
Andreas Agathangelidis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6447574/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stereotyped B-cell receptors in one-third of chronic lymphocytic leukemia: a molecular classification with implications for targeted therapies. Blood, 2012, 119, 4467-4475.	1.4	350
2	Recurrent mutations refine prognosis in chronic lymphocytic leukemia. Leukemia, 2015, 29, 329-336.	7.2	253
3	Molecular Subsets of Mantle Cell Lymphoma Defined by the <i>IGHV</i> Mutational Status and SOX11 Expression Have Distinct Biologic and Clinical Features. Cancer Research, 2012, 72, 5307-5316.	0.9	231
4	A complementary role of multiparameter flow cytometry and high-throughput sequencing for minimal residual disease detection in chronic lymphocytic leukemia: an European Research Initiative on CLL study. Leukemia, 2016, 30, 929-936.	7.2	200
5	Is there a role for antigen selection in mantle cell lymphoma? Immunogenetic support from a series of 807 cases. Blood, 2011, 118, 3088-3095.	1.4	149
6	Whole-exome sequencing in relapsing chronic lymphocytic leukemia: clinical impact of recurrent RPS15 mutations. Blood, 2016, 127, 1007-1016.	1.4	130
7	Antigen receptor stereotypy in chronic lymphocytic leukemia. Leukemia, 2017, 31, 282-291.	7.2	122
8	Immunoglobulin gene sequence analysis in chronic lymphocytic leukemia: updated ERIC recommendations. Leukemia, 2017, 31, 1477-1481.	7.2	118
9	Clinical effect of stereotyped B-cell receptor immunoglobulins in chronic lymphocytic leukaemia: a retrospective multicentre study. Lancet Haematology,the, 2014, 1, e74-e84.	4.6	93
10	Distinct homotypic B-cell receptor interactions shape the outcome of chronic lymphocytic leukaemia. Nature Communications, 2017, 8, 15746.	12.8	93
11	Distinct patterns of novel gene mutations in poor-prognostic stereotyped subsets of chronic lymphocytic leukemia: the case of SF3B1 and subset #2. Leukemia, 2013, 27, 2196-2199.	7.2	90
12	Molecular evidence for EBV and CMV persistence in a subset of patients with chronic lymphocytic leukemia expressing stereotyped IGHV4-34 B-cell receptors. Leukemia, 2009, 23, 919-924.	7.2	72
13	Higher-order connections between stereotyped subsets: implications for improved patient classification in CLL. Blood, 2021, 137, 1365-1376.	1.4	72
14	Not all IGHV3-21 chronic lymphocytic leukemias are equal: prognostic considerations. Blood, 2015, 125, 856-859.	1.4	70
15	Different spectra of recurrent gene mutations in subsets of chronic lymphocytic leukemia harboring stereotyped B-cell receptors. Haematologica, 2016, 101, 959-967.	3.5	57
16	Immunogenetic Studies of Chronic Lymphocytic Leukemia: Revelations and Speculations about Ontogeny and Clinical Evolution. Cancer Research, 2014, 74, 4211-4216.	0.9	47
17	Highly similar genomic landscapes in monoclonal B-cell lymphocytosis and ultra-stable chronic lymphocytic leukemia with low frequency of driver mutations. Haematologica, 2018, 103, 865-873.	3.5	47
18	Prognostic impact of prevalent chronic lymphocytic leukemia stereotyped subsets: analysis within prospective clinical trials of the German CLL Study Group (GCLLSG). Haematologica, 2020, 105, 2598-2607.	3.5	44

#	Article	IF	CITATIONS
19	ARResT/AssignSubsets: a novel application for robust subclassification of chronic lymphocytic leukemia based on B cell receptor IG stereotypy. Bioinformatics, 2015, 31, 3844-3846.	4.1	43
20	Antigen Selection Shapes the T-cell Repertoire in Chronic Lymphocytic Leukemia. Clinical Cancer Research, 2016, 22, 167-174.	7.0	43
21	Tailored approaches grounded on immunogenetic features for refined prognostication in chronic lymphocytic leukemia. Haematologica, 2019, 104, 360-369.	3.5	42
22	Antigen selection in B-cell lymphomas—Tracing the evidence. Seminars in Cancer Biology, 2013, 23, 399-409.	9.6	38
23	Immunoglobulin gene sequence analysis in chronic lymphocytic leukemia: the 2022 update of the recommendations by ERIC, the European Research Initiative on CLL. Leukemia, 2022, 36, 1961-1968.	7.2	34
