
Baohua Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6448138/publications.pdf Version: 2024-02-01

Влонил Ц

#	Article	IF	CITATIONS
1	Nonâ€Flammable Liquid and Quasiâ€Solid Electrolytes toward Highlyâ€Safe Alkali Metalâ€Based Batteries. Advanced Functional Materials, 2021, 31, 2008644.	14.9	127
2	Graphene-Based Materials with Tailored Nanostructures for Lithium-Ion Batteries. , 2021, , 473-490.		0
3	Hierarchical Porous Graphene Bubbles as Host Materials for Advanced Lithium Sulfur Battery Cathode. Frontiers in Chemistry, 2021, 9, 653476.	3.6	8
4	A synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries. Nature Communications, 2021, 12, 5746.	12.8	89
5	Quantification of the Li-ion diffusion over an interface coating in all-solid-state batteries via NMR measurements. Nature Communications, 2021, 12, 5943.	12.8	36
6	Impact of evolution of cathode electrolyte interface of Li(Ni0.8Co0.1Mn0.1)O2 on electrochemical performance during high voltage cycling process. Journal of Energy Chemistry, 2020, 47, 72-78.	12.9	20
7	Enabling flexible solid-state Zn batteries via tailoring sulfur deficiency in bimetallic sulfide nanotube arrays. Nano Energy, 2020, 77, 105165.	16.0	65
8	Selfâ€Healing Materials for Energy‣torage Devices. Advanced Functional Materials, 2020, 30, 1909912.	14.9	121
9	Deepâ€Eutecticâ€Solventâ€Based Selfâ€Healing Polymer Electrolyte for Safe and Longâ€Life Lithiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2020, 59, 9134-9142.	13.8	292
10	Quasi-Solid-State Dual-Ion Sodium Metal Batteries for Low-Cost Energy Storage. CheM, 2020, 6, 902-918.	11.7	137
11	Interconnected Ultrasmall V ₂ O ₃ and Li ₄ Ti ₅ O ₁₂ Particles Construct Robust Interfaces for Long-Cycling Anodes of Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 29993-30000.	8.0	12
12	An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy and Environmental Science, 2018, 11, 941-951.	30.8	731
13	Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors. Energy Storage Materials, 2018, 13, 96-102.	18.0	568
14	Waterproof and Tailorable Elastic Rechargeable Yarn Zinc Ion Batteries by a Cross-Linked Polyacrylamide Electrolyte. ACS Nano, 2018, 12, 3140-3148.	14.6	439
15	Deterioration mechanism of LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ /graphite–SiO _x power batteries under high temperature and discharge cycling conditions. Journal of Materials Chemistry A. 2018. 6. 65-72.	10.3	66
16	A room-temperature sodium–sulfur battery with high capacity and stable cycling performance. Nature Communications, 2018, 9, 3870.	12.8	367
17	A review of gassing behavior in Li ₄ Ti ₅ O ₁₂ -based lithium ion batteries. Journal of Materials Chemistry A, 2017, 5, 6368-6381.	10.3	157
18	A dual-functional gel-polymer electrolyte for lithium ion batteries with superior rate and safety performances. Journal of Materials Chemistry A, 2017, 5, 18888-18895.	10.3	85

#	Article	IF	CITATIONS
19	Twin-functional graphene oxide: compacting with Fe 2 O 3 into a high volumetric capacity anode for lithium ion battery. Energy Storage Materials, 2017, 6, 98-103.	18.0	74
20	Large Polarization of Li ₄ Ti ₅ O ₁₂ Lithiated to 0 V at Large Charge/Discharge Rates. ACS Applied Materials & Interfaces, 2016, 8, 18788-18796.	8.0	51
21	How a very trace amount of graphene additive works for constructing an efficient conductive network in LiCoO2-based lithium-ion batteries. Carbon, 2016, 103, 356-362.	10.3	87
22	An ultrafast, high capacity and superior longevity Ni/Zn battery constructed on nickel nanowire array film. Nano Energy, 2016, 30, 900-908.	16.0	188
