Naomi J Halas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6444784/publications.pdf

Version: 2024-02-01

197 245 94,892 412 149 303 citations g-index h-index papers 419 419 419 56260 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Reply to: Distinguishing thermal from non-thermal contributions to plasmonic hydrodefluorination. Nature Catalysis, 2022, 5, 247-250.	34.4	7
2	Al@TiO ₂ Core–Shell Nanoparticles for Plasmonic Photocatalysis. ACS Nano, 2022, 16, 5839-5850.	14.6	48
3	Vacuum ultraviolet nonlinear metalens. Science Advances, 2022, 8, eabn5644.	10.3	57
4	Towards scalable plasmonic Fano-resonant metasurfaces for colorimetric sensing. Nanotechnology, 2022, 33, 405201.	2.6	25
5	A Dual Catalyst Strategy for Controlling Aluminum Nanocrystal Growth. Nano Letters, 2022, 22, 5570-5574.	9.1	4
6	Gd $<$ sub $>$ 2 $<$ /sub $>$ 0 $<$ sub $>$ 3 $<$ /sub $>$ -mesoporous silica/gold nanoshells: A potential dual $<$ i $>$ T $<$ /i $>$ <sub<math>>1$<$ sub$>$1$<$ sub$>$1$<$1$>$1$<$1$>$1$>$1$>$1$>$1$>$1$>$1$>$2$<$1$>$1$>$1$>$1$>$2$<$1$>$1$>$2$<$1<math>>1$>$2$<$1<math>>1$>$2$<$2$<$2$<$2$<$2$<$2$<$2$<$2$<$2$<$2$<$</math></math></sub<math>	7.1	14
7	UV-Resonant Al Nanocrystals: Synthesis, Silica Coating, and Broadband Photothermal Response. Nano Letters, 2021, 21, 536-542.	9.1	25
8	Mark Stockman: Evangelist for Plasmonics. ACS Photonics, 2021, 8, 683-698.	6.6	2
9	A 3D Plasmonic Antenna-Reactor for Nanoscale Thermal Hotspots and Gradients. ACS Nano, 2021, 15, 8761-8769.	14.6	28
10	Hot carrier multiplication in plasmonic photocatalysis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	43
11	Utilizing the broad electromagnetic spectrum and unique nanoscale properties for chemical-free water treatment. Current Opinion in Chemical Engineering, 2021, 33, 100709.	7.8	3
12	Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts. Nature Energy, 2020, 5, 61-70.	39.5	466
13	Aluminum Nanocrystals Grow into Distinct Branched Aluminum Nanowire Morphologies. Nano Letters, 2020, 20, 6644-6650.	9.1	10
14	Morphology-Dependent Reactivity of a Plasmonic Photocatalyst. ACS Nano, 2020, 14, 12054-12063.	14.6	69
15	Shining Light on Aluminum Nanoparticle Synthesis. Accounts of Chemical Research, 2020, 53, 2020-2030.	15.6	34
16	Effects of Electronic Structure on Molecular Plasmon Dynamics. Journal of Physical Chemistry C, 2020, 124, 20450-20457.	3.1	8
17	Site-Selective Nanoreactor Deposition on Photocatalytic Al Nanocubes. Nano Letters, 2020, 20, 4550-4557.	9.1	34
18	Plasmon-enabled degradation of organic micropollutants in water by visible-light illumination of Janus gold nanorods. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15473-15481.	7.1	49

#	Article	IF	CITATIONS
19	Plasmon-driven carbon–fluorine (C(sp3)–F) bond activation with mechanistic insights into hot-carrier-mediated pathways. Nature Catalysis, 2020, 3, 564-573.	34.4	81
20	Resonant energy transfer enhances solar thermal desalination. Energy and Environmental Science, 2020, 13, 968-976.	30.8	33
21	Monolithic Metal Dimer-on-Film Structure: New Plasmonic Properties Introduced by the Underlying Metal. Nano Letters, 2020, 20, 2087-2093.	9.1	102
22	Duplicating Plasmonic Hotspots by Matched Nanoantenna Pairs for Remote Nanogap Enhanced Spectroscopy. Nano Letters, 2020, 20, 3499-3505.	9.1	27
23	Acoustic Vibrations of Al Nanocrystals: Size, Shape, and Crystallinity Revealed by Single-Particle Transient Extinction Spectroscopy. Journal of Physical Chemistry A, 2020, 124, 3924-3934.	2.5	21
24	Design and fabrication of the vacuum ultraviolet nonlinear metasurfaces. , 2020, , .		0
25	Aluminum Nanocubes Have Sharp Corners. ACS Nano, 2019, 13, 9682-9691.	14.6	63
26	Plasmonics sheds light on the nanotechnology of daguerreotypes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13724-13726.	7.1	1
27	Generating Third Harmonic Vacuum Ultraviolet Light with a TiO ₂ Metasurface. Nano Letters, 2019, 19, 8972-8978.	9.1	69
28	Nano as a Rosetta Stone: The Global Roles and Opportunities for Nanoscience and Nanotechnology. ACS Nano, 2019, 13, 10853-10855.	14.6	16
29	Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18590-18596.	7.1	588
30	Impact of chemical interface damping on surface plasmon dephasing. Faraday Discussions, 2019, 214, 59-72.	3.2	53
31	Spiers Memorial Lecture: Introductory lecture: Hot-electron science and microscopic processes in plasmonics and catalysis. Faraday Discussions, 2019, 214, 13-33.	3.2	27
32	Efficient Second Harmonic Generation in a Hybrid Plasmonic Waveguide by Mode Interactions. Nano Letters, 2019, 19, 3838-3845.	9.1	47
33	Quantitative analysis of gas phase molecular constituents using frequency-modulated rotational spectroscopy. Review of Scientific Instruments, 2019, 90, 053110.	1.3	9
34	Photocatalytic Hydrogenation of Graphene Using Pd Nanocones. Nano Letters, 2019, 19, 4413-4419.	9.1	32
35	Solar thermal desalination as a nonlinear optical process. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13182-13187.	7.1	74
36	Plasmonic Photocatalysis of Nitrous Oxide into N ₂ and O ₂ Using Aluminum–Iridium Antenna–Reactor Nanoparticles. ACS Nano, 2019, 13, 8076-8086.	14.6	83

#	Article	lF	Citations
37	Light-Driven Chemical Looping for Ammonia Synthesis. ACS Energy Letters, 2019, 4, 1505-1512.	17.4	67
38	Theory of hot electrons: general discussion. Faraday Discussions, 2019, 214, 245-281.	3.2	34
39	Dynamics of hot electron generation in metallic nanostructures: general discussion. Faraday Discussions, 2019, 214, 123-146.	3.2	21
40	New materials for hot electron generation: general discussion. Faraday Discussions, 2019, 214, 365-386.	3.2	9
41	Response to Comment on "Quantifying hot carrier and thermal contributions in plasmonic photocatalysis― Science, 2019, 364, .	12.6	131
42	Ultrafast Electron Dynamics in Single Aluminum Nanostructures. Nano Letters, 2019, 19, 3091-3097.	9.1	39
43	Metal-organic frameworks tailor the properties of aluminum nanocrystals. Science Advances, 2019, 5, eaav5340.	10.3	74
44	Polydopamine-Stabilized Aluminum Nanocrystals: Aqueous Stability and Benzo[a]pyrene Detection. ACS Nano, 2019, 13, 3117-3124.	14.6	71
45	Chemical Nanoplasmonics: Emerging Interdisciplinary Research Field at Crossroads between Nanoscale Chemistry and Plasmonics. Accounts of Chemical Research, 2019, 52, 2995-2996.	15.6	14
46	Toward a Nanophotonic Nose: A Compressive Sensing-Enhanced, Optoelectronic Mid-Infrared Spectrometer. ACS Photonics, 2019, 6, 79-86.	6.6	25
47	Toroidal Dipole-Enhanced Third Harmonic Generation of Deep Ultraviolet Light Using Plasmonic Meta-atoms. Nano Letters, 2019, 19, 605-611.	9.1	94
48	Ligand-Dependent Colloidal Stability Controls the Growth of Aluminum Nanocrystals. Journal of the American Chemical Society, 2019, 141, 1716-1724.	13.7	45
49	Plasmonic nanoparticle-based epoxy photocuring: A deeper look. Materials Today, 2019, 27, 14-20.	14.2	11
50	Nonlinear Generation of Vacuum Ultraviolet Light with an All-Dielectric Metasurface. , 2019, , .		0
51	Absorption-enhanced imaging through scattering media using carbon black nano-particles: from visible to near infrared wavelengths. Journal of Optics (United Kingdom), 2018, 20, 054001.	2.2	9
52	Wavelength-Dependent Optical Force Imaging of Bimetallic Al–Au Heterodimers. Nano Letters, 2018, 18, 2040-2046.	9.1	44
53	Aluminum Nanorods. Nano Letters, 2018, 18, 1234-1240.	9.1	69
54	Polycrystallinity of Lithographically Fabricated Plasmonic Nanostructures Dominates Their Acoustic Vibrational Damping. Nano Letters, 2018, 18, 3494-3501.	9.1	35

