

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6445760/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Application of diffusive gradients in thin-films technique for speciation, bioavailability, modeling and mapping of nutrients and contaminants in soils. Critical Reviews in Environmental Science and Technology, 2022, 52, 3035-3079.	12.8	27
2	Cadmium oral bioavailability is affected by calcium and phytate contents in food: Evidence from leafy vegetables in mice. Journal of Hazardous Materials, 2022, 424, 127373.	12.4	8
3	Novel phytase PvPHY1 from the As-hyperaccumulator Pteris vittata enhances P uptake and phytate hydrolysis, and inhibits As translocation in Plant. Journal of Hazardous Materials, 2022, 423, 127106.	12.4	8
4	Geographical distribution of As-hyperaccumulator Pteris vittata in China: Environmental factors and climate changes. Science of the Total Environment, 2022, 803, 149864.	8.0	28
5	Nanotoxicological effects and transcriptome mechanisms of wheat (Triticum aestivum L.) under stress of polystyrene nanoplastics. Journal of Hazardous Materials, 2022, 423, 127241.	12.4	69
6	Selenate increased plant growth and arsenic uptake in As-hyperaccumulator Pteris vittata via glutathione-enhanced arsenic reduction and translocation. Journal of Hazardous Materials, 2022, 424, 127581.	12.4	19
7	Coupling in vitro assays with sequential extraction to investigate cadmium bioaccessibility in contaminated soils. Chemosphere, 2022, 288, 132655.	8.2	12
8	Amine- and thiol-bifunctionalized mesoporous silica material for immobilization of Pb and Cd: Characterization, efficiency, and mechanism. Chemosphere, 2022, 291, 132771.	8.2	16
9	Arsenic and selenium in the plant-soil-human ecosystem: CREST publications during 2018–2021. Critical Reviews in Environmental Science and Technology, 2022, 52, 3567-3572.	12.8	6
10	Prenatal and postnatal exposure to emerging and legacy per-/polyfluoroalkyl substances: Levels and transfer in maternal serum, cord serum, and breast milk. Science of the Total Environment, 2022, 812, 152446.	8.0	52
11	Effects of soil-extractable metals Cd and Ni from an e-waste dismantling site on human colonic epithelial cells Caco-2: Mechanisms and implications. Chemosphere, 2022, 292, 133361.	8.2	9
12	Pollution characteristics and source analysis of microplastics in the Qiantang River in southeastern China. Chemosphere, 2022, 293, 133576.	8.2	63
13	Nrf2/Keap1 pathway in countering arsenic-induced oxidative stress in mice after chronic exposure at environmentally-relevant concentrations. Chemosphere, 2022, 303, 135256.	8.2	11
14	Enhancing Phytate Availability in Soils and Phytate-P Acquisition by Plants: A Review. Environmental Science & Technology, 2022, 56, 9196-9219.	10.0	36
15	Progresses and emerging trends of arsenic research in the past 120 years. Critical Reviews in Environmental Science and Technology, 2021, 51, 1306-1353.	12.8	37
16	Impacts of metallic nanoparticles and transformed products on soil health. Critical Reviews in Environmental Science and Technology, 2021, 51, 973-1002.	12.8	26
17	Sequential fractionation and plant uptake of As, Cu, and Zn in a contaminated riparian wetland. Environmental Pollution, 2021, 268, 115734.	7.5	9
18	Methyl jasmonate mitigates high selenium damage of rice via altering antioxidant capacity, selenium transportation and gene expression. Science of the Total Environment, 2021, 756, 143848.	8.0	13

#	Article	IF	CITATIONS
19	Mechanisms of Cd and Cu induced toxicity in human gastric epithelial cells: Oxidative stress, cell cycle arrest and apoptosis. Science of the Total Environment, 2021, 756, 143951.	8.0	58
20	Expressing Phosphate Transporter PvPht2;1 Enhances P Transport to the Chloroplasts and Increases Arsenic Tolerance in <i>Arabidopsis thaliana</i> . Environmental Science & Technology, 2021, 55, 2276-2284.	10.0	13
21	Long-Term Manure Application Changes Bacterial Communities in Rice Rhizosphere and Arsenic Speciation in Rice Grains. Environmental Science & Technology, 2021, 55, 1555-1565.	10.0	54
22	Attapulgite and processed oyster shell powder effectively reduce cadmium accumulation in grains of rice growing in a contaminated acidic paddy field. Ecotoxicology and Environmental Safety, 2021, 209, 111840.	6.0	21
23	Key soil parameters affecting the survival of Panax notoginseng under continuous cropping. Scientific Reports, 2021, 11, 5656.	3.3	7
24	Warming facilitates microbial reduction and release of arsenic in flooded paddy soil and arsenic accumulation in rice grains. Journal of Hazardous Materials, 2021, 408, 124913.	12.4	22
25	New measures in 2021 to increase the quality and reputation of the Critical Review in Environmental Science and Technology (CREST) journal. Critical Reviews in Environmental Science and Technology, 2021, 51, 1303-1305.	12.8	3
26	An interlaboratory evaluation of the variability in arsenic and lead relative bioavailability when assessed using a mouse bioassay. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2021, 84, 593-607.	2.3	6
27	Increase in arsenic methylation and volatilization during manure composting with biochar amendment in an aeration bioreactor. Journal of Hazardous Materials, 2021, 411, 125123.	12.4	11
28	Antibiotic exposure decreases soil arsenic oral bioavailability in mice by disrupting ileal microbiota and metabolic profile. Environment International, 2021, 151, 106444.	10.0	26
29	Arsenic bioaccessibility in rice grains via modified physiologically-based extraction test (MPBET): Correlation with mineral elements and comparison with As relative bioavailability. Environmental Research, 2021, 198, 111198.	7.5	14
30	Enhancing phytoremediation of hazardous metal(loid)s using genome engineering CRISPR–Cas9 technology. Journal of Hazardous Materials, 2021, 414, 125493.	12.4	74
31	Novel PvACR3;2 and PvACR3;3 genes from arsenic-hyperaccumulator Pteris vittata and their roles in manipulating plant arsenic accumulation. Journal of Hazardous Materials, 2021, 415, 125647.	12.4	25
32	Total and bioaccessible heavy metals in cabbage from major producing cities in Southwest China: health risk assessment and cytotoxicity. RSC Advances, 2021, 11, 12306-12314.	3.6	21
33	Organoarsenical compounds: Occurrence, toxicology and biotransformation. Critical Reviews in Environmental Science and Technology, 2020, 50, 217-243.	12.8	39
34	Aquaporins mediated arsenite transport in plants: Molecular mechanisms and applications in crop improvement. Critical Reviews in Environmental Science and Technology, 2020, 50, 1613-1639.	12.8	28
35	Novel in situ method based on diffusive gradients in thin-films with lanthanum oxide nanoparticles for measuring As, Sb, and V and in waters. Journal of Hazardous Materials, 2020, 383, 121196.	12.4	14
36	Arsanilic acid contributes more to total arsenic than roxarsone in chicken meat from Chinese markets. Journal of Hazardous Materials, 2020, 383, 121178.	12.4	28