23	Novel gel polymer electrolyte for high-performance lithium–sulfur batteries. Nano Energy, 2016, 22, 278-289.	16.0	382
24	The Effect of Potassium Impurities Deliberately Introduced into Activated Carbon Cathodes on the Performance of Lithium–Oxygen Batteries. ChemSusChem, 2015, 8, 4235-4241.	6.8	13
25	Suppression of interfacial reactions between Li4Ti5O12 electrode and electrolyte solution via zinc oxide coating. Electrochimica Acta, 2015, 157, 266-273.	5.2	51
26	Enhancement on Cycle Performance of Zn Anodes by Activated Carbon Modification for Neutral Rechargeable Zinc Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A1439-A1444.	2.9	164
27	Electrode thickness control: Precondition for quite different functions of graphene conductive additives in LiFePO4 electrode. Carbon, 2015, 92, 311-317.	10.3	42
28	Combining Fast Li-Ion Battery Cycling with Large Volumetric Energy Density: Grain Boundary Induced High Electronic and Ionic Conductivity in Li ₄ Ti ₅ O ₁₂ Spheres of Densely Packed Nanocrystallites. Chemistry of Materials, 2015, 27, 5647-5656.	6.7	142
29	Effects of state of charge on the degradation of LiFePO4/graphite batteries during accelerated storage test. Journal of Alloys and Compounds, 2015, 639, 406-414.	5.5	49
30	Hollow titanium dioxide spheres as anode material for lithium ion battery with largely improved rate stability and cycle performance by suppressing the formation of solid electrolyte interface layer. Journal of Materials Chemistry A, 2015, 3, 13340-13349.	10.3	71
31	Deterioration of lithium iron phosphate/graphite power batteries under high-rate discharge cycling. Electrochimica Acta, 2015, 176, 270-279.	5.2	59
32	Synthesis of Lithium Iron Phosphate/Carbon Microspheres by Using Polyacrylic Acid Coated Iron Phosphate Nanoparticles Derived from Iron(III) Acrylate. ChemSusChem, 2015, 8, 1009-1016.	6.8	31
33	Enhanced performance of interconnected LiFePO4/C microspheres with excellent multiple conductive network and subtle mesoporous structure. Electrochimica Acta, 2015, 152, 398-407.	5.2	75
34	Carbon coated porous tin peroxide/carbon composite electrode for lithium-ion batteries with excellent electrochemical properties. Carbon, 2015, 81, 739-747.	10.3	25
35	3D Hollow Sn@Carbon-Graphene Hybrid Material as Promising Anode for Lithium-Ion Batteries. Journal of Nanomaterials, 2014, 2014, 1-6.	2.7	5
36	Highly Crystalline Lithium Titanium Oxide Sheets Coated with Nitrogenâ€Doped Carbon enable Highâ€Rate Lithiumâ€Ion Batteries. ChemSusChem, 2014, 7, 2567-2574.	6.8	55

#	Article	IF	CITATIONS
37	Investigation of cyano resin-based gel polymer electrolyte: in situ gelation mechanism and electrode–electrolyte interfacial fabrication in lithium-ion battery. Journal of Materials Chemistry A, 2014, 2, 20059-20066.	10.3	92
38	Nanospace-confined formation of flattened Sn sheets in pre-seeded graphenes for lithium ion batteries. Nanoscale, 2014, 6, 9554-9558.	5.6	46
39	Tailoring Microstructure of Grapheneâ€Based Membrane by Controlled Removal of Trapped Water Inspired by the Phase Diagram. Advanced Functional Materials, 2014, 24, 3456-3463.	14.9	67
40	An interlaced silver vanadium oxide–graphene hybrid with high structural stability for use in lithium ion batteries. Chemical Communications, 2014, 50, 13447-13450.	4.1	26
41	High catalytic activity of anatase titanium dioxide for decomposition of electrolyte solution in lithium ion battery. Journal of Power Sources, 2014, 268, 882-886.	7.8	25
42	Lithium titanate hybridized with trace amount of graphene used as an anode for a high rate lithium ion battery. Electrochimica Acta, 2014, 142, 247-253.	5.2	11
