Tom H Nielsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6448456/publications.pdf Version: 2024-02-01

TOM H NIFLSEN

#	Article	IF	CITATIONS
1	Cytosolic phosphofructokinases are important for sugar homeostasis in leaves of <i>Arabidopsis thaliana</i> . Annals of Botany, 2022, 129, 37-52.	2.9	3
2	The Circadian Clock Gene Circuit Controls Protein and Phosphoprotein Rhythms in Arabidopsis thaliana. Molecular and Cellular Proteomics, 2022, 21, 100172.	3.8	20
3	Levanase from Bacillus subtilis hydrolyses β-2,6 fructosyl bonds in bacterial levans and in grass fructans. International Journal of Biological Macromolecules, 2016, 85, 514-521.	7.5	25
4	The interplay between P uptake pathways in mycorrhizal peas: a combined physiological and geneâ€ s ilencing approach. Physiologia Plantarum, 2013, 149, 234-248.	5.2	30
5	The <i>Arabidopsis</i> transcription factor PHR1 is essential for adaptation to high light and retaining functional photosynthesis during phosphate starvation. Physiologia Plantarum, 2012, 144, 35-47.	5.2	46
6	Overexpression of the MYB-related transcription factor GCC7 in Arabidopsis thaliana leads to increased levels of Pi and changed P-dependent gene regulation. Functional Plant Biology, 2011, 38, 151.	2.1	8
7	Dissecting the plant transcriptome and the regulatory responses to phosphate deprivation. Physiologia Plantarum, 2010, 139, 129-143.	5.2	122
8	Global analysis of microRNA in Arabidopsis in response to phosphate starvation as studied by locked nucleic acid-based microarrays. Physiologia Plantarum, 2010, 140, 57-68.	5.2	61
9	Investigations of barley stripe mosaic virus as a gene silencing vector in barley roots and in Brachypodium distachyon and oat. Plant Methods, 2010, 6, 26.	4.3	84
10	Effects of an onion by-product on bioactivity and safety markers in healthy rats. British Journal of Nutrition, 2009, 102, 1574.	2.3	40
11	Genome-Wide Analysis of the Arabidopsis Leaf Transcriptome Reveals Interaction of Phosphate and Sugar Metabolism. Plant Physiology, 2007, 143, 156-171.	4.8	298
12	Increased expression of the MYBâ€related transcription factor, <i>PHR1</i> , leads to enhanced phosphate uptake in <i>Arabidopsis thaliana</i> . Plant, Cell and Environment, 2007, 30, 1499-1512.	5.7	261
13	Osmotic stress changes carbohydrate partitioning and fructose-2,6-bisphosphate metabolism in barley leaves. Functional Plant Biology, 2005, 32, 1033.	2.1	51
14	Interaction between phosphate starvation signalling and hexokinase-independent sugar sensing in Arabidopsis leaves. Physiologia Plantarum, 2005, 124, 81-90.	5.2	48
15	Gene expression during recovery from phosphate starvation in roots and shoots of Arabidopsis thaliana. Physiologia Plantarum, 2004, 122, 233-243.	5.2	44
16	Phosphorylation and 14-3-3 binding of Arabidopsis 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Plant Journal, 2004, 37, 654-667.	5.7	97
17	Carbon partitioning in leaves and tubers of transgenic potato plants with reduced activity of fructose-6-phosphate,2-kinase/fructose-2,6-bisphosphatase. Physiologia Plantarum, 2004, 121, 204-214.	5.2	16
18	Fructose-2,6-bisphosphate: a traffic signal in plant metabolism. Trends in Plant Science, 2004, 9, 556-563.	8.8	91

