Subhadip Goswami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6445255/publications.pdf

Version: 2024-02-01

159585 197818 3,120 50 30 49 citations h-index g-index papers 51 51 51 4411 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Identifying the Polymorphs of Zr-Based Metal–Organic Frameworks via Time-Resolved Fluorescence Imaging. , 2022, 4, 370-377.		8
2	Understanding Diffusional Charge Transport within a Pyrene-Based Hydrogen-Bonded Organic Framework. Langmuir, 2022, 38, 1533-1539.	3.5	17
3	Superradiance and Directional Exciton Migration in Metal–Organic Frameworks. Journal of the American Chemical Society, 2022, 144, 1396-1406.	13.7	22
4	An iron-porphyrin grafted metal–organic framework as a heterogeneous catalyst for the photochemical reduction of CO2. Journal of Photochemistry and Photobiology, 2022, 10, 100111.	2.5	23
5	Redox-Hopping-Based Charge Transport Mediated by Ru(II)-Polypyridyl Species Immobilized in a Mesoporous Metal-Organic Framework. Frontiers in Chemical Engineering, 2022, 3, .	2.7	2
6	Direct Observation of Modulated Radical Spin States in Metal–Organic Frameworks by Controlled Flexibility. Journal of the American Chemical Society, 2022, 144, 2685-2693.	13.7	23
7	Does the Mode of Metal–Organic Framework/Electrode Adhesion Determine Rates for Redox-Hopping-Based Charge Transport within Thin-Film Metal–Organic Frameworks?. Journal of Physical Chemistry C, 2022, 126, 4601-4611.	3.1	7
8	An Electrically Conductive Tetrathiafulvalene-Based Hydrogen-Bonded Organic Framework. , 2022, 4, 128-135.		34
9	Modulation of CO ₂ adsorption in novel pillar-layered MOFs based on carboxylate–pyrazole flexible linker. Dalton Transactions, 2021, 50, 2880-2890.	3.3	7
10	Tuning the Conductivity of Hexa-Zirconium(IV) Metal–Organic Frameworks by Encapsulating Heterofullerenes. Chemistry of Materials, 2021, 33, 1182-1189.	6.7	17
11	Light-Harvesting "Antenna―Behavior in NU-1000. ACS Energy Letters, 2021, 6, 848-853.	17.4	40
12	Photon Upconversion in a Glowing Metal–Organic Framework. Journal of the American Chemical Society, 2021, 143, 5053-5059.	13.7	34
13	Light-Harvesting Two-Photon-Absorbing Polymers. Macromolecules, 2020, 53, 6279-6287.	4.8	9
14	Catalytic Degradation of an Organophosphorus Agent at Zn–OH Sites in a Metal–Organic Framework. Chemistry of Materials, 2020, 32, 6998-7004.	6.7	32
15	Charge Transport in Zirconium-Based Metal–Organic Frameworks. Accounts of Chemical Research, 2020, 53, 1187-1195.	15.6	100
16	Ultrastable Mesoporous Hydrogen-Bonded Organic Framework-Based Fiber Composites toward Mustard Gas Detoxification. Cell Reports Physical Science, 2020, 1, 100024.	5.6	107
17	A Flexible Interpenetrated Zirconiumâ€Based Metal–Organic Framework with High Affinity toward Ammonia. ChemSusChem, 2020, 13, 1710-1714.	6.8	36
18	Designing Porous Materials to Resist Compression: Mechanical Reinforcement of a Zr-MOF with Structural Linkers. Chemistry of Materials, 2020, 32, 3545-3552.	6.7	36

