Penghui Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6446718/publications.pdf

Version: 2024-02-01

28 papers

1,359 citations

471509 17 h-index 27 g-index

28 all docs 28 docs citations

28 times ranked 1612 citing authors

#	Article	IF	CITATIONS
1	Bio-inspired hydrogel-based bandage with robust adhesive and antibacterial abilities for skin closure. Science China Materials, 2022, 65, 246-254.	6.3	13
2	Dynamic regulable sodium alginate/poly(\hat{l}^3 -glutamic acid) hybrid hydrogels promoted chondrogenic differentiation of stem cells. Carbohydrate Polymers, 2022, 275, 118692.	10.2	16
3	Ascidian-inspired aciduric hydrogels with high stretchability and adhesiveness promote gastric hemostasis and wound healing. Biomaterials Science, 2022, 10, 2417-2427.	5.4	15
4	Adaptive injectable carboxymethyl cellulose/poly (\hat{l}^3 -glutamic acid) hydrogels promote wound healing. , 2022, 136, 212753.		6
5	Bio-fabricated nanocomposite hydrogel with ROS scavenging and local oxygenation accelerates diabetic wound healing. Journal of Materials Chemistry B, 2022, 10, 4083-4095.	5.8	23
6	Biomimetic poly(\hat{l}^3 -glutamic acid) hydrogels based on iron (III) ligand coordination for cartilage tissue engineering. International Journal of Biological Macromolecules, 2021, 167, 1508-1516.	7.5	24
7	Injectable Hyaluronic Acid/Poly(\hat{l}^3 -glutamic acid) Hydrogel with Step-by-step Tunable Properties for Soft Tissue Engineering. Chinese Journal of Polymer Science (English Edition), 2021, 39, 957-965.	3.8	10
8	Injectable adaptive self-healing hyaluronic acid/poly (\hat{l}^3 -glutamic acid) hydrogel for cutaneous wound healing. Acta Biomaterialia, 2021, 127, 102-115.	8.3	83
9	Bioinspired mineral-polymeric hybrid hyaluronic acid/poly (\hat{l}^3 -glutamic acid) hydrogels as tunable scaffolds for stem cells differentiation. Carbohydrate Polymers, 2021, 264, 118048.	10.2	14
10	3D-printed antioxidant antibacterial carboxymethyl cellulose $\hat{\mu}$ -polylysine hydrogel promoted skin wound repair. International Journal of Biological Macromolecules, 2021, 187, 91-104.	7. 5	61
11	Gradient chondroitin sulfate/poly (\hat{I}^3 -glutamic acid) hydrogels inducing differentiation of stem cells for cartilage tissue engineering. Carbohydrate Polymers, 2021, 270, 118330.	10.2	22
12	Mechanoadaptive injectable hydrogel based on poly(\hat{l}^3 -glutamic acid) and hyaluronic acid regulates fibroblast migration for wound healing. Carbohydrate Polymers, 2021, 273, 118607.	10.2	38
13	Bioinspired poly (γ-glutamic acid) hydrogels for enhanced chondrogenesis of bone marrow-derived mesenchymal stem cells. International Journal of Biological Macromolecules, 2020, 142, 332-344.	7.5	48
14	pH-responsive nanomicelles of poly(ethylene glycol)-poly(Îμ-caprolactone)-poly(L-histidine) for targeted drug delivery. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 277-292.	3.5	14
15	Thermosensitive nanoparticle of mPEG-PTMC for oligopeptide delivery into osteoclast precursors. Journal of Bioactive and Compatible Polymers, 2020, 35, 426-434.	2.1	1
16	Mussel-Inspired Dual-Cross-linking Hyaluronic Acid/ $\hat{l}\mu$ -Polylysine Hydrogel with Self-Healing and Antibacterial Properties for Wound Healing. ACS Applied Materials & amp; Interfaces, 2020, 12, 27876-27888.	8.0	144
17	Covalently Adaptable Hydrogel Based on Hyaluronic Acid and Poly(γ-glutamic acid) for Potential Load-Bearing Tissue Engineering. ACS Applied Bio Materials, 2020, 3, 4036-4043.	4.6	16
18	Boron-assisted dual-crosslinked poly (\hat{l}^3 -glutamic acid) hydrogels with high toughness for cartilage regeneration. International Journal of Biological Macromolecules, 2020, 153, 158-168.	7.5	17

#	Article	lF	CITATIONS
19	Bionic Poly(γâ€Glutamic Acid) Electrospun Fibrous Scaffolds for Preventing Hypertrophic Scars. Advanced Healthcare Materials, 2019, 8, e1900123.	7.6	51
20	Extraction, Partial Identification and Bioactivities of Total Flavonoids from <i>Carex meyeriana </i> Kunth. American Journal of Biochemistry and Biotechnology, 2019, 15, 125-137.	0.4	1
21	Microwave-assisted extraction releases the antioxidant polysaccharides from seabuckthorn (Hippophae rhamnoides L.) berries. International Journal of Biological Macromolecules, 2019, 123, 280-290.	7.5	83
22	Injectable hydrogels based on the hyaluronic acid and poly (\hat{l}^3 -glutamic acid) for controlled protein delivery. Carbohydrate Polymers, 2018, 179, 100-109.	10.2	91
23	Extraction, characterization and in vitro antioxidant activity of polysaccharides from Carex meyeriana Kunth using different methods. International Journal of Biological Macromolecules, 2018, 120, 2155-2164.	7.5	54
24	In situ photocrosslinked hyaluronic acid and poly (Î ³ -glutamic acid) hydrogels as injectable drug carriers for load-bearing tissue application. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 2252-2266.	3.5	21
25	A Biomimetic Musselâ€Inspired εâ€Polyâ€∢scp>lâ€lysine Hydrogel with Robust Tissueâ€Anchor and Antiâ€Infection Capacity. Advanced Functional Materials, 2017, 27, 1604894.	14.9	342
26	A mussel-inspired poly(\hat{l}^3 -glutamic acid) tissue adhesive with high wet strength for wound closure. Journal of Materials Chemistry B, 2017, 5, 5668-5678.	5.8	92
27	Enzymatically crosslinked epsilon-poly- <scp>l</scp> -lysine hydrogels with inherent antibacterial properties for wound infection prevention. RSC Advances, 2016, 6, 8620-8627.	3.6	53
28	Supramolecular assemblies of histidinylated \hat{l}^2 -cyclodextrin for enhanced oligopeptide delivery into osteoclast precursors. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 490-504.	3.5	6