Tom H Nielsen

#	Article	IF	CITATIONS
19	Intermediary Glucan Structures Formed during Starch Granule Biosynthesis Are Enriched in Short Side Chains, a Dynamic Pulse Labeling Approach. Journal of Biological Chemistry, 2002, 277, 20249-20255.	3.4	52
20	Starch phosphorylation: a new front line in starch research. Trends in Plant Science, 2002, 7, 445-450.	8.8	206
21	Starch biosynthesis from triose-phosphate in transgenic potato tubers expressing plastidic fructose-1,6-bisphosphatase. Planta, 2002, 214, 616-624.	3.2	11
22	N-terminal truncation affects the kinetics and structure of fructose-6-phosphate 2-kinase/fructose-2,6-bisphosphatase from Arabidopsis thaliana. Biochemical Journal, 2001, 359, 591.	3.7	21
23	N-terminal truncation affects the kinetics and structure of fructose-6-phosphate 2-kinase/fructose-2,6-bisphosphatase from Arabidopsis thaliana. Biochemical Journal, 2001, 359, 591-597.	3.7	25
24	Transgenic Arabidopsis Plants with Decreased Activity of Fructose-6-Phosphate,2-Kinase/Fructose-2,6-Bisphosphatase Have Altered Carbon Partitioning. Plant Physiology, 2001, 126, 750-758.	4.8	55
25	Structure and heterologous expression of a gene encoding fructose-6-phosphate,2-kinase/fructose-2,6-bisphosphatase from Arabidopsis thaliana. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2000, 1492, 406-413.	2.4	23
26	In Vitro Biosynthesis of Phosphorylated Starch in Intact Potato Amyloplasts1. Plant Physiology, 1999, 119, 455-462.	4.8	42
27	Cloning, characterization and expression of a bifunctional fructose-6-phosphate, 2-kinase/fructose-2,6-bisphosphatase from potato. Plant Molecular Biology, 1999, 39, 709-720.	3.9	25
28	Phosphorylated α(1→4)Glucans as Substrate for Potato Starch-Branching Enzyme I1. Plant Physiology, 1998, 117, 869-875.	4.8	27
29	A convenient method for enzymatic synthesis of radiolabelled glucose-1,6-bisphosphate. Journal of Labelled Compounds and Radiopharmaceuticals, 1995, 36, 679-684.	1.0	4
30	Pyrophosphate:fructose-6-phosphate 1-phosphotransferase from barley seedlings. Isolation, subunit composition and kinetic Characterization. Physiologia Plantarum, 1994, 92, 311-321.	5.2	21
31	Cytokinins and leaf development in sweet pepper (Capsicum annuum L.). Planta, 1992, 188, 70-7.	3.2	15
32	Cytokinins and leaf development in sweet pepper (Capsicum annuum L.). Planta, 1992, 188, 78-84.	3.2	14
33	Cytokinins and leaf development in sweet pepper (Capsicum annuum L.). Planta, 1992, 188, 70-77.	3.2	38
34	Cytokinins and leaf development in sweet pepper (Capsicum annuum L.). Planta, 1992, 188, 78-84.	3.2	16
35	Differences in fructose-2,6-bisphosphate metabolism between sections of developing barley leaves. Physiologia Plantarum, 1992, 84, 577-583.	5.2	16
36	Differences in fructose-2,6-bisphosphate metabolism between sections of developing barley leaves. Physiologia Plantarum, 1992, 84, 577-583.	5.2	5

TOM H NIELSEN

#	Article	IF	CITATIONS
37	Carbohydrate metabolism during fruit development in sweet pepper (Capsicum annuum) plants. Physiologia Plantarum, 1991, 82, 311-319.	5.2	94
38	Carbohydrate metabolism during fruit development in sweet pepper (Capsicum annuum) plants. Physiologia Plantarum, 1991, 82, 311-319.	5.2	19
39	Regulation of Carbon Partitioning in Source and Sink Leaf Parts in Sweet Pepper (Capsicum annuum L.) Plants. Plant Physiology, 1990, 93, 637-641.	4.8	24
40	Protein phosphorylation as a mechanism for regulation of spinach leaf sucrose-phosphate synthase activity. Archives of Biochemistry and Biophysics, 1989, 270, 681-690.	3.0	168
41	Variation among Species in Light Activation of Sucrose-Phosphate Synthase. Plant and Cell Physiology, 1989, 30, 277-285.	3.1	122
42	Rapid and efficient method for the isolation and characterization of plant aromatic choline esterases. Journal of Chromatography A, 1988, 450, 121-131.	3.7	7
43	Distribution of dry matter in sweet pepper plants (Capsicum annuum L.) during the juvenile and generative growth phases. Scientia Horticulturae, 1988, 35, 179-187.	3.6	21