#	Article	IF	Citations
55	Work Function-Driven Hot Electron Extraction in a Bimetallic Plasmonic MIM Device. ACS Photonics, 2018, 5, 1202-1207.	6.6	9
56	Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Science, 2018, 362, 69-72.	12.6	756
57	Polymer-Directed Growth of Plasmonic Aluminum Nanocrystals. Journal of the American Chemical Society, 2018, 140, 15412-15418.	13.7	55
58	Optical-Force-Dominated Directional Reshaping of Au Nanodisks in Al–Au Heterodimers. Nano Letters, 2018, 18, 6509-6514.	9.1	13
59	A room-temperature mid-infrared photodetector for on-chip molecular vibrational spectroscopy. Applied Physics Letters, 2018, 113, .	3.3	16
60	Lifetime dynamics of plasmons in the few-atom limit. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9134-9139.	7.1	30
61	Monitoring Chemical Reactions with Terahertz Rotational Spectroscopy. ACS Photonics, 2018, 5, 3097-3106.	6.6	19
62	Emerging opportunities for nanotechnology to enhance water security. Nature Nanotechnology, 2018, 13, 634-641.	31.5	627
63	Vacuum Ultraviolet Light-Generating Metasurface. Nano Letters, 2018, 18, 5738-5743.	9.1	82
64	Combining Plasmonic Hot Carrier Generation with Free Carrier Absorption for High-Performance Near-Infrared Silicon-Based Photodetection. ACS Photonics, 2018, 5, 3472-3477.	6.6	91
65	Routes to Potentially Safer <i>T</i> ₁ Magnetic Resonance Imaging Contrast in a Compact Plasmonic Nanoparticle with Enhanced Fluorescence. ACS Nano, 2018, 12, 8214-8223.	14.6	37
66	A Combined Experimental and Theoretical Approach to Measure Spatially Resolved Local Surface Plasmon Resonances in Aluminum Nanocrystals. Microscopy and Microanalysis, 2018, 24, 1682-1683.	0.4	1
67	Absorption-enhanced Imaging through Scattering Medium. , 2018, , .		0
68	Multicolor Electrochromic Devices Based on Molecular Plasmonics. ACS Nano, 2017, 11, 3254-3261.	14.6	97
69	Hot Hole Photoelectrochemistry on Au@SiO ₂ @Au Nanoparticles. Journal of Physical Chemistry Letters, 2017, 8, 2060-2067.	4.6	137
70	Balancing Near-Field Enhancement, Absorption, and Scattering for Effective Antenna–Reactor Plasmonic Photocatalysis. Nano Letters, 2017, 17, 3710-3717.	9.1	202
71	Nanophotonics-enabled solar membrane distillation for off-grid water purification. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6936-6941.	7.1	348
72	Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles. Nature Communications, 2017, 8, 27.	12.8	308

#	Article	lF	Citations
73	Gold coated iron phosphide core–shell structures. RSC Advances, 2017, 7, 25848-25854.	3.6	7
74	Diverse Applications of Nanomedicine. ACS Nano, 2017, 11, 2313-2381.	14.6	976
75	Optomechanics of Single Aluminum Nanodisks. Nano Letters, 2017, 17, 2575-2583.	9.1	50
76	Transition-Metal Decorated Aluminum Nanocrystals. ACS Nano, 2017, 11, 10281-10288.	14.6	76
77	Vibrational coupling in plasmonic molecules. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11621-11626.	7.1	49
78	Two-Dimensional Active Tuning of an Aluminum Plasmonic Array for Full-Spectrum Response. Nano Letters, 2017, 17, 6034-6039.	9.1	235
79	Nanogapped Au Antennas for Ultrasensitive Surface-Enhanced Infrared Absorption Spectroscopy. Nano Letters, 2017, 17, 5768-5774.	9.1	187
80	Near-infrared remotely triggered drug-release strategies for cancer treatment. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12419-12424.	7.1	64
81	Enhancing T $<$ sub $>$ 1 $<$ /sub $>$ magnetic resonance imaging contrast with internalized gadolinium(III) in a multilayer nanoparticle. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6960-6965.	7.1	75
82	Aluminum Nanocrystals: A Sustainable Substrate for Quantitative SERS-Based DNA Detection. Nano Letters, 2017, 17, 5071-5077.	9.1	173
83	Understanding Resonant Light-Triggered DNA Release from Plasmonic Nanoparticles. ACS Nano, 2017, 11, 171-179.	14.6	94
84	Plasmonic colour generation. Nature Reviews Materials, 2017, 2, .	48.7	620
85	Combining Solar Steam Processing and Solar Distillation for Fully Off-Grid Production of Cellulosic Bioethanol. ACS Energy Letters, 2017, 2, 8-13.	17.4	61
86	Toward Surface Plasmon-Enhanced Optical Parametric Amplification (SPOPA) with Engineered Nanoparticles: A Nanoscale Tunable Infrared Source. Nano Letters, 2016, 16, 3373-3378.	9.1	50
87	Imaging through plasmonic nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5558-5563.	7.1	27
88	Molecular Plasmon–Phonon Coupling. Nano Letters, 2016, 16, 6390-6395.	9.1	20
89	Absorption Spectroscopy of an Individual Fano Cluster. Nano Letters, 2016, 16, 6497-6503.	9.1	37
90	Absorption-Induced Image Resolution Enhancement in Scattering Media. ACS Photonics, 2016, 3, 1787-1793.	6.6	24