24	Prognostic relevance of MYD88 mutations in CLL: the jury is still out. Blood, 2015, 126, 1043-1044.	1.4	32
25	A Systematic Search Into The Role Of IGHV Gene Replacement In Shaping The Immunoglobulin Repertoire Of Chronic Lymphocytic Leukemia. Blood, 2013, 122, 4129-4129.	1.4	30
26	The histone methyltransferase EZH2 as a novel prosurvival factor in clinically aggressive chronic lymphocytic leukemia. Oncotarget, 2016, 7, 35946-35959.	1.8	29
27	Immunoglobulin genes in chronic lymphocytic leukemia: key to understanding the disease and improving risk stratification. Haematologica, 2017, 102, 968-971.	3.5	28
28	lgG-Switched CLL Has a Distinct Immunogenetic Signature from the Common MD Variant: Ontogenetic Implications. Clinical Cancer Research, 2014, 20, 323-330.	7.0	27
29	Chronic Lymphocytic Leukemia with Mutated IGHV4-34 Receptors: Shared and Distinct Immunogenetic Features and Clinical Outcomes. Clinical Cancer Research, 2017, 23, 5292-5301.	7.0	27
30	B Cell Receptor Immunogenetics in B Cell Lymphomas: Immunoglobulin Genes as Key to Ontogeny and Clinical Decision Making. Frontiers in Oncology, 2020, 10, 67.	2.8	26
31	Whole-Exome Sequencing Revealed No Recurrent Mutations within the PI3K Pathway in Relapsed Chronic Lymphocytic Leukemia Patients Progressing Under Idelalisib Treatment. Blood, 2016, 128, 2770-2770.	1.4	26
32	Diseaseâ€biased and shared characteristics of the immunoglobulin gene repertoires in marginal zone B cell lymphoproliferations. Journal of Pathology, 2019, 247, 416-421.	4.5	25
33	Stereotyped B-cell receptors in chronic lymphocytic leukemia. Leukemia and Lymphoma, 2014, 55, 2252-2261.	1.3	21
34	Distinct molecular genetics of chronic lymphocytic leukemia in Taiwan: clinical and pathogenetic implications. Haematologica, 2017, 102, 1085-1090.	3.5	21
35	Immunoglobulin heavy variable (IGHV) genes and alleles: new entities, new names and implications for research and prognostication in chronic lymphocytic leukaemia. Immunogenetics, 2015, 67, 61-66.	2.4	20
36	High-risk subtypes of chronic lymphocytic leukemia are detectable as early as 16 years prior to diagnosis. Blood, 2022, 139, 1557-1563.	1.4	20

#	Article	IF	CITATIONS
37	Toll-like receptor stimulation in splenic marginal zone lymphoma can modulate cell signaling, activation and proliferation. Haematologica, 2015, 100, 1460-1468.	3.5	19
38	IMMUNOGLOBULIN GENE REPERTOIRE IN CHRONIC LYMPHOCYTIC LEUKEMIA: INSIGHT INTO ANTIGEN SELECTION AND MICROENVIRONMENTAL INTERACTIONS. Mediterranean Journal of Hematology and Infectious Diseases, 2012, 4, e2012052.	1.3	18
39	The frequency of <i><scp>TP</scp>53</i> gene defects differs between chronic lymphocytic leukaemia subgroups harbouring distinct antigen receptors. British Journal of Haematology, 2014, 166, 621-625.	2.5	17
40	An Immunogenetic Signature of Ongoing Antigen Interactions in Splenic Marginal Zone Lymphoma Expressing IGHV1-2*04 Receptors. Clinical Cancer Research, 2016, 22, 2032-2040.	7.0	17
41	Stereotyped B Cell Receptor Immunoglobulins in B Cell Lymphomas. Methods in Molecular Biology, 2019, 1956, 139-155.	0.9	17
42	Tracing CLL-biased stereotyped immunoglobulin gene rearrangements in normal B cell subsets using a high-throughput immunogenetic approach. Molecular Medicine, 2020, 26, 25.	4.4	17
43	Unlocking the secrets of immunoglobulin receptors in mantle cell lymphoma: Implications for the origin and selection of the malignant cells. Seminars in Cancer Biology, 2011, 21, 299-307.	9.6	16
44	No improvement in long-term survival over time for chronic lymphocytic leukemia patients in stereotyped subsets #1 and #2 treated with chemo(immuno)therapy. Haematologica, 2018, 103, e158-e161.	3.5	16
45	Molecular Evidence for Antigen Drive in the Natural History of Mantle Cell Lymphoma. American Journal of Pathology, 2015, 185, 1740-1748.	3.8	13
46	High-Throughput immunogenetics for precision medicine in cancer. Seminars in Cancer Biology, 2022, 84, 80-88.	9.6	12