#	Article	IF	CITATIONS
37	Arsenic, lead, and cadmium bioaccessibility in contaminated soils: Measurements and validations. Critical Reviews in Environmental Science and Technology, 2020, 50, 1303-1338.	12.8	82
38	Expression of New <i>Pteris vittata</i> Phosphate Transporter PvPht1;4 Reduces Arsenic Translocation from the Roots to Shoots in Tobacco Plants. Environmental Science & Technology, 2020, 54, 1045-1053.	10.0	46
39	Comparison of in vitro models in a mice model and investigation of the changes in Pb speciation during Pb bioavailability assessments. Journal of Hazardous Materials, 2020, 388, 121744.	12.4	13
40	Arsenic accumulation and distribution in Pteris vittata fronds of different maturity: Impacts of soil As concentrations. Science of the Total Environment, 2020, 715, 135298.	8.0	19
41	Response to comment on "closely-related species of hyperaccumulating plants and their ability in accumulation of As, Cd, Cu, Mn, Ni, Pb and Zn― Chemosphere, 2020, 260, 128037.	8.2	1
42	Organophosphorus flame retardant TDCPP-induced cytotoxicity and associated mechanisms in normal human skin keratinocytes. Science of the Total Environment, 2020, 726, 138526.	8.0	14
43	Efficient arsenate reduction in As-hyperaccumulator Pteris vittata are mediated by novel arsenate reductases PvHAC1 and PvHAC2. Journal of Hazardous Materials, 2020, 399, 122895.	12.4	26
44	Background concentrations of trace metals As, Ba, Cd, Co, Cu, Ni, Pb, Se, and Zn in 214 Florida urban soils: Different cities and land uses. Environmental Pollution, 2020, 264, 114737.	7.5	54
45	Lead bioavailability in different fractions of mining- and smelting-contaminated soils based on a sequential extraction and mouse kidney model. Environmental Pollution, 2020, 262, 114253.	7.5	18
46	Using rice as a remediating plant to deplete bioavailable arsenic from paddy soils. Environment International, 2020, 141, 105799.	10.0	26
47	Polycyclic aromatic hydrocarbons in processed yard trash. Waste Management and Research, 2020, 38, 825-830.	3.9	5
48	Geogenic nickel exposure from food consumption and soil ingestion: A bioavailability based assessment. Environmental Pollution, 2020, 265, 114873.	7.5	11
49	The Influence of Food on the <i>In Vivo</i> Bioavailability of DDT and Its Metabolites in Soil. Environmental Science & Technology, 2020, 54, 5003-5010.	10.0	20
50	Policy adjustment impacts Cd, Cu, Ni, Pb and Zn contamination in soils around e-waste area: Concentrations, sources and health risks. Science of the Total Environment, 2020, 741, 140442.	8.0	40
51	Closely-related species of hyperaccumulating plants and their ability in accumulation of As, Cd, Cu, Mn, Ni, Pb and Zn. Chemosphere, 2020, 251, 126334.	8.2	24
52	Linking elevated blood lead level in urban school-aged children with bioaccessible lead in neighborhood soil. Environmental Pollution, 2020, 261, 114093.	7.5	25
53	Effects of Food Constituents on Absorption and Bioaccessibility of Dietary Synthetic Phenolic Antioxidant by Caco-2 Cells. Journal of Agricultural and Food Chemistry, 2020, 68, 4670-4677.	5.2	10
54	Pteris vittata coupled with phosphate rock effectively reduced As and Cd uptake by water spinach from contaminated soil. Chemosphere, 2020, 247, 125916.	8.2	13

#	Article	IF	CITATIONS
55	Localized Intensification of Arsenic Release within the Emergent Rice Rhizosphere. Environmental Science & Technology, 2020, 54, 3138-3147.	10.0	34
56	Comparing CaCl2, EDTA and DGT methods to predict Cd and Ni accumulation in rice grains from contaminated soils. Environmental Pollution, 2020, 260, 114042.	7.5	46
57	Organic extract of indoor dust induces estrogen-like effects in human breast cancer cells. Science of the Total Environment, 2020, 726, 138505.	8.0	10
58	Effects of novel brominated flame retardants and metabolites on cytotoxicity in human umbilical vein endothelial cells. Chemosphere, 2020, 253, 126653.	8.2	7
59	Organic adsorbents modified with citric acid and Fe3O4 enhance the removal of Cd and Pb in contaminated solutions. Chemical Engineering Journal, 2020, 395, 125108.	12.7	65
60	Chemical compositions and source apportionment of PM2.5 during clear and hazy days: Seasonal changes and impacts of Youth Olympic Games. Chemosphere, 2020, 256, 127163.	8.2	20
61	Eugenol protects cells against oxidative stress via Nrf2. Experimental and Therapeutic Medicine, 2020, 21, 107.	1.8	17
62	Heterologous Expression of <i>Pteris vittata</i> Phosphate Transporter PvPht1;3 Enhances Arsenic Translocation to and Accumulation in Tobacco Shoots. Environmental Science & Technology, 2019, 53, 10636-10644.	10.0	45
63	Expressing Arsenite Antiporter PvACR3;1 in Rice (<i>Oryza sativa</i> L.) Decreases Inorganic Arsenic Content in Rice Grains. Environmental Science & Technology, 2019, 53, 10062-10069.	10.0	42
64	Arsenic-resistance mechanisms in bacterium Leclercia adecarboxylata strain As3-1: Biochemical and genomic analyses. Science of the Total Environment, 2019, 690, 1178-1189.	8.0	23
65	Oral Bioavailability of As, Pb, and Cd in Contaminated Soils, Dust, and Foods based on Animal Bioassays: A Review. Environmental Science & Technology, 2019, 53, 10545-10559.	10.0	67
66	Development and Application of the Diffusive Gradients in Thin-Films Technique for Measuring Psychiatric Pharmaceuticals in Natural Waters. Environmental Science & Technology, 2019, 53, 11223-11231.	10.0	23
67	Metal tolerance of arsenic-resistant bacteria and their ability to promote plant growth of Pteris vittata in Pb-contaminated soil. Science of the Total Environment, 2019, 660, 18-24.	8.0	54
68	Emerging and legacy PAHs in urban soils of four small cities: Concentrations, distribution, and sources. Science of the Total Environment, 2019, 685, 463-470.	8.0	38
69	As, Cd, and Pb relative bioavailability in contaminated soils: Coupling mouse bioassay with UBM assay. Environment International, 2019, 130, 104875.	10.0	24
70	Investigating Lead Species and Bioavailability in Contaminated Soils: Coupling DGT Technique with Artificial Gastrointestinal Extraction and in Vivo Bioassay. Environmental Science & Technology, 2019, 53, 5717-5724.	10.0	19
71	Contribution of Asphalt Products to Total and Bioaccessible Polycyclic Aromatic Hydrocarbons. International Journal of Environmental Research, 2019, 13, 499-509.	2.3	16
72	Emerging PAHs in urban soils: Concentrations, bioaccessibility, and spatial distribution. Science of the Total Environment, 2019, 670, 800-805.	8.0	36