#	Article	IF	CITATIONS
91	Al–Pd Nanodisk Heterodimers as Antenna–Reactor Photocatalysts. Nano Letters, 2016, 16, 6677-6682.	9.1	196
92	Heterometallic antennaâ ^{**} reactor complexes for photocatalysis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8916-8920.	7.1	381
93	Photoinduced Force Mapping of Plasmonic Nanostructures. Nano Letters, 2016, 16, 7942-7949.	9.1	61
94	Walking the Walk: A Giant Step toward Sustainable Plasmonics. ACS Nano, 2016, 10, 9772-9775.	14.6	38
95	Layer Engineering of 2D Semiconductor Junctions. Advanced Materials, 2016, 28, 5126-5132.	21.0	63
96	Aluminum Nanocrystals as a Plasmonic Photocatalyst for Hydrogen Dissociation. Nano Letters, 2016, 16, 1478-1484.	9.1	294
97	High Chromaticity Aluminum Plasmonic Pixels for Active Liquid Crystal Displays. ACS Nano, 2016, 10, 1108-1117.	14.6	153
98	Asymmetric Aluminum Antennas for Self-Calibrating Surface-Enhanced Infrared Absorption Spectroscopy. ACS Photonics, 2016, 3, 354-360.	6.6	107
99	Laser-Induced Spectral Hole-Burning through a Broadband Distribution of Au Nanorods. Journal of Physical Chemistry C, 2016, 120, 20518-20524.	3.1	22
100	Charge Transfer Plasmons: Optical Frequency Conductances and Tunable Infrared Resonances. ACS Nano, 2015, 9, 6428-6435.	14.6	115
101	From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties. Science Advances, 2015, 1, e1500988.	10.3	146
102	NIR and MIR charge transfer plasmons in wire-bridged antennas (Presentation Recording). Proceedings of SPIE, 2015, , .	0.8	0
103	Fan-Shaped Gold Nanoantennas above Reflective Substrates for Surface-Enhanced Infrared Absorption (SEIRA). Nano Letters, 2015, 15, 1272-1280.	9.1	227
104	Plasmon-induced hot carrier science and technology. Nature Nanotechnology, 2015, 10, 25-34.	31.5	2,564
105	Standing Wave Plasmon Modes Interact in an Antenna-Coupled Nanowire. Nano Letters, 2015, 15, 1324-1330.	9.1	21
106	Fractal Nanoparticle Plasmonics: The Cayley Tree. ACS Nano, 2015, 9, 3284-3292.	14.6	96
107	Molecular Plasmonics. Nano Letters, 2015, 15, 6208-6214.	9.1	80
108	Distinguishing between plasmon-induced and photoexcited carriers in a device geometry. Nature Communications, 2015, 6, 7797.	12.8	311

#	Article	IF	CITATIONS
109	Aluminum Nanocrystals. Nano Letters, 2015, 15, 2751-2755.	9.1	169
110	Tuning the acoustic frequency of a gold nanodisk through its adhesion layer. Nature Communications, 2015, 6, 7022.	12.8	65
111	An Atomically Layered InSe Avalanche Photodetector. Nano Letters, 2015, 15, 3048-3055.	9.1	253
112	Fano Resonant Aluminum Nanoclusters for Plasmonic Colorimetric Sensing. ACS Nano, 2015, 9, 10628-10636.	14.6	209
113	Nanoparticle-Mediated, Light-Induced Phase Separations. Nano Letters, 2015, 15, 7880-7885.	9.1	107
114	Distinguishing between plasmon-induced and photo-excited carriers in a device geometry (Presentation Recording). , $2015, \ldots$		0
115	Pronounced Linewidth Narrowing of an Aluminum Nanoparticle Plasmon Resonance by Interaction with an Aluminum Metallic Film. Nano Letters, 2015, 15, 6946-6951.	9.1	149
116	Optoelectronic Memory Using Two-Dimensional Materials. Nano Letters, 2015, 15, 259-265.	9.1	163
117	Reduction in Nanoparticle Size Dramatically Improves Plasmonic Photo-thermal Therapy Efficacy in Aggressive Triple Negative Breast Cancer. , 2014, , .		0
118	Coherent Plasmonics: Optimized for Sensing and Energy Transfer. , 2014, , .		0
119	Ternary Culn ₇ Se ₁₁ : Towards Ultraâ€Thin Layered Photodetectors and Photovoltaic Devices. Advanced Materials, 2014, 26, 7666-7672.	21.0	43
120	Fluorescence Enhancement of Molecules Inside a Gold Nanomatryoshka. Nano Letters, 2014, 14, 2926-2933.	9.1	188
121	Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays. Nano Letters, 2014, 14, 299-304.	9.1	565
122	Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS ₂ with resonant plasmonic nanoshells. Applied Physics Letters, 2014, 104, 031112.	3.3	208
123	Aluminum for Plasmonics. ACS Nano, 2014, 8, 834-840.	14.6	1,018
124	Impurity-Induced Plasmon Damping in Individual Cobalt-Doped Hollow Au Nanoshells. Journal of Physical Chemistry B, 2014, 118, 14056-14061.	2.6	21
125	Nanoparticles Heat through Light Localization. Nano Letters, 2014, 14, 4640-4645.	9.1	379
126	Plasmonic Hot Electron Induced Structural Phase Transition in a MoS ₂ Monolayer. Advanced Materials, 2014, 26, 6467-6471.	21.0	516

#	Article	IF	Citations
127	Sub-100nm gold nanomatryoshkas improve photo-thermal therapy efficacy in large and highly aggressive triple negative breast tumors. Journal of Controlled Release, 2014, 191, 90-97.	9.9	79
128	Hot-Electron-Induced Dissociation of H ₂ on Gold Nanoparticles Supported on SiO ₂ . Journal of the American Chemical Society, 2014, 136, 64-67.	13.7	458
129	Colorâ€Selective and CMOSâ€Compatible Photodetection Based on Aluminum Plasmonics. Advanced Materials, 2014, 26, 6318-6323.	21.0	178
130	Vivid, full-color aluminum plasmonic pixels. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14348-14353.	7.1	269
131	Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance. Nature Communications, 2014, 5, 4424.	12.8	252
132	Targeting pancreatic cancer with magneto-fluorescent theranostic gold nanoshells. Nanomedicine, 2014, 9, 1209-1222.	3.3	62
133	The Surprising <i>in Vivo</i> Instability of Near-IR-Absorbing Hollow Au–Ag Nanoshells. ACS Nano, 2014, 8, 3222-3231.	14.6	148
134	Au Nanomatryoshkas as Efficient Near-Infrared Photothermal Transducers for Cancer Treatment: Benchmarking against Nanoshells. ACS Nano, 2014, 8, 6372-6381.	14.6	334
135	Three-Dimensional Plasmonic Nanoclusters. Nano Letters, 2013, 13, 4399-4403.	9.1	168
136	Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11677-11681.	7.1	421
137	Anomalously Strong Electric Near-Field Enhancements at Defect Sites on Au Nanoshells Observed by Ultrafast Scanning Photoemission Imaging Microscopy. Journal of Physical Chemistry C, 2013, 117, 22545-22559.	3.1	18
138	Individual Nanoantennas Loaded with Three-Dimensional Optical Nanocircuits. Nano Letters, 2013, 13, 142-147.	9.1	111
139	Hot Electrons Do the Impossible: Plasmon-Induced Dissociation of H ₂ on Au. Nano Letters, 2013, 13, 240-247.	9.1	1,332
140	Solar Vapor Generation Enabled by Nanoparticles. ACS Nano, 2013, 7, 42-49.	14.6	1,053
141	Light-Triggered Biocatalysis Using Thermophilic Enzyme–Gold Nanoparticle Complexes. ACS Nano, 2013, 7, 654-663.	14.6	73
142	Gated Tunability and Hybridization of Localized Plasmons in Nanostructured Graphene. ACS Nano, 2013, 7, 2388-2395.	14.6	622
143	Dark Plasmons in Hot Spot Generation and Polarization in Interelectrode Nanoscale Junctions. Nano Letters, 2013, 13, 1359-1364.	9.1	93
144	Embedding Plasmonic Nanostructure Diodes Enhances Hot Electron Emission. Nano Letters, 2013, 13, 1687-1692.	9.1	283