43	Preparation and Characterization of MnO2/acid-treated CNT Nanocomposites for Energy Storage with Zinc Ions. Electrochimica Acta, 2014, 133, 254-261.	5.2	246
44	Co-electro-deposition of the MnO2–PEDOT:PSS nanostructured composite for high areal mass, flexible asymmetric supercapacitor devices. Journal of Materials Chemistry A, 2013, 1, 12432.	10.3	163
45	A unique carbon with a high specific surface area produced by the carbonization of agar in the presence of graphene. Chemical Communications, 2013, 49, 10427-10429.	4.1	52
46	Anomalous effect of K ions on electrochemical capacitance of amorphous MnO2. Journal of Power Sources, 2013, 234, 1-7.	7.8	36
47	LiFePO4/C composite with 3D carbon conductive network for rechargeable lithium ion batteries. Electrochimica Acta, 2013, 109, 512-518.	5.2	48
48	Experiments and modeling of thermal conductivity of flake graphite/polymer composites affected by adding carbon-based nano-fillers. Carbon, 2013, 57, 452-459.	10.3	56
49	The effect of graphene wrapping on the performance of LiFePO4 for a lithium ion battery. Carbon, 2013, 57, 530-533.	10.3	115
50	Flexible supercapacitors. Particuology, 2013, 11, 371-377.	3.6	92
51	Effect of solid electrolyte interface (SEI) film on cyclic performance of Li4Ti5O12 anodes for Li ion batteries. Journal of Power Sources, 2013, 239, 269-276.	7.8	223
52	Liâ€ion Reaction to Improve the Rate Performance of Nanoporous Anatase TiO ₂ Anodes. Energy Technology, 2013, 1, 668-674.	3.8	30
53	Modeling the in-plane thermal conductivity of a graphite/polymer composite sheet with a very high content of natural flake graphite. Carbon, 2012, 50, 5052-5061.	10.3	65
54	Preparation and characterization of manganese dioxides with nano-sized tunnel structures for zinc ion storage. Journal of Physics and Chemistry of Solids, 2012, 73, 1487-1491.	4.0	153

#	Article	IF	CITATIONS
55	Could graphene construct an effective conducting network in a high-power lithium ion battery?. Nano Energy, 2012, 1, 429-439.	16.0	185
56	The preparation of graphene decorated with manganese dioxide nanoparticles by electrostatic adsorption for use in supercapacitors. Carbon, 2012, 50, 5034-5043.	10.3	49
57	Gassing in Li4Ti5O12-based batteries and its remedy. Scientific Reports, 2012, 2, 913.	3.3	284
58	A graphene-based nanostructure with expanded ion transport channels for high rate Li-ion batteries. Chemical Communications, 2012, 48, 5904.	4.1	68
59	Inorganic-based sol–gel synthesis of nano-structured LiFePO4/C composite materials for lithium ion batteries. Journal of Solid State Electrochemistry, 2012, 16, 1353-1362.	2.5	29
60	pH-Mediated fine-tuning of optical properties of graphene oxide membranes. Carbon, 2012, 50, 3233-3239.	10.3	29
61	Carbon coating to suppress the reduction decomposition of electrolyte on the Li4Ti5O12 electrode. Journal of Power Sources, 2012, 202, 253-261.	7.8	142
62	Energetic Zinc Ion Chemistry: The Rechargeable Zinc Ion Battery. Angewandte Chemie - International Edition, 2012, 51, 933-935.	13.8	1,437
63	Surface-reconstructed graphite nanofibers as a support for cathode catalysts of fuel cells. Chemical Communications, 2011, 47, 3900.	4.1	21
64	Conductive graphene-based macroscopic membrane self-assembled at a liquid–air interface. Journal of Materials Chemistry, 2011, 21, 3359.	6.7	46
65	The Effect of Vanadium on Physicochemical and Electrochemical Performances of LiFePO[sub 4] Cathode for Lithium Battery. Journal of the Electrochemical Society, 2011, 158, A26.	2.9	64