#	Article	IF	CITATIONS
73	Anaerobic digestion to reduce biomass and remove arsenic from As-hyperaccumulator Pteris vittata. Environmental Pollution, 2019, 250, 23-28.	7.5	22
74	Arsenic removal and biomass reduction of As-hyperaccumulator Pteris vittata: Coupling ethanol extraction with anaerobic digestion. Science of the Total Environment, 2019, 666, 205-211.	8.0	18
75	Interactive effects of As, Cd and Zn on their uptake and oxidative stress in As-hyperaccumulator Pteris vittata. Environmental Pollution, 2019, 248, 756-762.	7.5	27
76	Antagonistic Interactions between Arsenic, Lead, and Cadmium in the Mouse Gastrointestinal Tract and Their Influences on Metal Relative Bioavailability in Contaminated Soils. Environmental Science & Technology, 2019, 53, 14264-14272.	10.0	18
77	PAHs in urban soils of two Florida cities: Background concentrations, distribution, and sources. Chemosphere, 2019, 214, 220-227.	8.2	79
78	Inhalation bioaccessibility of PAHs in PM2.5: Implications for risk assessment and toxicity prediction. Science of the Total Environment, 2019, 650, 56-64.	8.0	58
79	In Situ Measurement of Thallium in Natural Waters by a Technique Based on Diffusive Gradients in Thin Films Containing a δ-MnO ₂ Gel Layer. Analytical Chemistry, 2019, 91, 1344-1352.	6.5	13
80	Synthetic phenolic antioxidants and their major metabolites in human fingernail. Environmental Research, 2019, 169, 308-314.	7.5	43
81	An interventional study of rice for reducing cadmium exposure in a Chinese industrial town. Environment International, 2019, 122, 301-309.	10.0	22
82	Spatial and temporal changes of P and Ca distribution and fractionation in soil and sediment in a karst farmland-wetland system. Chemosphere, 2019, 220, 644-650.	8.2	41
83	Efficient arsenate reduction by As-resistant bacterium Bacillus sp. strain PVR-YHB1-1: Characterization and genome analysis. Chemosphere, 2019, 218, 1061-1070.	8.2	32
84	Arsenic Concentrations, Speciation, and Localization in 141 Cultivated Market Mushrooms: Implications for Arsenic Exposure to Humans. Environmental Science & Technology, 2019, 53, 503-511.	10.0	30
85	Arsenic relative bioavailability in contaminated soils: comparison of animal models, dosing schemes, and biological endpoints. , 2019, , 171-172.		1
86	Metal contamination in a riparian wetland: Distribution, fractionation and plant uptake. Chemosphere, 2018, 200, 587-593.	8.2	23
87	Speciation, bioaccessibility and potential risk of chromium in Amazon forest soils. Environmental Pollution, 2018, 239, 384-391.	7.5	50
88	Interactions of Gaseous 2-Chlorophenol with Fe3+-Saturated Montmorillonite and Their Toxicity to Human Lung Cells. Environmental Science & Technology, 2018, 52, 5208-5217.	10.0	22
89	Arsenic-induced nutrient uptake in As-hyperaccumulator Pteris vittata and their potential role to enhance plant growth. Chemosphere, 2018, 198, 425-431.	8.2	30
90	Straw enhanced CO2 and CH4 but decreased N2O emissions from flooded paddy soils: Changes in microbial community compositions. Atmospheric Environment, 2018, 174, 171-179.	4.1	65

#	Article	IF	CITATIONS
91	Cellular responses of normal (HL-7702) and cancerous (HepG2) hepatic cells to dust extract exposure. Chemosphere, 2018, 193, 1189-1197.	8.2	25
92	Determination of 2,6-di-tert-butyl-hydroxytoluene and its transformation products in indoor dust and sediment by gas chromatography–mass spectrometry coupled with precolumn derivatization. Science of the Total Environment, 2018, 619-620, 552-558.	8.0	38
93	Impact of particle size on distribution and human exposure of flame retardants in indoor dust. Environmental Research, 2018, 162, 166-172.	7.5	54
94	Phosphate Transporter <i><i>PvPht1;2</i> Enhances Phosphorus Accumulation and Plant Growth without Impacting Arsenic Uptake in Plants. Environmental Science & amp; Technology, 2018, 52, 3975-3981.</i>	10.0	42
95	Metal concentrations in traditional and herbal teas and their potential risks to human health. Science of the Total Environment, 2018, 633, 649-657.	8.0	82
96	In situ sampling and speciation method for measuring dissolved phosphite at ultratrace concentrations in the natural environment. Water Research, 2018, 137, 281-289.	11.3	22
97	Metal leachability from coal combustion residuals under different pHs and liquid/solid ratios. Journal of Hazardous Materials, 2018, 341, 66-74.	12.4	48
98	Arsenic removal from As-hyperaccumulator Pteris vittata biomass: Coupling extraction with precipitation. Chemosphere, 2018, 193, 288-294.	8.2	23
99	The in vitro and in vivo biocompatibility evaluation of electrospun recombinant spider silk protein/PCL/gelatin for small caliber vascular tissue engineering scaffolds. Colloids and Surfaces B: Biointerfaces, 2018, 163, 19-28.	5.0	58
100	Interactive effects of chromate and arsenate on their uptake and speciation in Pteris ensiformis. Plant and Soil, 2018, 422, 515-526.	3.7	14
101	In Situ Selective Measurement of Se ^{IV} in Waters and Soils: Diffusive Gradients in Thin-Films with Bi-Functionalized Silica Nanoparticles. Environmental Science & Technology, 2018, 52, 14140-14148.	10.0	18
102	Field-Scale Heterogeneity and Geochemical Regulation of Arsenic, Iron, Lead, and Sulfur Bioavailability in Paddy Soil. Environmental Science & Technology, 2018, 52, 12098-12107.	10.0	22
103	Source identification of PAHs in soils based on stable carbon isotopic signatures. Critical Reviews in Environmental Science and Technology, 2018, 48, 923-948.	12.8	31
104	Coupling bioavailability and stable isotope ratio to discern dietary and non-dietary contribution of metal exposure to residents in mining-impacted areas. Environment International, 2018, 120, 563-571.	10.0	40
105	Water extract of indoor dust induces tight junction disruption in normal human corneal epithelial cells. Environmental Pollution, 2018, 243, 301-307.	7.5	24
106	Phytate promoted arsenic uptake and growth in arsenic-hyperaccumulator Pteris vittata by upregulating phosphorus transporters. Environmental Pollution, 2018, 241, 240-246.	7.5	24
107	Impact of particle size on distribution, bioaccessibility, and cytotoxicity of polycyclic aromatic hydrocarbons in indoor dust. Journal of Hazardous Materials, 2018, 357, 341-347.	12.4	42
108	Temporal and spatial distribution of Microcystis biomass and genotype in bloom areas of Lake Taihu. Chemosphere, 2018, 209, 730-738.	8.2	20

#	Article	IF	CITATIONS
109	Metals in paints on chopsticks: Solubilization in simulated saliva, gastric, and food solutions and implication for human health. Environmental Research, 2018, 167, 299-306.	7.5	8
110	Phosphate-Solubilizing Pseudomonads for Improving Crop Plant Nutrition and Agricultural Productivity. , 2018, , 363-372.		4
111	Novel Method for <i>in Situ</i> Monitoring of Organophosphorus Flame Retardants in Waters. Analytical Chemistry, 2018, 90, 10016-10023.	6.5	40
112	Food influence on lead relative bioavailability in contaminated soils: Mechanisms and health implications. Journal of Hazardous Materials, 2018, 358, 427-433.	12.4	23
113	In situ measurement of perfluoroalkyl substances in aquatic systems using diffusive gradients in thin-films technique. Water Research, 2018, 144, 162-171.	11.3	59
114	Human exposure to polycyclic aromatic hydrocarbons: Metabolomics perspective. Environment International, 2018, 119, 466-477.	10.0	164
115	Arsenic removal by As-hyperaccumulator Pteris vittata from two contaminated soils: A 5-year study. Chemosphere, 2018, 206, 736-741.	8.2	47
116	Assessment of trace metals in five most-consumed vegetables in the US: Conventional vs. organic. Environmental Pollution, 2018, 243, 292-300.	7.5	42
117	Arsenic-hyperaccumulator Pteris vittata efficiently solubilized phosphate rock to sustain plant growth and As uptake. Journal of Hazardous Materials, 2017, 330, 68-75.	12.4	59
118	Arsenic uptake by lettuce from As-contaminated soil remediated with Pteris vittata and organic amendment. Chemosphere, 2017, 176, 249-254.	8.2	36
119	Microbial siderophores and root exudates enhanced goethite dissolution and Fe/As uptake by As-hyperaccumulator Pteris vittata. Environmental Pollution, 2017, 223, 230-237.	7.5	48
120	A diffusive gradients in thin-films technique for the assessment of bisphenols desorption from soils. Journal of Hazardous Materials, 2017, 331, 321-328.	12.4	41
121	Phytate induced arsenic uptake and plant growth in arsenic-hyperaccumulator Pteris vittata. Environmental Pollution, 2017, 226, 212-218.	7.5	26
122	Arsenate and fluoride enhanced each other's uptake in As-sensitive plant Pteris ensiformis. Chemosphere, 2017, 180, 448-454.	8.2	12
123	Applying Cadmium Relative Bioavailability to Assess Dietary Intake from Rice to Predict Cadmium Urinary Excretion in Nonsmokers. Environmental Science & Technology, 2017, 51, 6756-6764.	10.0	60
124	Mechanisms of efficient As solubilization in soils and As accumulation by As-hyperaccumulator Pteris vittata. Environmental Pollution, 2017, 227, 569-577.	7.5	62
125	Effects of organophosphorus flame retardant TDCPP on normal human corneal epithelial cells: Implications for human health. Environmental Pollution, 2017, 230, 22-30.	7.5	51
126	Bioaccessibility of PAHs in contaminated soils: Comparison of five in vitro methods with Tenax as a sorption sink. Science of the Total Environment, 2017, 601-602, 968-974.	8.0	25