#	Article	IF	CITATIONS
145	Evolution of Light-Induced Vapor Generation at a Liquid-Immersed Metallic Nanoparticle. Nano Letters, 2013, 13, 1736-1742.	9.1	394
146	Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nature Communications, 2013, 4, 1643.	12.8	552
147	Surface-Enhanced Infrared Absorption Using Individual Cross Antennas Tailored to Chemical Moieties. Journal of the American Chemical Society, 2013, 135, 3688-3695.	13.7	212
148	Near-Field Mediated Plexcitonic Coupling and Giant Rabi Splitting in Individual Metallic Dimers. Nano Letters, 2013, 13, 3281-3286.	9.1	445
149	Using Catalytic and Surface-Enhanced Raman Spectroscopy-Active Gold Nanoshells to Understand the Role of Basicity in Glycerol Oxidation. ACS Catalysis, 2013, 3, 2430-2435.	11.2	40
150	Orienting Nanoantennas in Three Dimensions To Control Light Scattering Across a Dielectric Interface. Nano Letters, 2013, 13, 5997-6001.	9.1	30
151	Substrate-mediated charge transfer plasmons in simple and complex nanoparticle clusters. Nanoscale, 2013, 5, 9897.	5. 6	47
152	Surface-enhanced Raman spectroscopy: Substrates and materials for research and applications. MRS Bulletin, 2013, 38, 607-611.	3.5	41
153	Coherent Fano resonances in a plasmonic nanocluster enhance optical four-wave mixing. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9215-9219.	7.1	190
154	Electrical conductivity of cationized ferritin decorated gold nanoshells. Journal of Applied Physics, 2012, 111, 124311.	2.5	1
155	Tunable optical tweezers for wavelength-dependent measurements. Review of Scientific Instruments, 2012, 83, 043114.	1.3	14
156	Noble Metal Nanowires: From Plasmon Waveguides to Passive and Active Devices. Accounts of Chemical Research, 2012, 45, 1887-1895.	15.6	133
157	Plasmon Transmutation: Inducing New Modes in Nanoclusters by Adding Dielectric Nanoparticles. Nano Letters, 2012, 12, 5020-5026.	9.1	73
158	A Plasmonic Fano Switch. Nano Letters, 2012, 12, 4977-4982.	9.1	342
159	Plasmon-Induced Doping of Graphene. ACS Nano, 2012, 6, 10222-10228.	14.6	356
160	Designing and Deconstructing the Fano Lineshape in Plasmonic Nanoclusters. Nano Letters, 2012, 12, 1058-1062.	9.1	205
161	Plasmonic Materials: A Plethora of Plasmonics from the Laboratory for Nanophotonics at Rice University (Adv. Mater. 36/2012). Advanced Materials, 2012, 24, 4774-4774.	21.0	5
162	Aluminum Plasmonic Nanoantennas. Nano Letters, 2012, 12, 6000-6004.	9.1	497

#	Article	IF	Citations
163	Plasmonic Nanoclusters: Near Field Properties of the Fano Resonance Interrogated with SERS. Nano Letters, 2012, 12, 1660-1667.	9.1	442
164	Gene Silencing by Gold Nanoshell-Mediated Delivery and Laser-Triggered Release of Antisense Oligonucleotide and siRNA. ACS Nano, 2012, 6, 7681-7691.	14.6	242
165	Calibrating the imaging and therapy performance of magneto-fluorescent gold nanoshells for breast cancer. , 2012, , .		1
166	Delivery of nanoparticles to brain metastases of breast cancer using a cellular Trojan horse. Cancer Nanotechnology, 2012, 3, 47-54.	3.7	132
167	Water-Phase Synthesis of Cationic Silica/Polyamine Nanoparticles. Chemistry of Materials, 2012, 24, 1426-1433.	6.7	11
168	Magnetic Plasmon Formation and Propagation in Artificial Aromatic Molecules. Nano Letters, 2012, 12, 364-369.	9.1	119
169	Near-Normal Incidence Dark-Field Microscopy: Applications to Nanoplasmonic Spectroscopy. Nano Letters, 2012, 12, 2817-2821.	9.1	61
170	Manipulating Magnetic Plasmon Propagation in Metallic Nanocluster Networks. ACS Nano, 2012, 6, 5482-5488.	14.6	92
171	A Plethora of Plasmonics from the Laboratory for Nanophotonics at Rice University. Advanced Materials, 2012, 24, 4842-4877.	21.0	94
172	Graphene-Antenna Sandwich Photodetector. Nano Letters, 2012, 12, 3808-3813.	9.1	615
173	Orientation-Preserving Transfer and Directional Light Scattering from Individual Light-Bending Nanoparticles. Nano Letters, 2011, 11, 1838-1844.	9.1	53
174	Plexciton Dynamics: Excitonâ^'Plasmon Coupling in a J-Aggregateâ^'Au Nanoshell Complex Provides a Mechanism for Nonlinearity. Nano Letters, 2011, 11, 1556-1560.	9.1	260
175	Three-Dimensional Nanostructures as Highly Efficient Generators of Second Harmonic Light. Nano Letters, 2011, 11, 5519-5523.	9.1	273
176	Plasmons in Strongly Coupled Metallic Nanostructures. Chemical Reviews, 2011, 111, 3913-3961.	47.7	2,663
177	Calibrating the photo-thermal response of magneto-fluorescent gold nanoshells. , 2011, 2011, 4776-9.		1
178	Removing a Wedge from a Metallic Nanodisk Reveals a Fano Resonance. Nano Letters, 2011, 11, 4475-4479.	9.1	190
179	Theranostic Nanoshells: From Probe Design to Imaging and Treatment of Cancer. Accounts of Chemical Research, 2011, 44, 936-946.	15.6	827
180	Quantum Dot-Based Local Field Imaging Reveals Plasmon-Based Interferometric Logic in Silver Nanowire Networks. Nano Letters, 2011, 11, 471-475.	9.1	267

#	Article	IF	CITATIONS
181	Angle- and Spectral-Dependent Light Scattering from Plasmonic Nanocups. ACS Nano, 2011, 5, 7254-7262.	14.6	95
182	Photodetection with Active Optical Antennas. Science, 2011, 332, 702-704.	12.6	1,760
183	Substrate-Induced Fano Resonances of a Plasmonic Nanocube: A Route to Increased-Sensitivity Localized Surface Plasmon Resonance Sensors Revealed. Nano Letters, 2011, 11, 1657-1663.	9.1	649
184	Bethe-hole polarization analyser for the magnetic vector of light. Nature Communications, 2011, 2, 451.	12.8	83
185	Light-Induced Release of DNA from Gold Nanoparticles: Nanoshells and Nanorods. Journal of the American Chemical Society, 2011, 133, 12247-12255.	13.7	334
186	Chiral Surface Plasmon Polaritons on Metallic Nanowires. Physical Review Letters, 2011, 107, 096801.	7.8	225
187	Detecting Chemically Modified DNA Bases Using Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry Letters, 2011, 2, 3118-3123.	4.6	69
188	Coherent Modulation of Propagating Plasmons in Silverâ€Nanowireâ€Based Structures. Small, 2011, 7, 593-596.	10.0	74
189	Self-assembled plasmonic nonoparticle clusters: New building blocks for metamaterials and their optical properties. , 2011, , .		0
190	Label-Free Detection of DNA Hybridization Using Surface Enhanced Raman Spectroscopy. Journal of the American Chemical Society, 2010, 132, 12792-12793.	13.7	240
191	Self-Assembled Plasmonic Nanoparticle Clusters. Science, 2010, 328, 1135-1138.	12.6	1,362
192	The Fano resonance in plasmonic nanostructures and metamaterials. Nature Materials, 2010, 9, 707-715.	27.5	3,352
193	Optical Spectroscopy of Conductive Junctions in Plasmonic Cavities. Nano Letters, 2010, 10, 3090-3095.	9.1	221
194	Plasmonics: An Emerging Field Fostered by <i>Nano Letters</i> . Nano Letters, 2010, 10, 3816-3822.	9.1	272
195	Heterodimers: Plasmonic Properties of Mismatched Nanoparticle Pairs. ACS Nano, 2010, 4, 819-832.	14.6	422
196	Effect of a proximal substrate on plasmon propagation in silver nanowires. Physical Review B, 2010, 82,	3.2	67
197	Fano-like Interference in Self-Assembled Plasmonic Quadrumer Clusters. Nano Letters, 2010, 10, 4680-4685.	9.1	343
198	Visualizing Light-Triggered Release of Molecules Inside Living Cells. Nano Letters, 2010, 10, 4117-4122.	9.1	131