47	Partial versus Productive Immunoglobulin Heavy Locus Rearrangements in Chronic Lymphocytic Leukemia: Implications for B-Cell Receptor Stereotypy. Molecular Medicine, 2012, 18, 138-145.	4.4	11
48	Numerous Ontogenetic Roads to Mantle Cell Lymphoma. American Journal of Pathology, 2017, 187, 1454-1458.	3.8	11
49	TRIP - T cell receptor/immunoglobulin profiler. BMC Bioinformatics, 2020, 21, 422.	2.6	11
50	Understanding Monoclonal B Cell Lymphocytosis: An Interplay of Genetic and Microenvironmental Factors. Frontiers in Oncology, 2021, 11, 769612.	2.8	10
51	Automated shape-based clustering of 3D immunoglobulin protein structures in chronic lymphocytic leukemia. BMC Bioinformatics, 2018, 19, 414.	2.6	9
52	Secondary resistance to idelalisib is characterized by upregulation of IGF1R rather than by MAPK/ERK pathway mutations. Blood, 2022, 139, 3340-3344.	1.4	9
53	Establishment and Characterization of PCL12, a Novel CD5+ Chronic Lymphocytic Leukaemia Cell Line. PLoS ONE, 2015, 10, e0130195.	2.5	8
54	Infrequent "chronic lymphocytic leukemia-specific―immunoglobulin stereotypes in aged individuals with or without low-count monoclonal B-cell lymphocytosis. Haematologica, 2021, 106, 1178-1181.	3.5	8

#	Article	IF	CITATIONS
55	A gene is known by the company it keeps: enrichment of <i>TNFAIP3</i> gene aberrations in MALT lymphomas expressing IGHV4-34 antigen receptors. Journal of Pathology, 2017, 243, 403-406.	4.5	7
56	Immunoglobulin Gene Sequence Analysis In Chronic Lymphocytic Leukemia: From Patient Material To Sequence Interpretation. Journal of Visualized Experiments, 2018, , .	0.3	6
57	B Cell Receptor and Antigens in CLL. Advances in Experimental Medicine and Biology, 2013, 792, 1-24.	1.6	6
58	T Cell Receptor Gene Repertoire Restriction in Chronic Lymphocytic Leukemia with Stereotyped IGHV4–34/IGKV2–30 Antigen Receptors. Blood, 2012, 120, 3908-3908.	1.4	6
59	Subset-Specific Spectra of Recurrent Gene Mutations in Chronic Lymphocytic Leukemia with Stereotyped B-Cell Receptors. Blood, 2014, 124, 3320-3320.	1.4	6
60	Consistent B Cell Receptor Immunoglobulin Features Between Siblings in Familial Chronic Lymphocytic Leukemia. Frontiers in Oncology, 2021, 11, 740083.	2.8	5
61	Remarkable Functional Constraints on the Antigen Receptors of CLL Stereotyped Subset #2: High-Throughput Immunogenetic Evidence. Blood, 2018, 132, 1839-1839.	1.4	5
62	Dichotomous Toll-like receptor responses in chronic lymphocytic leukemia patients under ibrutinib treatment. Leukemia, 2019, 33, 1030-1051.	7.2	4
63	Distinct Immunogenetic Signatures in IgA Versus IgG Multiple Myeloma. Blood, 2016, 128, 2062-2062.	1.4	4
64	High-throughput analysis of the T cell receptor gene repertoire in low-count monoclonal B cell lymphocytosis reveals a distinct profile from chronic lymphocytic leukemia. Haematologica, 2020, 105, e515.	3.5	3
65	The Significance of B-cell Receptor Stereotypy in Chronic Lymphocytic Leukemia. Hematology/Oncology Clinics of North America, 2021, 35, 687-702.	2.2	3
66	VH CDR3-Focused Somatic Hypermutation in CLL IGHV-IGHD-IGHJ Gene Rearrangements with 100% IGHV Germline Identity. Blood, 2019, 134, 4277-4277.	1.4	3
67	Chronic Lymphocytic Leukemia Patients with IGHV Genes Carrying Only Silent Mutations Have A Longer Time From Diagnosis to Initial Therapy Than Patients Expressing B-Cell Receptors with No Somatic Mutations. Blood, 2011, 118, 288-288.	1.4	3
68	High-Throughput T Cell Receptor (TR) Repertoire Analysis of Virus-Specific T Cells: Implications for T Cell Immunotherapy and Viral Infection Risk Stratification. Blood, 2018, 132, 2057-2057.	1.4	3
69	Immunoglobulin Gene Analysis in Chronic Lymphocytic Leukemia. Methods in Molecular Biology, 2019, 1881, 51-62.	0.9	2
70	The Pathogenesis of Multiple Myeloma (MM) Is Preceded By Mutated Lymphopoiesis and B Cell Oligoclonality That Persist in Patients with Negative Minimal Residual Disease (MRD). Blood, 2019, 134, 509-509.	1.4	2