#	Article	IF	CITATIONS
127	Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere, 2017, 178, 466-478.	8.2	1,180
128	Effects of novel brominated flame retardant TBPH and its metabolite TBMEHP on human vascular endothelial cells: Implication for human health risks. Environmental Research, 2017, 156, 834-842.	7.5	26
129	Arsenic Relative Bioavailability in Rice Using a Mouse Arsenic Urinary Excretion Bioassay and Its Application to Assess Human Health Risk. Environmental Science & Technology, 2017, 51, 4689-4696.	10.0	56
130	Lead relative bioavailability in soils based on different endpoints of a mouse model. Journal of Hazardous Materials, 2017, 326, 94-100.	12.4	23
131	Mineral Dietary Supplement To Decrease Cadmium Relative Bioavailability in Rice Based on a Mouse Bioassay. Environmental Science & Technology, 2017, 51, 12123-12130.	10.0	39
132	Knocking Out <i>OsPT4</i> Gene Decreases Arsenate Uptake by Rice Plants and Inorganic Arsenic Accumulation in Rice Grains. Environmental Science & amp; Technology, 2017, 51, 12131-12138.	10.0	133
133	Heterologous Expression of <i>Pteris vittata</i> Arsenite Antiporter PvACR3;1 Reduces Arsenic Accumulation in Plant Shoots. Environmental Science & Technology, 2017, 51, 10387-10395.	10.0	70
134	Molecular Mechanisms of Perfluorooctanoate-Induced Hepatocyte Apoptosis in Mice Using Proteomic Techniques. Environmental Science & Technology, 2017, 51, 11380-11389.	10.0	24
135	Fluoride concentrations in traditional and herbal teas: Health risk assessment. Environmental Pollution, 2017, 231, 779-784.	7.5	46
136	Effect of biochar and Fe-biochar on Cd and As mobility and transfer in soil-rice system. Chemosphere, 2017, 186, 928-937.	8.2	194
137	Relative bioavailability and bioaccessibility of PCBs in soils based on a mouse model and Tenax-improved physiologically-based extraction test. Chemosphere, 2017, 186, 709-715.	8.2	22
138	Thyrotoxicity of arsenate and arsenite on juvenile mice at organism, subcellular, and gene levels under low exposure. Chemosphere, 2017, 186, 580-587.	8.2	17
139	Extending the functionality of the slurry ferrihydrite-DGT method: Performance evaluation for the measurement of vanadate, arsenate, antimonate and molybdate in water. Chemosphere, 2017, 184, 812-819.	8.2	18
140	Bacteria from the rhizosphere and tissues of As-hyperaccumulator Pteris vittata and their role in arsenic transformation. Chemosphere, 2017, 186, 599-606.	8.2	19
141	Remediation of Polluted Soil in China: Policy and Technology Bottlenecks. Environmental Science & Technology, 2017, 51, 14027-14029.	10.0	24
142	Effect of phosphate amendment on relative bioavailability and bioaccessibility of lead and arsenic in contaminated soils. Journal of Hazardous Materials, 2017, 339, 256-263.	12.4	50
143	Coupling biological assays with diffusive gradients in thin-films technique to study the biological responses of Eisenia fetida to cadmium in soil. Journal of Hazardous Materials, 2017, 339, 340-346.	12.4	21
144	Molecular mechanisms of PFOA-induced toxicity in animals and humans: Implications for health risks. Environment International, 2017, 99, 43-54.	10.0	168

#	Article	IF	CITATIONS
145	Arsenic and phosphate rock impacted the abundance and diversity of bacterial arsenic oxidase and reductase genes in rhizosphere of As-hyperaccumulator Pteris vittata. Journal of Hazardous Materials, 2017, 321, 146-153.	12.4	39
146	Arsenic Transport in Rice and Biological Solutions to Reduce Arsenic Risk from Rice. Frontiers in Plant Science, 2017, 8, 268.	3.6	126
147	Lead Relative Bioavailability in Lip Products and Their Potential Health Risk to Women. Environmental Science & Technology, 2016, 50, 6036-6043.	10.0	27
148	Influence of pollution control on lead inhalation bioaccessibility in PM2.5: A case study of 2014 Youth Olympic Games in Nanjing. Environment International, 2016, 94, 69-75.	10.0	56
149	Advances in inÂvitro methods to evaluate oral bioaccessibility of PAHs and PBDEs in environmental matrices. Chemosphere, 2016, 150, 378-389.	8.2	56
150	Using the SBRC Assay to Predict Lead Relative Bioavailability in Urban Soils: Contaminant Source and Correlation Model. Environmental Science & Technology, 2016, 50, 4989-4996.	10.0	34
151	Molecular mechanisms of dust-induced toxicity in human corneal epithelial cells: Water and organic extract of office and house dust. Environment International, 2016, 92-93, 348-356.	10.0	54
152	High-resolution measurement and mapping of tungstate in waters, soils and sediments using the low-disturbance DGT sampling technique. Journal of Hazardous Materials, 2016, 316, 69-76.	12.4	48
153	Assessment of cadmium bioaccessibility to predict its bioavailability in contaminated soils. Environment International, 2016, 94, 600-606.	10.0	71
154	Mechanisms of arsenic disruption on gonadal, adrenal and thyroid endocrine systems in humans: A review. Environment International, 2016, 95, 61-68.	10.0	78
155	Arsenic Induced Phytate Exudation, and Promoted FeAsO ₄ Dissolution and Plant Growth in As-Hyperaccumulator <i>Pteris vittata</i> . Environmental Science & Technology, 2016, 50, 9070-9077.	10.0	71
156	Novel DGT method with tri-metal oxide adsorbent for in situ spatiotemporal flux measurement of fluoride in waters and sediments. Water Research, 2016, 99, 200-208.	11.3	25
157	A label-free and portable graphene FET aptasensor for children blood lead detection. Scientific Reports, 2016, 6, 21711.	3.3	88
158	Effect of aging on bioaccessibility of arsenic and lead in soils. Chemosphere, 2016, 151, 94-100.	8.2	43
159	Potential arsenic exposures in 25 species of zoo animals living in CCA-wood enclosures. Science of the Total Environment, 2016, 551-552, 614-621.	8.0	13
160	Mechanisms of housedust-induced toxicity in primary human corneal epithelial cells: Oxidative stress, proinflammatory response and mitochondrial dysfunction. Environment International, 2016, 89-90, 30-37.	10.0	49
161	Sulfate and chromate increased each other's uptake and translocation in As-hyperaccumulator Pteris vittata. Chemosphere, 2016, 147, 36-43.	8.2	63
162	Arsenic-induced plant growth of arsenic-hyperaccumulator Pteris vittata: Impact of arsenic and phosphate rock. Chemosphere, 2016, 149, 366-372.	8.2	32