#	Article	IF	Citations
199	Tracking of Multimodal Therapeutic Nanocomplexes Targeting Breast Cancer in Vivo. Nano Letters, 2010, 10, 4920-4928.	9.1	157
200	Optically-Driven Collapse of a Plasmonic Nanogap Self-Monitored by Optical Frequency Mixing. Nano Letters, 2010, 10, 1522-1528.	9.1	17
201	Plasmonic Enhancement of Raman Optical Activity in Molecules near Metal Nanoshells: Theoretical Comparison of Circular Polarization Methods. Journal of Physical Chemistry C, 2010, 114, 7390-7400.	3.1	24
202	Perforated Semishells: Far-Field Directional Control and Optical Frequency Magnetic Response. ACS Nano, 2010, 4, 2701-2712.	14.6	46
203	Influence of excitation and collection geometry on the dark field spectra of individual plasmonic nanostructures. Optics Express, 2010, 18, 2579.	3.4	67
204	Nanosphere-in-a-Nanoshell: A Simple Nanomatryushka. Journal of Physical Chemistry C, 2010, 114, 7378-7383.	3.1	214
205	Fanoshells: Nanoparticles with Built-in Fano Resonances. Nano Letters, 2010, 10, 2694-2701.	9.1	288
206	Metallic Nanoshells with Semiconductor Cores: Optical Characteristics Modified by Core Medium Properties. ACS Nano, 2010, 4, 6169-6179.	14.6	139
207	Fano Resonances in Plasmonic Nanoclusters: Geometrical and Chemical Tunability. Nano Letters, 2010, 10, 3184-3189.	9.1	601
208	A Molecularly Targeted Theranostic Probe for Ovarian Cancer. Molecular Cancer Therapeutics, 2010, 9, 1028-1038.	4.1	77
209	Branched Silver Nanowires as Controllable Plasmon Routers. Nano Letters, 2010, 10, 1950-1954.	9.1	264
210	Nanostructure-Mediated Launching and Detection of 2D Surface Plasmons. ACS Nano, 2010, 4, 7566-7572.	14.6	22
211	Nanoshells for Photothermal Cancer Therapy. Methods in Molecular Biology, 2010, 624, 101-117.	0.9	66
212	Connecting the dots: Reinventing optics for nanoscale dimensions. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3643-3644.	7.1	41
213	Multimodal optical molecular image reconstruction with frequency domain measurements., 2009, 2009, 6655-8.		1
214	The photonic nanomedicine revolution: let the human side of nanotechnology emerge. Nanomedicine, 2009, 4, 369-371.	3.3	25
215	Nanoshells with Targeted Simultaneous Enhancement of Magnetic and Optical Imaging and Photothermal Therapeutic Response. Advanced Functional Materials, 2009, 19, 3901-3909.	14.9	208
216	Light-induced release of DNA from plasmon-resonant nanoparticles: Towards light-controlled gene therapy. Chemical Physics Letters, 2009, 482, 171-179.	2.6	134

#	Article	lF	CITATIONS
217	Substrates Matter: Influence of an Adjacent Dielectric on an Individual Plasmonic Nanoparticle. Nano Letters, 2009, 9, 2188-2192.	9.1	414
218	Plasmonic Enhancement of Raman Optical Activity in Molecules near Metal Nanoshells. Journal of Physical Chemistry A, 2009, 113, 13173-13183.	2.5	38
219	Au Nanorice Assemble Electrolytically into Mesostars. ACS Nano, 2009, 3, 266-272.	14.6	36
220	Fluorescence Enhancement by Au Nanostructures: Nanoshells and Nanorods. ACS Nano, 2009, 3, 744-752.	14.6	547
221	Photothermal Efficiencies of Nanoshells and Nanorods for Clinical Therapeutic Applications. Journal of Physical Chemistry C, 2009, 113, 12090-12094.	3.1	325
222	Direct Optical Detection of Aptamer Conformational Changes Induced by Target Molecules. Analytical Chemistry, 2009, 81, 10002-10006.	6. 5	89
223	Light-Bending Nanoparticles. Nano Letters, 2009, 9, 1255-1259.	9.1	148
224	Adenineâ^' and Adenosine Monophosphate (AMP)â^'Gold Binding Interactions Studied by Surface-Enhanced Raman and Infrared Spectroscopies. Journal of Physical Chemistry C, 2009, 113, 14390-14397.	3.1	118
225	Real-time monitoring of lipid transfer between vesicles and hybrid bilayers on Au nanoshells using surface enhanced Raman scattering (SERS). Nanoscale, 2009, 1, 114.	5. 6	49
226	Reshaping the Plasmonic Properties of an Individual Nanoparticle. Nano Letters, 2009, 9, 4326-4332.	9.1	101
227	Magneticâ^'Plasmonic Coreâ^'Shell Nanoparticles. ACS Nano, 2009, 3, 1379-1388.	14.6	337
228	Gold Nanoparticles Can Induce the Formation of Protein-based Aggregates at Physiological pH. Nano Letters, 2009, 9, 666-671.	9.1	352
229	Nanoshell-based substrates for surface enhanced spectroscopic detection of biomolecules. Analyst, The, 2009, 134, 1745.	3. 5	55
230	Nano-optics from sensing to waveguiding., 2009,, 213-220.		9
231	Delivery of Therapeutic Nanoshells to Hypoxic Areas of Tumors Using a Cellular Trojan Horse , 2009, ,		0
232	Nanoscale Control of Nearâ€Infrared Fluorescence Enhancement Using Au Nanoshells. Small, 2008, 4, 1716-1722.	10.0	166
233	Mesoscopic Au "Meatball―Particles. Advanced Materials, 2008, 20, 820-825.	21.0	204
234	Controlled Loading of Nanoparticles into Submicrometer Holes. Advanced Materials, 2008, 20, 535-538.	21.0	6

#	Article	IF	Citations
235	Surface enhanced infrared absorption (SEIRA) spectroscopy on nanoshell aggregate substrates. Chemical Physics Letters, 2008, 452, 115-119.	2.6	210
236	Nanoscience under Glass: The Versatile Chemistry of Silica Nanostructures. ACS Nano, 2008, 2, 179-183.	14.6	117
237	Plexcitonic Nanoparticles: Plasmonâ´Exciton Coupling in Nanoshellâ´J-Aggregate Complexes. Nano Letters, 2008, 8, 3481-3487.	9.1	523
238	Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance. Nano Letters, 2008, 8, 3983-3988.	9.1	954
239	Tailoring plasmonic substrates for surface enhanced spectroscopies. Chemical Society Reviews, 2008, 37, 898.	38.1	522
240	Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core–shell nanoparticles beyond the quasistatic limit. New Journal of Physics, 2008, 10, 105006.	2.9	182
241	Nanoshell-Enabled Photothermal Cancer Therapy: Impending Clinical Impact. Accounts of Chemical Research, 2008, 41, 1842-1851.	15.6	1,460
242	Optical Properties of a Nanosized Hole in a Thin Metallic Film. ACS Nano, 2008, 2, 25-32.	14.6	133
243	Observing Metal-Catalyzed Chemical Reactions in Situ Using Surface-Enhanced Raman Spectroscopy on Pdâ~'Au Nanoshells. Journal of the American Chemical Society, 2008, 130, 16592-16600.	13.7	185
244	Metallic Nanoparticle Arrays: A Common Substrate for Both Surface-Enhanced Raman Scattering and Surface-Enhanced Infrared Absorption. ACS Nano, 2008, 2, 707-718.	14.6	730
245	Nanoparticle-Induced Enhancement and Suppression of Photocurrent in a Silicon Photodiode. Nano Letters, 2008, 8, 624-630.	9.1	122
246	Simultaneous Measurements of Electronic Conduction and Raman Response in Molecular Junctions. Nano Letters, 2008, 8, 919-924.	9.1	270
247	Nanoshells Made Easy: Improving Au Layer Growth on Nanoparticle Surfaces. Langmuir, 2008, 24, 14166-14171.	3.5	227
248	Surface-Enhanced Raman Spectroscopy of DNA. Journal of the American Chemical Society, 2008, 130, 5523-5529.	13.7	468
249	Electronic and optical properties of electromigrated molecular junctions. Journal of Physics Condensed Matter, 2008, 20, 374118.	1.8	41
250	Interactions of Ibuprofen with Hybrid Lipid Bilayers Probed by Complementary Surface-Enhanced Vibrational Spectroscopies. Journal of Physical Chemistry B, 2008, 112, 14168-14175.	2.6	70
251	Aromatic Amino Acids Providing Characteristic Motifs in the Raman and SERS Spectroscopy of Peptides. Journal of Physical Chemistry B, 2008, 112, 9158-9164.	2.6	130
252	Close Encounters between Two Nanoshells. Nano Letters, 2008, 8, 1212-1218.	9.1	462