66	Structural and thermal stabilities of layered Li(Ni1/3Co1/3Mn1/3)O2 materials in 18650 high power batteries. Journal of Power Sources, 2011, 196, 10322-10327.	7.8	40
67	The effect of pre-carbonization of mesophase pitch-based activated carbons on their electrochemical performance for electric double-layer capacitors. Journal of Solid State Electrochemistry, 2011, 15, 787-794.	2.5	22
68	Effects of current densities on the formation of LiCoO2/graphite lithium ion battery. Journal of Solid State Electrochemistry, 2011, 15, 1977-1985.	2.5	30
69	Porous graphitic carbons prepared by combining chemical activation with catalytic graphitization. Carbon, 2011, 49, 725-729.	10.3	131
70	Effects of tin doping on physicochemical and electrochemical performances of LiFe1â^'xSnxPO4/C (0â‰ ¤ â‰ 0 .07) composite cathode materials. Electrochimica Acta, 2011, 56, 7385-7391.	5.2	38
71	Charge storage mechanism of manganese dioxide for capacitor application: Effect of the mild electrolytes containing alkaline and alkaline-earth metal cations. Journal of Power Sources, 2011, 196, 7854-7859.	7.8	88
72	A study on charge storage mechanism of α-MnO2 by occupying tunnels with metal cations (Ba2+, K+). Journal of Power Sources, 2011, 196, 7860-7867.	7.8	49

#	Article	IF	CITATIONS
73	Preparation of mesophase-pitch-based activated carbons for electric double layer capacitors with high energy density. Microporous and Mesoporous Materials, 2010, 130, 224-228.	4.4	44
74	Structure and Electrochemical Properties of Zn-Doped Li[sub 4]Ti[sub 5]O[sub 12] as Anode Materials in Li-Ion Battery. Electrochemical and Solid-State Letters, 2010, 13, A36.	2.2	67
75	Flexible and planar graphene conductive additives for lithium-ion batteries. Journal of Materials Chemistry, 2010, 20, 9644.	6.7	276
76	Recent progress on manganese dioxide based supercapacitors. Journal of Materials Research, 2010, 25, 1421-1432.	2.6	236
77	Reversible Insertion Properties of Zinc Ion into Manganese Dioxide and Its Application for Energy Storage. Electrochemical and Solid-State Letters, 2009, 12, A61.	2.2	99
78	High loading of Pt–Ru nanocatalysts by pentagon defects introduced in a bamboo-shaped carbon nanotube support for high performance anode of direct methanol fuel cells. Electrochemistry Communications, 2009, 11, 355-358.	4.7	35
79	Capacitive Behavior and Charge Storage Mechanism of Manganese Dioxide in Aqueous Solution Containing Bivalent Cations. Journal of the Electrochemical Society, 2009, 156, A73.	2.9	86
80	Asymmetric Activated Carbon-Manganese Dioxide Capacitors in Mild Aqueous Electrolytes Containing Alkaline-Earth Cations. Journal of the Electrochemical Society, 2009, 156, A435.	2.9	109
81	Electrochemical properties of nanosized hydrous manganese dioxide synthesized by a self-reacting microemulsion method. Journal of Power Sources, 2008, 180, 664-670.	7.8	128
82	The influences of multi-walled carbon nanotube addition to the anode on the performance of direct methanol fuel cells. Journal of Power Sources, 2008, 184, 381-384.	7.8	13
83	Supercapacitive studies on amorphous MnO2 in mild solutions. Journal of Power Sources, 2008, 184, 691-694.	7.8	81
84	Enhanced oxygen reduction performance of Pt catalysts by nano-loops formed on the surface of carbon nanofiber support. Carbon, 2008, 46, 2140-2143.	10.3	10
85	Influences of Mesopore Size on Oxygen Reduction Reaction Catalysis of Pt/Carbon Aerogels. Journal of Physical Chemistry C, 2007, 111, 2040-2043.	3.1	65
86	Carbon aerogel supported Pt–Ru catalysts for using as the anode of direct methanol fuel cells. Carbon, 2007, 45, 429-435.	10.3	99