71	Discordances between Immunofixation (IFx) and Minimal Residual Disease (MRD) Assessment with Next-Generation Flow (NGF) and Sequencing (NGS) in Patients (Pts) with Multiple Myeloma (MM): Clinical and Pathogenic Significance. Blood, 2020, 136, 5-6.	1.4	2
72	Unique Versus Common: Disease-Biased Immunoglobulin Gene Repertoires Along with Public Antigen Receptor Stereotypes in Marginal Zone B-Cell Lymphoproliferations. Blood, 2015, 126, 1479-1479.	1.4	2

#	Article	IF	CITATIONS
73	Profiling the Genomic Landscape at the Early Stages of CLL: Low Genomic Complexity and Paucity of Driver Mutations in MBL and Indolent CLL. Blood, 2016, 128, 3214-3214.	1.4	2
74	Automated Clustering Analysis of Immunoglobulin Sequences in Chronic Lymphocytic Leukemia Based on 3D Structural Descriptors. Blood, 2016, 128, 4365-4365.	1.4	2
75	Evidence for Epitope-Specific T Cell Responses in HIV-Associated Non Neoplastic Lymphadenopathy: High-Throughput Immunogenetic Evidence. Blood, 2018, 132, 1117-1117.	1.4	2
76	The Clonotypic BCR IG of CLL Patients Contain Predicted T-Cell Class I Epitopes with Shared Structural Properties. Blood, 2021, 138, 1540-1540.	1.4	2
77	Integrating multiple immunogenetic data sources for feature extraction and mining somatic hypermutation patterns: the case of "towards analysis―in chronic lymphocytic leukaemia. BMC Bioinformatics, 2016, 17, 173.	2.6	1
78	Differential Distribution Of Recurrent Gene Mutations In Subsets Of Chronic Lymphocytic Leukemia Patients With Stereotyped B-Cell Receptors: Results From A Multicenter Project Of The European Research Initiative On CLL In A Series Of 2482 Cases. Blood, 2013, 122, 4113-4113.	1.4	1
79	Reappraising Immunoglobulin Repertoire Restrictions in Chronic Lymphocytic Leukemia: Focus on Major Stereotyped Subsets and Closely Related Satellites. Blood, 2016, 128, 4376-4376.	1.4	1
80	Higher Order Restrictions of the Immunoglobulin Repertoire in CLL: The Illustrative Case of Stereotyped Subsets #2 and #169. Blood, 2019, 134, 5453-5453.	1.4	1
81	3D Protein-Structure-Oriented Discovery of Clinical Relation Across Chronic Lymphocytic Leukemia Patients. Lecture Notes in Computer Science, 2017, , 139-150.	1.3	Ο
82	Novel Gene Mutations In Chronic Lymphocytic Leukemia: Prevalence and Clinical Implications In A Series Of 3185 Cases - Initial Results From The European Research Initiative On CLL. Blood, 2013, 122, 1614-1614.	1.4	0
83	Overexpression of the Histone Methyltransferase ΕΖΖ2 in Chronic Lymphocytic Leukemia Confers Protection from Apoptosis and Is Linked to Clinical Aggressiveness. Blood, 2014, 124, 1956-1956.	1.4	0
84	Charting Unique Signatures of Somatic Hypermutation Amongst Chronic Lymphocytic Leukemia Patients Expressing IGHV4-34 Clonotypic B Cell Receptors. Blood, 2014, 124, 1969-1969.	1.4	0
85	How Many Ontogenetic Roads to Mantle-Cell Lymphoma? Immunogenetic and Immunohistochemical Evidence. Blood, 2014, 124, 3005-3005.	1.4	Ο
86	Clinical Impact of Stereotyped Antigen Receptors in Chronic Lymphocytic Leukemia. Blood, 2014, 124, 3280-3280.	1.4	0
87	Chystallographic Evidence of Autologous Recognition By a Clonotypic B Cell Receptor in Chronic Lymphocytic Leukemia. Blood, 2015, 126, 4129-4129.	1.4	Ο
88	CLL with Mutated IGHV4-34 Antigen Receptors Is Clinically Heterogeneous: Antigen Receptor Stereotypy Makes the Difference. Blood, 2015, 126, 5263-5263.	1.4	0
89	Tailored Approaches for Refined Prognostication in Chronic Lymphocytic Leukemia Patients with Mutated Versus Unmutated Immunoglobulin Receptors. Blood, 2016, 128, 3199-3199.	1.4	Ο
90	IGHV Gene Replacement: A Potential Mechanism for Establishing Stereotypy in Certain Cases of Chronic Lymphocytic Leukemia. Blood, 2018, 132, 1841-1841.	1.4	0

#	Article	IF	CITATIONS
91	The B cell receptor in marginal zone lymphoma ontogeny and evolution. Annals of Lymphoma, 0, 4, 10-10.	4.5	Ο
92	Distinct Modes of Ongoing Antigen Interactions Shape Intraclonal Dynamics in Splenic Marginal Zone Lymphoma. Blood, 2021, 138, 1330-1330.	1.4	0