#	Article	IF	Citations
253	Correlation of Molecular Orientation and Packing Density in a dsDNA Self-Assembled Monolayer Observable with Surface-Enhanced Raman Spectroscopy. Journal of the American Chemical Society, 2008, 130, 14040-14041.	13.7	83
254	Optical trapping of nanoshells near resonance. Proceedings of SPIE, 2008, , .	0.8	0
255	Measurement of immunotargeted plasmonic nanoparticles' cellular binding: a key factor in optimizing diagnostic efficacy. Nanotechnology, 2008, 19, 045103.	2.6	14
256	Localized heating in nanoscale Pt constrictions measured using blackbody radiation emission. Applied Physics Letters, 2008, 93, .	3.3	23
257	Plasmonics-based design: combining surface-enhanced Raman and IR spectroscopies into the same structure. , 2008, , .		0
258	Optical trapping of nanoshells. , 2007, 6644, 238.		1
259	Near-Infrared Excited Raman Optical Activity. Applied Spectroscopy, 2007, 61, 1103-1106.	2.2	30
260	Nanoparticle-Mediated Coupling of Light into a Nanowire. Nano Letters, 2007, 7, 2346-2350.	9.1	210
261	Plasmonic Enhancement of Molecular Fluorescence. Nano Letters, 2007, 7, 496-501.	9.1	892
262	Plasmonic Nanostructures:  Artificial Molecules. Accounts of Chemical Research, 2007, 40, 53-62.	15.6	635
263	Mesoscopic nanoshells: Geometry-dependent plasmon resonances beyond the quasistatic limit. Journal of Chemical Physics, 2007, 127, 204703.	3.0	54
264	Plasmonic interactions between a metallic nanoshell and a thin metallic film. Physical Review B, 2007, 76, .	3.2	71
265	Facile Chemical Approach to ZnO Submicrometer Particles with Controllable Morphologies. Langmuir, 2007, 23, 5843-5847.	3.5	24
266	Peptide-Assembled Optically Responsive Nanoparticle Complexes. Nano Letters, 2007, 7, 1054-1058.	9.1	111
267	Chain-Length-Dependent Vibrational Resonances in Alkanethiol Self-Assembled Monolayers Observed on Plasmonic Nanoparticle Substrates. Nano Letters, 2007, 7, 853-853.	9.1	0
268	Nanoparticle Shape Conservation in the Conversion of MnO Nanocrosses into Mn3O4. Chemistry of Materials, 2007, 19, 1369-1375.	6.7	64
269	Electromigrated Nanoscale Gaps for Surface-Enhanced Raman Spectroscopy. Nano Letters, 2007, 7, 1396-1400.	9.1	295
270	Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy. Nano Letters, 2007, 7, 1929-1934.	9.1	1,272

#	Article	IF	CITATIONS
271	PLASMON HYBRIDIZATION IN COMPLEX NANOSTRUCTURES. , 2007, , 183-196.		12
272	A Cellular Trojan Horse for Delivery of Therapeutic Nanoparticles into Tumors. Nano Letters, 2007, 7, 3759-3765.	9.1	531
273	Plasmonic Nanoshell Arrays Combine Surfaceâ€Enhanced Vibrational Spectroscopies on a Single Substrate. Angewandte Chemie - International Edition, 2007, 46, 9040-9044.	13.8	176
274	Nano-optics from sensing to waveguiding. Nature Photonics, 2007, 1, 641-648.	31.4	1,919
275	Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer. Trends in Biotechnology, 2007, 25, 145-152.	9.3	140
276	Polarized Angular Dependent Light Scattering Properties of Bare and PEGylated Gold Nanoshells. Current Nanoscience, 2007, 3, 167-170.	1.2	14
277	All-Optical Nanoscale pH Meter. Nano Letters, 2006, 6, 1687-1692.	9.1	337
278	Profiling the Near Field of a Plasmonic Nanoparticle with Raman-Based Molecular Rulers. Nano Letters, 2006, 6, 2338-2343.	9.1	128
279	Determining the Conformation of Thiolated Poly(ethylene glycol) on Au Nanoshells by Surface-Enhanced Raman Scattering Spectroscopic Assay. Analytical Chemistry, 2006, 78, 3277-3281.	6.5	91
280	Plasmonic Nanoparticle Heterodimers in a Semiembedded Geometry Fabricated by Stepwise Upright Assembly. Nano Letters, 2006, 6, 2945-2948.	9.1	41
281	Chain-Length-Dependent Vibrational Resonances in Alkanethiol Self-Assembled Monolayers Observed on Plasmonic Nanoparticle Substrates. Nano Letters, 2006, 6, 2617-2621.	9.1	64
282	Symmetry breaking in individual plasmonic nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10856-10860.	7.1	270
283	Diagnostic and Therapeutic Applications of Metal Nanoshells. , 2006, , 157-169.		2
284	Nanorice:  A Hybrid Plasmonic Nanostructure. Nano Letters, 2006, 6, 827-832.	9.1	742
285	Metal Nanoshells. Annals of Biomedical Engineering, 2006, 34, 15-22.	2.5	487
286	Light scattering from spherical plasmonic nanoantennas: effects of nanoscale roughness. Applied Physics B: Lasers and Optics, 2006, 84, 191-195.	2.2	48
287	Propagation of surface plasmons on Ag and Cu extended one-dimensional arrays on silicon substrates. Applied Physics Letters, 2006, 88, 063115.	3.3	13
288	All-optical nanoscale pH meter: a plasmonic nanodevice with quantifiable output. , 2006, , .		0

#	Article	IF	CITATIONS
289	Optimized plasmonic nanoparticle distributions for solar spectrum harvesting. Applied Physics Letters, 2006, 89, 153120.	3.3	179
290	Immunonanoshells for targeted photothermal ablation of tumor cells. International Journal of Nanomedicine, 2006, 1, 149-154.	6.7	246
291	Metallic nanoparticles: A video interview with Naomi Halas. SPIE Newsroom, 2006, , .	0.1	0
292	Independent Optical Control of Microfluidic Valves Formed from Optomechanically Responsive Nanocomposite Hydrogels. Advanced Materials, 2005, 17, 1366-1368.	21.0	297
293	Diagnostic and Therapeutic Applications of Metal Nanoshells. , 2005, , 327-342.		3
294	Near infrared laser-tissue welding using nanoshells as an exogenous absorber. Lasers in Surgery and Medicine, 2005, 37, 123-129.	2.1	159
295	Optically tunable nanoparticle contrast agents for early cancer detection: model-based analysis of gold nanoshells. Journal of Biomedical Optics, 2005, 10, 064035.	2.6	112
296	Whole-Blood Immunoassay Facilitated by Gold Nanoshell–Conjugate Antibodies. , 2005, 303, 101-112.		38
297	Laser tissue soldering with near-infrared absorbing nanoparticles. , 2005, 5686, 261.		1
298	Photothermal cancer therapy using intravenously injected near-infrared-absorbing nanoparticles., 2005, 5689, 149.		2
299	Modeling and experimental observations of gold nanoshell reflectance., 2005,,.		O
300	Immunotargeted Nanoshells for Integrated Cancer Imaging and Therapy. Nano Letters, 2005, 5, 709-711.	9.1	1,721
301	Controlled Texturing Modifies the Surface Topography and Plasmonic Properties of Au Nanoshells. Journal of Physical Chemistry B, 2005, 109, 11083-11087.	2.6	163
302	Gold nanoshell bioconjugates for molecular imaging in living cells. Optics Letters, 2005, 30, 1012.	3.3	308
303	Surface-Enhanced Raman Scattering from Individual Au Nanoparticles and Nanoparticle Dimer Substrates. Nano Letters, 2005, 5, 1569-1574.	9.1	1,070
304	Plasmons in the Metallic Nanoparticleâ [^] Film System as a Tunable Impurity Problem. Nano Letters, 2005, 5, 2009-2013.	9.1	149
305	Cu Nanoshells:Â Effects of Interband Transitions on the Nanoparticle Plasmon Resonance. Journal of Physical Chemistry B, 2005, 109, 18218-18222.	2.6	194
306	Shape-Controlled Synthesis and Surface Plasmonic Properties of Metallic Nanostructures. MRS Bulletin, 2005, 30, 338-348.	3.5	829