#	Article	IF	CITATIONS
163	Photosynthetic electron-transfer reactions in the gametophyte of Pteris multifida reveal the presence of allelopathic interference from the invasive plant species Bidens pilosa. Journal of Photochemistry and Photobiology B: Biology, 2016, 158, 81-88.	3.8	23
164	Predicting the Relative Bioavailability of DDT and Its Metabolites in Historically Contaminated Soils Using a Tenax-Improved Physiologically Based Extraction Test (TI-PBET). Environmental Science & Technology, 2016, 50, 1118-1125.	10.0	46
165	Arsenic uptake, arsenite efflux and plant growth in hyperaccumulator Pteris vittata: Role of arsenic-resistant bacteria. Chemosphere, 2016, 144, 1937-1942.	8.2	48
166	Arsenic impacted the development, thyroid hormone and gene transcription of thyroid hormone receptors in bighead carp larvae (Hypophthalmichthys nobilis). Journal of Hazardous Materials, 2016, 303, 76-82.	12.4	26
167	High As exposure induced substantial arsenite efflux in As-hyperaccumulator Pteris vittata. Chemosphere, 2016, 144, 2189-2194.	8.2	61
168	Arsenic Relative Bioavailability in Contaminated Soils: Comparison of Animal Models, Dosing Schemes, and Biological End Points. Environmental Science & Technology, 2016, 50, 453-461.	10.0	55
169	Organophosphorus flame retardants and phthalate esters in indoor dust from different microenvironments: Bioaccessibility and risk assessment. Chemosphere, 2016, 150, 528-535.	8.2	128
170	Arsenic transformation and plant growth promotion characteristics of As-resistant endophytic bacteria from As-hyperaccumulator Pteris vittata. Chemosphere, 2016, 144, 1233-1240.	8.2	53
171	Cleaning-induced arsenic mobilization and chromium oxidation from CCA-wood deck: Potential risk to children. Environment International, 2015, 82, 35-40.	10.0	29
172	Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass. Chemosphere, 2015, 134, 257-262.	8.2	198
173	Chromate and phosphate inhibited each other's uptake and translocation in arsenic hyperaccumulator Pteris vittata L Environmental Pollution, 2015, 197, 240-246.	7.5	23
174	Bacterial ability in AsIII oxidation and AsV reduction: Relation to arsenic tolerance, P uptake, and siderophore production. Chemosphere, 2015, 138, 995-1000.	8.2	66
175	Toxic metals in children's toys and jewelry: Coupling bioaccessibility with risk assessment. Environmental Pollution, 2015, 200, 77-84.	7.5	57
176	Novel Precipitated Zirconia-Based DGT Technique for High-Resolution Imaging of Oxyanions in Waters and Sediments. Environmental Science & amp; Technology, 2015, 49, 3653-3661.	10.0	105
177	Recent advances in arsenic bioavailability, transport, and speciation in rice. Environmental Science and Pollution Research, 2015, 22, 5742-5750.	5.3	71
178	Uptake of antimonite and antimonate by arsenic hyperaccumulator Pteris vittata: Effects of chemical analogs and transporter inhibitor. Environmental Pollution, 2015, 206, 49-55.	7.5	27
179	A new method for antimony speciation in plant biomass and nutrient media using anion exchange cartridge. Talanta, 2015, 144, 1171-1175.	5.5	8
180	In vitro bioaccessibility and in vivo relative bioavailability in 12 contaminated soils: Method comparison and method development. Science of the Total Environment, 2015, 532, 812-820.	8.0	53

#	Article	IF	CITATIONS
181	Comparison of arsenic bioaccessibility in housedust and contaminated soils based on four in vitro assays. Science of the Total Environment, 2015, 532, 803-811.	8.0	36
182	Naming and functions of ACR2, arsenate reductase, and ACR3 arsenite efflux transporter in plants (correspondence on: Kumar, S., Dubey, R.S., Tripathi, R.D., Chakrabarty, D., Trivedi, P.K., 2015. Omics and) Tj ETQo	0,0,0 rgB ⁻	[Overlock]
183	Short-term exposure of arsenite disrupted thyroid endocrine system and altered gene transcription in the HPT axis in zebrafish. Environmental Pollution, 2015, 205, 145-152.	7.5	28
184	Arsenic extraction and speciation in plants: Method comparison and development. Science of the Total Environment, 2015, 523, 138-145.	8.0	33
185	Transfer of arsenic and phosphorus from soils to the fronds and spores of arsenic hyperaccumulator Pteris vittata and three non-hyperaccumulators. Plant and Soil, 2015, 390, 49-60.	3.7	14
186	Phosphorus solubilization and plant growth enhancement by arsenic-resistant bacteria. Chemosphere, 2015, 134, 1-6.	8.2	76
187	Arsenic bioaccessibility in contaminated soils: Coupling in vitro assays with sequential and HNO3 extraction. Journal of Hazardous Materials, 2015, 295, 145-152.	12.4	61
188	Lead bioaccessibility in 12 contaminated soils from China: Correlation to lead relative bioavailability and lead in different fractions. Journal of Hazardous Materials, 2015, 295, 55-62.	12.4	114
189	Catecholate-siderophore produced by As-resistant bacterium effectively dissolved FeAsO4 and promoted Pteris vittata growth. Environmental Pollution, 2015, 206, 376-381.	7.5	26
190	Novel Speciation Method Based on Diffusive Gradients in Thin-Films for in Situ Measurement of Cr ^{VI} in Aquatic Systems. Environmental Science & Technology, 2015, 49, 14267-14273.	10.0	52
191	Montmorillonite enhanced ciprofloxacin transport in saturated porous media with sorbed ciprofloxacin showing antibiotic activity. Journal of Contaminant Hydrology, 2015, 173, 1-7.	3.3	30
192	Activated Charcoal Based Diffusive Gradients in Thin Films for in Situ Monitoring of Bisphenols in Waters. Analytical Chemistry, 2015, 87, 801-807.	6.5	106
193	Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars. Chemosphere, 2014, 105, 68-74.	8.2	299
194	Raspberry derived mesoporous carbon-tubules and fixed-bed adsorption of pharmaceutical drugs. Journal of Industrial and Engineering Chemistry, 2014, 20, 1126-1132.	5.8	56
195	Source, distribution, and health risk assessment of polycyclic aromatic hydrocarbons in urban street dust from Tianjin, China. Environmental Science and Pollution Research, 2014, 21, 2817-2825.	5.3	98
196	Effect of aging on arsenic and lead fractionation and availability in soils: Coupling sequential extractions with diffusive gradients in thin-films technique. Journal of Hazardous Materials, 2014, 273, 272-279.	12.4	83
197	Arsenic and selenium toxicity and their interactive effects in humans. Environment International, 2014, 69, 148-158.	10.0	322
198	Characterization of arsenic-resistant endophytic bacteria from hyperaccumulators Pteris vittata and Pteris multifida. Chemosphere, 2014, 113, 9-16.	8.2	83

