Anti-Inflammatory Effects of a Tisochrysis lutea Extract and Fucoxanthin. Marine Drugs, 2021, 19, 334.	4.6	15
10	Effect of Arthrospira platensis (spirulina) incorporation on the rheological and bioactive properties of gluten-free fresh pasta. Algal Research, 2020, 45, 101743.	4.6	70
11	Algae and Bioguano as promising source of organic fertilizers. Journal of Applied Phycology, 2020, 32, 3971-3981.	2.8	10
12	Lactic Acid Fermentation of Arthrospira platensis (Spirulina) in a Vegetal Soybean Drink for Developing New Functional Lactose-Free Beverages. Frontiers in Microbiology, 2020, 11, 560684.	3.5	32
13	Effects of Arthrospira platensis Extract on Physiology and Berry Traits in Vitis vinifera. Plants, 2020, 9, 1805.	3.5	8
14	Microalgae of interest as food source: Biochemical composition and digestibility. Algal Research, 2019, 42, 101617.	4.6	200
15	Development of new microalgae-based sourdough "crostini― functional effects of Arthrospira platensis (spirulina) addition. Scientific Reports, 2019, 9, 19433.	3.3	56
16	Microalgae as Functional Ingredients in Savory Food Products: Application to Wheat Crackers. Foods, 2019, 8, 611.	4.3	86
17	Lactic acid fermentation of Arthrospira platensis (spirulina) biomass for probiotic-based products. Journal of Applied Phycology, 2019, 31, 1077-1083.	2.8	61
18	<i>Tetraselmis suecica</i> F&Mâ€M33 growth is influenced by its associated bacteria. Microbial Biotechnology, 2018, 11, 211-223.	4.2	17

Liliana Rodolfi

#	Article	IF	CITATIONS
19	Preliminary data on the dietary safety, tolerability and effects on lipid metabolism of the marine microalga Tisochrysis lutea. Algal Research, 2018, 34, 244-249.	4.6	17
20	Oil and eicosapentaenoic acid production by the diatom <i>Phaeodactylum tricornutum</i> cultivated outdoors in Green Wall Panel (GWP®) reactors. Biotechnology and Bioengineering, 2017, 114, 2204-2210.	3.3	48
21	Safety evaluations and lipid-lowering activity of an Arthrospira platensis enriched diet: A 1-month study in rats. Food Research International, 2017, 102, 380-386.	6.2	26
22	The bacterial community associated with Tetraselmis suecica outdoor mass cultures. Journal of Applied Phycology, 2017, 29, 67-78.	2.8	27
23	In vitro toxicity of microalgal and cyanobacterial strains of interest as food source. Journal of Applied Phycology, 2017, 29, 199-209.	2.8	28
24	Microalgae biomass as an alternative ingredient in cookies: Sensory, physical and chemical properties, antioxidant activity and in vitro digestibility. Algal Research, 2017, 26, 161-171.	4.6	226
25	Techno-economic analysis of microalgal biomass production in a 1-ha Green Wall Panel (GWP®) plant. Algal Research, 2016, 19, 253-263.	4.6	199
26	Growth, photosynthetic efficiency, and biochemical composition of <i>Tetraselmis suecica</i> F&Mâ€M33 grown with LEDs of different colors. Biotechnology and Bioengineering, 2014, 111, 956-964.	3.3	90
27	Experimental and numerical investigations of mixing in raceway ponds for algae cultivation. Biomass and Bioenergy, 2014, 67, 390-400.	5.7	58
28	Chlorella for protein and biofuels: from strain selection to outdoor cultivation in a Green Wall Panel photobioreactor. Biotechnology for Biofuels, 2014, 7, 84.	6.2	166
29	Oil production by the marine microalgae Nannochloropsis sp. F&M-M24 and Tetraselmis suecica F&M-M33. Bioresource Technology, 2012, 114, 567-572.	9.6	206
30	Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a lowâ€cost photobioreactor. Biotechnology and Bioengineering, 2009, 102, 100-112.	3.3	2,628