#	Article	IF	Citations
307	Playing with Plasmons: Tuning the Optical Resonant Properties of Metallic Nanoshells. MRS Bulletin, 2005, 30, 362-367.	3.5	266
308	Nanosphere Arrays with Controlled Sub-10-nm Gaps as Surface-Enhanced Raman Spectroscopy Substrates. Journal of the American Chemical Society, 2005, 127, 14992-14993.	13.7	610
309	Fluorinated Nanodiamond as a Wet Chemistry Precursor for Diamond Coatings Covalently Bonded to Glass Surface. Journal of the American Chemical Society, 2005, 127, 3712-3713.	13.7	72
310	Nanoshells as an optical coherence tomography contrast agent. , 2004, 5316, 99.		15
311	Nanoshell bioconjugates for integrated imaging and therapy of cancer. , 2004, , .		2
312	Nanoshells for integrated diagnosis and therapy of cancer. , 2004, , .		2
313	Nanoshell-Enabled Photonics-Based Imaging and Therapy of Cancer. Technology in Cancer Research and Treatment, 2004, 3, 33-40.	1.9	1,036
314	Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles. Chemical Physics Letters, 2004, 399, 167-171.	2.6	190
315	Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17930-17935.	7.1	561
316	Chemical and Dielectric Manipulation of the Plasmonic Band Gap of Metallodielectric Arrays. Nano Letters, 2004, 4, 1497-1500.	9.1	12
317	Plasmonic Properties of Concentric Nanoshells. Nano Letters, 2004, 4, 1323-1327.	9.1	199
318	Laser-Induced Reshaping of Metallodielectric Nanoshells under Femtosecond and Nanosecond Plasmon Resonant Illumination. Journal of Physical Chemistry B, 2004, 108, 7040-7045.	2.6	81
319	Scattering Spectra of Single Gold Nanoshells. Nano Letters, 2004, 4, 2355-2359.	9.1	269
320	Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Letters, 2004, 209, 171-176.	7.2	1,728
321	Geometrical Parameters Controlling Sensitivity of Nanoshell Plasmon Resonances to Changes in Dielectric Environment. Journal of Physical Chemistry B, 2004, 108, 17290-17294.	2.6	234
322	A Hybridization Model for the Plasmon Response of Complex Nanostructures. Science, 2003, 302, 419-422.	12.6	3,531
323	Plasmon response of nanoshell dopants in organic films: a simulation study. Progress in Organic Coatings, 2003, 47, 275-278.	3.9	23
324	Benchtop Fabrication of Submicrometer Metal Line and Island Arrays Using Passivative Microcontact Printing and Electroless Plating. Advanced Materials, 2003, 15, 804-807.	21.0	36

#	Article	IF	CITATIONS
325	Effects of dielectric screening on the optical properties of metallic nanoshells. Chemical Physics Letters, 2003, 368, 94-101.	2.6	121
326	Reduced Symmetry Metallodielectric Nanoparticles: Chemical Synthesis and Plasmonic Propertiesâ€. Journal of Physical Chemistry B, 2003, 107, 7327-7333.	2.6	167
327	Electronic Structure and Optical Properties of Gold Nanoshells. Nano Letters, 2003, 3, 1411-1415.	9.1	248
328	Controlling the surface enhanced Raman effect via the nanoshell geometry. Applied Physics Letters, 2003, 82, 257-259.	3.3	407
329	CTAB Mediated Reshaping of Metallodielectric Nanoparticles. Nano Letters, 2003, 3, 1707-1711.	9.1	64
330	Engineered Nanomaterials for Biophotonics Applications: Improving Sensing, Imaging, and Therapeutics. Annual Review of Biomedical Engineering, 2003, 5, 285-292.	12.3	838
331	Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13549-13554.	7.1	3,629
332	A Whole Blood Immunoassay Using Gold Nanoshells. Analytical Chemistry, 2003, 75, 2377-2381.	6.5	664
333	Metallodielectric gratings with subwavelength slots:â€,â€,Optical properties. Physical Review B, 2003, 68, .	3.2	104
334	Optical properties of crossed metallodielectric gratings. , 2003, , .		1
334	Optical properties of crossed metallodielectric gratings. , 2003, , . Independent optically addressable nanoparticle-polymer optomechanical composites. Applied Physics Letters, 2002, 80, 4609-4611.	3.3	1 111
	Independent optically addressable nanoparticle-polymer optomechanical composites. Applied Physics	3.3	
335	Independent optically addressable nanoparticle-polymer optomechanical composites. Applied Physics Letters, 2002, 80, 4609-4611.	3.3	111
335 336	Independent optically addressable nanoparticle-polymer optomechanical composites. Applied Physics Letters, 2002, 80, 4609-4611. Decomposition of gold nanoshells in carbon tetrachloride., 2002,,.	3.3	0
335 336 337	Independent optically addressable nanoparticle-polymer optomechanical composites. Applied Physics Letters, 2002, 80, 4609-4611. Decomposition of gold nanoshells in carbon tetrachloride., 2002,,. Probing the optical near field of a nanolens., 2002,,.	2.6	111 0 0
335 336 337 338	Independent optically addressable nanoparticle-polymer optomechanical composites. Applied Physics Letters, 2002, 80, 4609-4611. Decomposition of gold nanoshells in carbon tetrachloride., 2002,,. Probing the optical near field of a nanolens., 2002,,. Soft lithographic directed growth of wire grating arrays with optical resonances., 2002,,. Light Interaction between Gold Nanoshells Plasmon Resonance and Planar Optical Waveguides.		111 0 0 0
335 336 337 338	Independent optically addressable nanoparticle-polymer optomechanical composites. Applied Physics Letters, 2002, 80, 4609-4611. Decomposition of gold nanoshells in carbon tetrachloride., 2002,,. Probing the optical near field of a nanolens., 2002,,. Soft lithographic directed growth of wire grating arrays with optical resonances., 2002,,. Light Interaction between Gold Nanoshells Plasmon Resonance and Planar Optical Waveguides. Journal of Physical Chemistry B, 2002, 106, 5609-5612.	2.6	111 0 0 0