#	Article	IF	CITATIONS
199	Antimony uptake, translocation and speciation in rice plants exposed to antimonite and antimonate. Science of the Total Environment, 2014, 475, 83-89.	8.0	120
200	Biocatalytic Synthesis Pathways, Transformation, and Toxicity of Nanoparticles in the Environment. Critical Reviews in Environmental Science and Technology, 2014, 44, 1679-1739.	12.8	34
201	Pteris vittata continuously removed arsenic from non-labile fraction in three contaminated-soils during 3.5 years of phytoextraction. Journal of Hazardous Materials, 2014, 279, 485-492.	12.4	54
202	Arsenic enhanced plant growth and altered rhizosphere characteristics of hyperaccumulator Pteris vittata. Environmental Pollution, 2014, 194, 105-111.	7.5	54
203	Assessment of <i>in Vitro</i> Lead Bioaccessibility in House Dust and Its Relationship to <i>in Vivo</i> Lead Relative Bioavailability. Environmental Science & Technology, 2014, 48, 8548-8555.	10.0	97
204	Assessment of children's exposure to arsenic from CCA-wood staircases at apartment complexes in Florida. Science of the Total Environment, 2014, 476-477, 440-446.	8.0	14
205	Antimony uptake, efflux and speciation in arsenic hyperaccumulator Pteris vittata. Environmental Pollution, 2014, 186, 110-114.	7.5	49
206	Ionic strength reduction and flow interruption enhanced colloid-facilitated Hg transport in contaminated soils. Journal of Hazardous Materials, 2014, 264, 286-292.	12.4	34
207	Effects of storage temperature and duration on release of antimony and bisphenol A from polyethylene terephthalate drinking water bottles of China. Environmental Pollution, 2014, 192, 113-120.	7.5	81
208	Enhanced Cr(VI) reduction and As(III) oxidation in ice phase: Important role of dissolved organic matter from biochar. Journal of Hazardous Materials, 2014, 267, 62-70.	12.4	191
209	Impacts of two best management practices on Pb weathering and leachability in shooting range soils. Environmental Monitoring and Assessment, 2013, 185, 6477-6484.	2.7	7
210	Sparingly-Soluble Phosphate Rock Induced Significant Plant Growth and Arsenic Uptake by <i>Pteris vittata</i> from Three Contaminated Soils. Environmental Science & Technology, 2013, 47, 5311-5318.	10.0	60
211	Effects of Cu and Ca cations and Fe/Al coating on ciprofloxacin sorption onto sand media. Journal of Hazardous Materials, 2013, 252-253, 375-381.	12.4	31
212	Mechanistic Investigation of Mercury Sorption by Brazilian Pepper Biochars of Different Pyrolytic Temperatures Based on X-ray Photoelectron Spectroscopy and Flow Calorimetry. Environmental Science & Technology, 2013, 47, 12156-12164.	10.0	203
213	Bacteria-Mediated Arsenic Oxidation and Reduction in the Growth Media of Arsenic Hyperaccumulator <i>Pteris vittata</i> . Environmental Science & Technology, 2012, 46, 11259-11266.	10.0	51
214	Transport and interactions of kaolinite and mercury in saturated sand media. Journal of Hazardous Materials, 2012, 213-214, 93-99.	12.4	26
215	Mechanisms of Efficient Arsenite Uptake by Arsenic Hyperaccumulator Pteris vittata. Environmental Science & Technology, 2011, 45, 9719-9725.	10.0	56
216	Simultaneous Immobilization of Lead and Atrazine in Contaminated Soils Using Dairy-Manure Biochar. Environmental Science & Technology, 2011, 45, 4884-4889.	10.0	503

#	Article	IF	CITATIONS
217	Chemical and physical characterization of lead in three shooting range soils in Florida. Chemical Speciation and Bioavailability, 2011, 23, 163-169.		21
218	Effects of pH and ionic strength on sulfamethoxazole and ciprofloxacin transport in saturated porous media. Journal of Contaminant Hydrology, 2011, 126, 29-36.	3.3	118
219	Effects of Zn on plant tolerance and non-protein thiol accumulation in Zn hyperaccumulator Arabis paniculata Franch. Environmental and Experimental Botany, 2011, 70, 227-232.	4.2	28
220	Uptake and translocation of arsenite by Pteris vittata L.: Effects of glycerol, antimonite and silver. Environmental Pollution, 2011, 159, 3490-3495.	7.5	36
221	Arsenic-resistant bacteria solubilized arsenic in the growth media and increased growth of arsenic hyperaccumulator Pteris vittata L Bioresource Technology, 2011, 102, 8756-8761.	9.6	97
222	Accumulation and availability of copper in citrus grove soils as affected by fungicide application. Journal of Soils and Sediments, 2011, 11, 639-648.	3.0	72
223	Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing. Journal of Hazardous Materials, 2011, 190, 909-915.	12.4	461
224	Colloid Deposition and Release in Soils and Their Association With Heavy Metals. Critical Reviews in Environmental Science and Technology, 2011, 41, 336-372.		98
225	Biomass reduction and arsenic transformation during composting of arsenic-rich hyperaccumulator Pteris vittata L Environmental Science and Pollution Research, 2010, 17, 586-594.		33
226	Bioremediation of oily sludge-contaminated soil by stimulating indigenous microbes. Environmental Geochemistry and Health, 2010, 32, 23-29.	3.4	144
227	Temporal and spatial trends of total petroleum hydrocarbons in the seawater of Bohai Bay, China from 1996 to 2005. Marine Pollution Bulletin, 2010, 60, 238-243.		59
228	Uptake and translocation of arsenite and arsenate by Pteris vittata L.: Effects of silicon, boron and mercury. Environmental and Experimental Botany, 2010, 68, 222-229.		63
229	Sulfate and glutathione enhanced arsenic accumulation by arsenic hyperaccumulator Pteris vittata L Environmental Pollution, 2010, 158, 1530-1535.		48
230	Colloid-facilitated Pb transport in two shooting-range soils in Florida. Journal of Hazardous Materials, 2010, 177, 620-625.		86
231	Optimum P levels for arsenic removal from contaminated groundwater by Pteris vittata L. of different ages. Journal of Hazardous Materials, 2010, 180, 662-667.	12.4	18
232	Comparison of arsenic accumulation in 18 fern species and four Pteris vittata accessions. Bioresource Technology, 2010, 101, 2691-2699.	9.6	25
233	Arsenic transformation in the growth media and biomass of hyperaccumulator Pteris vittata L Bioresource Technology, 2010, 101, 8024-8030.	9.6	76
234	Polycyclic Aromatic Hydrocarbons in Urban Soils of Different Land Uses in Miami, Florida. Soil and Sediment Contamination, 2010, 19, 231-243.	1.9	98