#	Article	IF	CITATIONS
19	Regioselective Functionalization of the Mesoporous Metalâ \in "Organic Framework, NU-1000, with Photo-Active Tris-(2,2â \in 2-bipyridine)ruthenium(II). ACS Omega, 2020, 5, 30299-30305.	3.5	17
20	Improving Energy Transfer within Metal–Organic Frameworks by Aligning Linker Transition Dipoles along the Framework Axis. Journal of the American Chemical Society, 2020, 142, 11192-11202.	13.7	48
21	Anisotropic Redox Conductivity within a Metal–Organic Framework Material. Journal of the American Chemical Society, 2019, 141, 17696-17702.	13.7	71
22	Energy-based descriptors to rapidly predict hydrogen storage in metal–organic frameworks. Molecular Systems Design and Engineering, 2019, 4, 162-174.	3.4	179
23	Torsion Angle Effect on the Activation of UiO Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2019, 11, 15788-15794.	8.0	31
24	Stabilization of an Unprecedented Hexanuclear Secondary Building Unit in a Thorium-Based Metal–Organic Framework. Inorganic Chemistry, 2019, 58, 3586-3590.	4.0	38
25	Pore-Templated Growth of Catalytically Active Gold Nanoparticles within a Metal–Organic Framework. Chemistry of Materials, 2019, 31, 1485-1490.	6.7	47
26	Porosity Dependence of Compression and Lattice Rigidity in Metal–Organic Framework Series. Journal of the American Chemical Society, 2019, 141, 4365-4371.	13.7	51
27	Vapor-Phase Fabrication and Condensed-Phase Application of a MOF-Node-Supported Iron Thiolate Photocatalyst for Nitrate Conversion to Ammonium. ACS Applied Energy Materials, 2019, 2, 8695-8700.	5.1	29
28	Oxygenâ€Assisted Cathodic Deposition of Zeolitic Imidazolate Frameworks with Controlled Thickness. Angewandte Chemie - International Edition, 2019, 58, 1123-1128.	13.8	40
29	Oxygenâ€Assisted Cathodic Deposition of Zeolitic Imidazolate Frameworks with Controlled Thickness. Angewandte Chemie, 2019, 131, 1135-1140.	2.0	4
30	Increased Electrical Conductivity in a Mesoporous Metal–Organic Framework Featuring Metallacarboranes Guests. Journal of the American Chemical Society, 2018, 140, 3871-3875.	13.7	158
31	Photoexcited Naphthalene Diimide Radical Anion Linking the Nodes of a Metal–Organic Framework: A Heterogeneous Super-reductant. Chemistry of Materials, 2018, 30, 2488-2492.	6.7	37
32	Computer-aided discovery of a metal–organic framework with superior oxygen uptake. Nature Communications, 2018, 9, 1378.	12.8	136
33	A porous, electrically conductive hexa-zirconium(<scp>iv</scp>) metal–organic framework. Chemical Science, 2018, 9, 4477-4482.	7.4	158
34	Boosting Transport Distances for Molecular Excitons within Photoexcited Metal–Organic Framework Films. ACS Applied Materials & Samp; Interfaces, 2018, 10, 34409-34417.	8.0	33
35	Improving the Efficiency of Mustard Gas Simulant Detoxification by Tuning the Singlet Oxygen Quantum Yield in Metal–Organic Frameworks and Their Corresponding Thin Films. ACS Applied Materials & Interfaces, 2018, 10, 23802-23806.	8.0	67
36	Postsynthetic Tuning of Metal–Organic Frameworks for Targeted Applications. Accounts of Chemical Research, 2017, 50, 805-813.	15.6	644

#	Article	IF	CITATIONS
37	Atomistic Approach toward Selective Photocatalytic Oxidation of a Mustard-Gas Simulant: A Case Study with Heavy-Chalcogen-Containing PCN-57 Analogues. ACS Applied Materials & Diterfaces, 2017, 9, 19535-19540.	8.0	63
38	Catalytic Zirconium/Hafnium-Based Metal–Organic Frameworks. ACS Catalysis, 2017, 7, 997-1014.	11.2	288
39	Cyclometalated Platinum-Containing Diketopyrrolopyrrole Complexes and Polymers: Photophysics and Photovoltaic Applications. Chemistry of Materials, 2017, 29, 8449-8461.	6.7	27
40	Atomic Layer Deposition of Ultrathin Nickel Sulfide Films and Preliminary Assessment of Their Performance as Hydrogen Evolution Catalysts. Langmuir, 2016, 32, 12005-12012.	3.5	45
41	Toward Metal–Organic Framework-Based Solar Cells: Enhancing Directional Exciton Transport by Collapsing Three-Dimensional Film Structures. ACS Applied Materials & Samp; Interfaces, 2016, 8, 30863-30870.	8.0	88
42	Effect of Polymer Side Chains on Charge Generation and Disorder in PBDTTPD Solar Cells. ACS Applied Materials & Samp; Interfaces, 2015, 7, 26999-27005.	8.0	27
43	Ultrafast Excited-State Dynamics of Diketopyrrolopyrrole (DPP)-Based Materials: Static versus Diffusion-Controlled Electron Transfer Process. Journal of Physical Chemistry C, 2015, 119, 15919-15925.	3.1	15
44	Photophysics and Nonlinear Absorption of Gold(I) and Platinum(II) Donor–Acceptor–Donor Chromophores. Inorganic Chemistry, 2015, 54, 10007-10014.	4.0	37
45	Ï€-Conjugated Organometallic Isoindigo Oligomer and Polymer Chromophores: Singlet and Triplet Excited State Dynamics and Application in Polymer Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 26828-26838.	8.0	32
46	Photophysics and non-linear absorption of Au(<scp>i</scp>) and Pt(<scp>ii</scp>) acetylide complexes of a thienyl-carbazole chromophore. Dalton Transactions, 2014, 43, 17721-17728.	3.3	33
47	Photophysics of Organometallic Platinum(II) Derivatives of the Diketopyrrolopyrrole Chromophore. Journal of Physical Chemistry A, 2014, 118, 11735-11743.	2.5	36
48	Ultrafast Photoinduced Electron Transfer in a π-Conjugated Oligomer/Porphyrin Complex. Journal of Physical Chemistry Letters, 2014, 5, 3386-3390.	4.6	26
49	Photophysics and Light-Activated Biocidal Activity of Visible-Light-Absorbing Conjugated Oligomers. ACS Applied Materials & Damp; Interfaces, 2013, 5, 4516-4520.	8.0	44
50	Photochemistry of a Model Cationic <i>p</i> -Phenylene Ethynylene in Water. Journal of Physical Chemistry Letters, 2012, 3, 1363-1368.	4.6	13