#	Article	IF	CITATIONS
235	Characterization of arsenic-resistant bacteria from the rhizosphere of arsenic hyperaccumulator <i>Pteris vittata</i> . Canadian Journal of Microbiology, 2010, 56, 236-246.	1.7	71
236	Rhizosphere characteristics of two arsenic hyperaccumulating Pteris ferns. Science of the Total Environment, 2009, 407, 4711-4716.		
237	Arsenic reduced scale-insect infestation on arsenic hyperaccumulator Pteris vittata L Environmental and Experimental Botany, 2009, 65, 282-286.	4.2	19
238	Responses of non-protein thiols to Cd exposure in Cd hyperaccumulator Arabis paniculata Franch. Environmental and Experimental Botany, 2009, 66, 242-248.	4.2	61
239	Expression of a <i>Pteris vittata</i> glutaredoxin PvGRX5 in transgenic <i>Arabidopsis thaliana</i> increases plant arsenic tolerance and decreases arsenic accumulation in the leaves. Plant, Cell and Environment, 2009, 32, 851-858.	5.7	69
240	Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid. Journal of Hazardous Materials, 2009, 164, 555-564.	12.4	326
241	Characterization of glutathione reductase and catalase in the fronds of two Pteris ferns upon arsenic exposure. Plant Physiology and Biochemistry, 2009, 47, 960-965.		36
242	Effects of arsenic on nitrate metabolism in arsenic hyperaccumulating and non-hyperaccumulating ferns. Environmental Pollution, 2009, 157, 2300-2305.		58
243	Dairy-Manure Derived Biochar Effectively Sorbs Lead and Atrazine. Environmental Science & Technology, 2009, 43, 3285-3291.		1,025
244	Identification and Chemical Enhancement of Two Ornamental Plants for Phytoremediation. Bulletin of Environmental Contamination and Toxicology, 2008, 80, 260-265.	2.7	41
245	Growth responses of three ornamental plants to Cd and Cd–Pb stress and their metal accumulation characteristics. Journal of Hazardous Materials, 2008, 151, 261-267.		121
246	Effects of nutrients on arsenic accumulation by arsenic hyperaccumulator Pteris vittata L Environmental and Experimental Botany, 2008, 62, 231-237.		41
247	An Arsenate-activated Glutaredoxin from the Arsenic Hyperaccumulator Fern Pteris vittata L. Regulates Intracellular Arsenite. Journal of Biological Chemistry, 2008, 283, 6095-6101.		80
248	Phosphate-Induced Lead Immobilization in Contaminated Soils: Mechanisms, Assessment, and Field Applications. , 2007, , 607-629.		2
249	Application Methods Affect Phosphorus-Induced Lead Immobilization from a Contaminated Soil. Journal of Environmental Quality, 2007, 36, 373-378.	2.0	33
250	Arsenic hyperaccumulation in the Chinese brake fern (Pteris vittata) deters grasshopper () Tj ETQq0 0 0 rgBT /O	verlgck 10 7.3) T <u>f 5</u> 0 142 Td
251	Effects of Soil Property and Soil Amendment on Weathering of Abraded Metallic Pb in Shooting Ranges. Water, Air, and Soil Pollution, 2007, 178, 297-307.	2.4	62

#	Article	IF	CITATIONS
253	Metabolic adaptations to arsenic-induced oxidative stress in Pteris vittata L and Pteris ensiformis L. Plant Science, 2006, 170, 274-282.	3.6	365
254	Arsenic phytoextraction and hyperaccumulation by fern species. Scientia Agricola, 2006, 63, 90-101.	1.2	117
255	Characterization of aqueous lead removal by phosphatic clay: Equilibrium and kinetic studies. Journal of Hazardous Materials, 2006, 136, 654-662.	12.4	83
256	Arsenic resistance in Pteris vittata L.: identification of a cytosolic triosephosphate isomerase based on cDNA expression cloning in Escherichia coli. Plant Molecular Biology, 2006, 62, 845-857.	3.9	53
257	Availability and Assessment of Fixing Additives for The in Situ Remediation of Heavy Metal Contaminated Soils: A Review. Environmental Monitoring and Assessment, 2006, 116, 513-528.	2.7	275
258	Using phosphate rock to immobilize metals in soil and increase arsenic uptake by hyperaccumulator Pteris vittata. Science of the Total Environment, 2006, 359, 17-25.	8.0	152
259	Three new arsenic hyperaccumulating ferns. Science of the Total Environment, 2006, 364, 24-31.	8.0	179
260	Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment, 2006, 368, 456-464.	8.0	1,290
261	Phytoremediation of an Arsenic-Contaminated Site Using <i>Pteris vittata</i> L.: A Two-Year Study. International Journal of Phytoremediation, 2006, 8, 311-322.	3.1	115
262	Mycorrhizae Increase Arsenic Uptake by the Hyperaccumulator Chinese Brake Fern (Pteris vittata L.). Journal of Environmental Quality, 2005, 34, 2181-2186.	2.0	108
263	Arsenic speciation and transport in Pteris vittata L. and the effects on phosphorus in the xylem sap. Environmental and Experimental Botany, 2005, 54, 239-247.	4.2	73
264	Arsenic Uptake by Two Hyperaccumulator Ferns from Four Arsenic Contaminated Soils. Water, Air, and Soil Pollution, 2005, 168, 71-89.	2.4	23
265	Relation of Relative Colloid Stability Ratio and Colloid Release in Two Lead-Contaminated Soils. Water, Air, and Soil Pollution, 2005, 160, 343-355.	2.4	6
266	Characteristics of Arsenic Accumulation by Pteris and non-Pteris Ferns. Plant and Soil, 2005, 277, 117-126.	3.7	52
267	UPTAKE AND DISTRIBUTION OF SELENIUM IN DIFFERENT FERN SPECIES. International Journal of Phytoremediation, 2005, 7, 33-42.	3.1	30
268	Effects of Arsenic Species and Concentrations on Arsenic Accumulation by Different Fern Species in a Hydroponic System. International Journal of Phytoremediation, 2005, 7, 231-240.	3.1	34
269	Antioxidant responses of hyper-accumulator and sensitive fern species to arsenic. Journal of Experimental Botany, 2005, 56, 1335-1342.	4.8	293
270	Comparison of Arsenic and Phosphate Uptake and Distribution in Arsenic Hyperaccumulating and Nonhyperaccumulating Fern. Journal of Plant Nutrition, 2005, 27, 1227-1242.	1.9	48

#	Article	IF	CITATIONS
271	Effects of arsenic on concentration and distribution of nutrients in the fronds of the arsenic hyperaccumulator Pteris vittata L. Environmental Pollution, 2005, 135, 333-340.	7.5	124
272	Lead contamination in shooting range soils from abrasion of lead bullets and subsequent weathering. Science of the Total Environment, 2004, 328, 175-183.	8.0	112
273	Absorption of foliar-applied arsenic by the arsenic hyperaccumulating fern (Pteris vittata L.). Science of the Total Environment, 2004, 332, 61-70.	8.0	57
274	Effects of arsenic species and phosphorus on arsenic absorption, arsenate reduction and thiol formation in excised parts of Pteris vittata L. Environmental and Experimental Botany, 2004, 51, 121-131.	4.2	88
275	Root exudates and arsenic accumulation in arsenic hyperaccumulating Pteris vittata and non-hyperaccumulating Nephrolepis exaltata. Plant and Soil, 2004, 258, 9-19.	3.7	156
276	Arsenic complexes in the arsenic hyperaccumulator Pteris vittata (Chinese brake fern). Journal of Chromatography A, 2004, 1043, 249-254.	3.7	39
277	Arsenic speciation in Chinese brake fern by ion-pair high-performance liquid chromatography–inductively coupled plasma mass spectroscopy. Analytica Chimica Acta, 2004, 504, 199-207.	5.4	55
278	Phytoremediation of Arsenic-Contaminated Groundwater by the Arsenic Hyperaccumulating FernPteris vittataL International Journal of Phytoremediation, 2004, 6, 35-47.	3.1	84
279	Influence of compost on soil organic matter quality under tropical conditions. Geoderma, 2004, 123, 355-361.	5.1	118
280	Effects of incubation on solubility and mobility of trace metals in two contaminated soils. Environmental Pollution, 2004, 130, 301-307.	7.5	32
281	Lead distribution in near-surface soils of two Florida cities: Gainesville and Miami. Geoderma, 2004, 119, 113-120.	5.1	42
282	Title is missing!. Plant and Soil, 2003, 249, 373-382.	3.7	170
283	Field assessment of lead immobilization in a contaminated soil after phosphate application. Science of the Total Environment, 2003, 305, 117-127.	8.0	163
284	Lead transformation and distribution in the soils of shooting ranges in Florida, USA. Science of the Total Environment, 2003, 307, 179-189.	8.0	133
285	Interactive effects of pH, arsenic and phosphorus on uptake of As and P and growth of the arsenic hyperaccumulator Pteris vittata L. under hydroponic conditions. Environmental and Experimental Botany, 2003, 50, 243-251.	4.2	168
286	XAS Speciation of Arsenic in a Hyper-Accumulating Fern. Environmental Science & Technology, 2003, 37, 754-760.	10.0	168
287	Point of zero charge determination in soils and minerals via traditional methods and detection of electroacoustic mobility. Geoderma, 2003, 113, 77-93.	5.1	249
288	Cu, Cr and As distribution in soils adjacent to pressure-treated decks, fences and poles. Environmental Pollution, 2003, 124, 407-417.	7.5	83

#	Article	IF	CITATIONS
289	Effects of compost and phosphate amendments on arsenic mobility in soils and arsenic uptake by the hyperaccumulator, Pteris vittata L Environmental Pollution, 2003, 126, 157-167.	7.5	257
290	Rhizosphere Characteristics of the Arsenic HyperaccumulatorPteris vittataL. and Monitoring of Phytoremoval Efficiency. Environmental Science & Technology, 2003, 37, 5008-5014.	10.0	200
291	Weathering of Lead Bullets and Their Environmental Effects at Outdoor Shooting Ranges. Journal of Environmental Quality, 2003, 32, 526-534.	2.0	146
292	Arsenic Distribution in Florida Urban Soils. Journal of Environmental Quality, 2003, 32, 109-119.	2.0	21
293	Weathering of Lead Bullets and Their Environmental Effects at Outdoor Shooting Ranges. Journal of Environmental Quality, 2003, 32, 526.	2.0	62
294	Impact of high-volume wood-fired boiler ash amendment on soil properties and nutrients. Communications in Soil Science and Plant Analysis, 2002, 33, 1-17.	1.4	23
295	Arsenic Accumulation in the Hyperaccumulator Chinese Brake and Its Utilization Potential for Phytoremediation. Journal of Environmental Quality, 2002, 31, 1671-1675.	2.0	207
296	Impacts of Phosphate Amendments on Lead Biogeochemistry at a Contaminated Site. Environmental Science & Technology, 2002, 36, 5296-5304.	10.0	241
297	Characterization of Lead in Soils of a Rifle/Pistol Shooting Range in Central Florida, USA. Soil and Sediment Contamination, 2002, 11, 1-17.		59
298	Leachability of Cu and Ni in wood ash-amended soil as impacted by humic and fulvic acid. Geoderma, 2002, 108, 31-47.	5.1	46
299	Effects of Arsenic Concentrations and Forms on Arsenic Uptake by the Hyperaccumulator Ladder Brake. Journal of Environmental Quality, 2002, 31, 641.	2.0	125
300	Relationship between Compost Stability and Extractable Organic Carbon. Journal of Environmental Quality, 2002, 31, 1323-1328.	2.0	56
301	Arsenic speciation and distribution in an arsenic hyperaccumulating plant. Science of the Total Environment, 2002, 300, 167-177.	8.0	356
302	Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata. New Phytologist, 2002, 156, 195-203.	7.3	285
303	Arsenic Background Concentrations in Florida, U.S.A. Surface Soils: Determination and Interpretation. Environmental Forensics, 2001, 2, 117-126.	2.6	92
304	Comparison of Three Aqua Regia Digestion Methods for Twenty Florida Soils. Soil Science Society of America Journal, 2001, 65, 491-499.	2.2	372
305	Effects of Sample Storage on Biosolids Compost Stability and Maturity Evaluation. Journal of Environmental Quality, 2001, 30, 222-228.	2.0	47
306	Heavy Metal Interactions with Phosphatic Clay: Sorption and Desorption Behavior. Journal of Environmental Quality, 2001, 30, 1961-1968.	2.0	139

#	Article	IF	CITATIONS
307	A fern that hyperaccumulates arsenic. Nature, 2001, 409, 579-579.	27.8	1,538
308	Trace Metal Leachability of Landâ€Disposed Dredged Sediments. Journal of Environmental Quality, 2000, 29, 1124-1132.	2.0	46
309	Comparison of Methods for Evaluating Stability and Maturity of Biosolids Compost. Journal of Environmental Quality, 2000, 29, 424-429.	2.0	197
310	Relation of enhanced Pb solubility to Fe partitioning in soils. Environmental Pollution, 2000, 110, 515-522.	7.5	23
311	Effects of Acidification on Metal Mobility in a Papermillâ€Ash Amended Soil. Journal of Environmental Quality, 1999, 28, 760-766.	2.0	37
312	Baseline Concentrations of 15 Trace Elements in Florida Surface Soils. Journal of Environmental Quality, 1999, 28, 1173-1181.	2.0	253
313	Effects of Soil on Trace Metal Leachability from Papermill Ashes and Sludge. Journal of Environmental Quality, 1999, 28, 321-333.	2.0	27
314	Aqueous Pb Reduction in Pb-Contaminated Soils by Florida Phosphate Rocks. Water, Air, and Soil Pollution, 1999, 110, 1-16.	2.4	66
315	Comparison of Four USEPA Digestion Methods for Trace Metal Analysis Using Certified and Florida Soils. Journal of Environmental Quality, 1998, 27, 1294-1300.	2.0	152
316	Effects of Incubation and Phosphate Rock on Lead Extractability and Speciation in Contaminated Soils. Journal of Environmental Quality, 1997, 26, 801-807.	2.0	35
317	Effects of Phosphate Rock on Sequential Chemical Extraction of Lead in Contaminated Soils. Journal of Environmental Quality, 1997, 26, 788-794.	2.0	97
318	Chemical Fractionation of Cadmium, Copper, Nickel, and Zinc in Contaminated Soils. Journal of Environmental Quality, 1997, 26, 259-264.	2.0	547
319	Concentrations and Distributions of Eleven Metals in Florida Soils. Journal of Environmental Quality, 1997, 26, 769-775.	2.0	108
320	Factors Influencing the Effectiveness and Stability of Aqueous Lead Immobilization by Hydroxyapatite. Journal of Environmental Quality, 1996, 25, 1420-1429.	2.0	51
321	Lead Immobilization from Aqueous Solutions and Contaminated Soils Using Phosphate Rocks. Environmental Science & Technology, 1995, 29, 1118-1126.	10.0	439
322	Effects of Aqueous Al, Cd, Cu, Fe(II), Ni, and Zn on Pb Immobilization by Hydroxyapatite. Environmental Science & Technology, 1994, 28, 1219-1228.	10.0	342
323	Effects of NO3-, Cl-, F-, SO42-, and CO32- on Pb2+ Immobilization by Hydroxyapatite. Environmental Science & Technology, 1994, 28, 408-418.	10.0	156
324	In situ lead immobilization by apatite. Environmental Science & Technology, 1993, 27, 1803-1810.	10.0	617

-			\sim
LE	N.	Δ	ι.
			Ý

#	Article	IF	CITATIONS
325	Measurements of Free Zinc2+ Activity in Uncontaminated and Contaminated Soils Using Chelation. Soil Science Society of America Journal, 1993, 57, 963-967.	2.2	27