#	Article	IF	Citations
343	Preparation and Characterization of Gold Nanoshells Coated with Self-Assembled Monolayers. Langmuir, 2002, 18, 4915-4920.	3.5	419
344	Silver Nanoshells:Â Variations in Morphologies and Optical Properties. Journal of Physical Chemistry B, 2001, 105, 2743-2746.	2.6	475
345	Enhancing the active lifetime of luminescent semiconducting polymers via doping with metal nanoshells. Applied Physics Letters, 2001, 78, 1502-1504.	3.3	82
346	Adsorbate-Induced Quenching of Hot Electrons in Gold Coreâ [^] Shell Nanoparticles. Journal of Physical Chemistry B, 2001, 105, 9913-9917.	2.6	40
347	Synthesis and Characterization of Lanthanide-Doped Silica Microspheres. Langmuir, 2001, 17, 8376-8379.	3.5	45
348	An opto-mechanical nanoshell-polymer composite. Applied Physics B: Lasers and Optics, 2001, 73, 379-381.	2.2	90
349	Enhanced thermal stability of silica-encapsulated metal nanoshells. Applied Physics Letters, 2001, 79, 674-676.	3.3	68
350	Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery. Journal of Biomedical Materials Research Part B, 2000, 51, 293-298.	3.1	643
351	Applications of nanotechnology to biotechnology. Current Opinion in Biotechnology, 2000, 11, 215-217.	6.6	328
352	Nanoscale imaging of chemical interactions: Fluorine on graphite. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 10318-10321.	7.1	33
353	Effect of Microgravity on the Growth of Silica Nanostructures. Langmuir, 2000, 16, 10055-10060.	3.5	20
354	Preparation and characterization of polymer-coated nanoparticles., 1999,,.		1
355	Construction of simple gold nanoparticle aggregates with controlled plasmon–plasmon interactions. Chemical Physics Letters, 1999, 300, 651-655.	2.6	154
356	Insight into the mechanism of sidewall functionalization of single-walled nanotubes: an STM study. Chemical Physics Letters, 1999, 313, 445-450.	2.6	212
357	Fullerene-Terminated Alkanethiolate SAMs on Gold Generated from Unsymmetrical Disulfides. Langmuir, 1999, 15, 5329-5332.	3.5	62
358	Observations of Anisotropic Electron Scattering on Graphite with a Low-Temperature Scanning Tunneling Microscope. Journal of Physical Chemistry B, 1999, 103, 1619-1622.	2.6	56
359	Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates. Journal of Chemical Physics, 1999, 111, 4729-4735.	3.0	363
360	Light scattering from dipole and quadrupole nanoshell antennas. Applied Physics Letters, 1999, 75, 1063-1065.	3.3	213

#	Article	IF	CITATIONS
361	Photodeposition of Molecular Layers on Nanoparticle Substrates. Langmuir, 1999, 15, 2745-2748.	3.5	13
362	Scanning Tunneling Microscopy and Spectroscopy of Dialkyl Disulfide Fullerenes Inserted into Alkanethiolate SAMs. Journal of Physical Chemistry B, 1999, 103, 8639-8642.	2.6	34
363	Ultrafast optical properties of gold nanoshells. Journal of the Optical Society of America B: Optical Physics, 1999, 16, 1814.	2.1	64
364	Linear optical properties of gold nanoshells. Journal of the Optical Society of America B: Optical Physics, 1999, 16, 1824.	2.1	563
365	Infrared extinction properties of gold nanoshells. Applied Physics Letters, 1999, 75, 2897-2899.	3.3	517
366	Nanoengineering of optical resonances. Chemical Physics Letters, 1998, 288, 243-247.	2.6	2,114
367	Formation and Adsorption of Clusters of Gold Nanoparticles onto Functionalized Silica Nanoparticle Surfaces. Langmuir, 1998, 14, 5396-5401.	3.5	600
368	Gold and Silver Nanoparticles Functionalized by the Adsorption of Dialkyl Disulfides. Langmuir, 1998, 14, 7378-7386.	3.5	197
369	Determination of \hat{l}_{\pm} and \hat{l}^{2} site defects on graphite using C60-adsorbed STM tips. Surface Science, 1998, 416, L1085-L1089.	1.9	72
370	Ultrafast electron dynamics in gold nanoshells. Physical Review B, 1998, 58, R10203-R10206.	3.2	94
371	Dynamics of triplet excitons in MEH-PPV measured by two-photon photoemission. , 1997, , .		2
372	Effects of photo-oxidation on conjugated polymer films. Applied Physics Letters, 1997, 71, 1483-1485.	3.3	32
373	Observation of triplet exciton dynamics in conjugated polymer films using two-photon photoelectron spectroscopy. Physical Review B, 1997, 55, R16069-R16071.	3.2	21
374	General vector basis function solution of Maxwell's equations. Physical Review E, 1997, 56, 1102-1112.	2.1	120
375	Plasmon Resonance Shifts of Au-CoatedAu2SNanoshells: Insight into Multicomponent Nanoparticle Growth. Physical Review Letters, 1997, 78, 4217-4220.	7.8	648
376	Fullerene functionalized scanning tunneling microscope tips- preparation, characterization and applications. Synthetic Metals, 1997, 86, 2407-2410.	3.9	5
377	<title>Fullerene tips for scanning probe microscopy</title> ., 1996,,.		O
378	Threefold Electron Scattering on Graphite Observed with C60-Adsorbed STM Tips. Science, 1996, 273, 1371-1373.	12.6	100

#	Article	IF	CITATIONS
379	Excimer Model for Photoluminescence in Single-Crystal C60. The Journal of Physical Chemistry, 1996, 100, 2854-2861.	2.9	18
380	Direct observation of fullerene-adsorbed tips by scanning tunneling microscopy. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1996, 14, 593.	1.6	30
381	Photoluminescence spectra of epitaxial single-crystal C 60 : an excimer model., 1995,,.		О
382	Photoluminescence spectra of epitaxial single crystal C60. Chemical Physics Letters, 1995, 242, 592-597.	2.6	15
383	C60 Triplet Lifetimes: Vibrational Energy Dependence from 0 to 80,000 cm-1. The Journal of Physical Chemistry, 1995, 99, 11306-11308.	2.9	17
384	Dember effect in C60 thin films. Solid State Communications, 1994, 90, 261-265.	1.9	28
385	Phase matching and focussing effects in noncollinear sum frequency mixing in the near VUV region. Optics Communications, 1994, 110, 645-650.	2.1	10
386	Ultrafast large dynamic range spectroscopy. Optics Communications, 1994, 110, 327-333.	2.1	5
387	Scanning tunneling microscopy and spectroscopy with fullerene coated tips. Surface Science, 1994, 316, L1061-L1067.	1.9	25
388	Highâ€purity vapor phase purification of C60. Applied Physics Letters, 1994, 65, 374-376.	3.3	16
389	Solvent Free High Purity Solid C ₆₀ : Optical Properties. Molecular Crystals and Liquid Crystals, 1994, 256, 225-232.	0.3	4
390	<title>Wide bandwidth frequency doubling and harmonic generation of Ti:sapphire laser radiation /title>., 1994, 2116, 25.</td><td></td><td>2</td></tr><tr><td>391</td><td>Excimer-laser-induced electric conductivity in thin-film C60. Applied Physics A: Solids and Surfaces, 1993, 57, 105-107.</td><td>1.4</td><td>10</td></tr><tr><td>392</td><td>Diffusion of silver in C60thin films. Applied Physics Letters, 1993, 63, 2438-2440.</td><td>3.3</td><td>27</td></tr><tr><td>393</td><td>Epitaxial integration of single crystal C60. Applied Physics Letters, 1993, 63, 3443-3445.</td><td>3.3</td><td>42</td></tr><tr><td>394</td><td><title>Carrier dynamics in solid C60</title> ., 1993, 1861, 333.		0
395	Time-resolved carrier relaxation in solidC60thin films. Physical Review B, 1992, 45, 4548-4550.	3.2	103
396	Wide-bandwidth frequency doubling with high conversion efficiency. Optics Letters, 1992, 17, 1343.	3.3	36

#	Article	IF	Citations
397	Timeâ€resolved reflectivity studies of the GaAs(100)/oxide and GaAs(100)/ZnSe interface. Applied Physics Letters, 1991, 59, 1476-1478.	3.3	2
398	Surface Recombination on the Si(111) 2×1 Surface. Physical Review Letters, 1989, 62, 1679-1682.	7.8	95
399	Time-resolved study of silicon surface recombination. IEEE Journal of Quantum Electronics, 1989, 25, 2550-2555.	1.9	13
400	Dark-Pulse Propagation in Optical Fibers. Physical Review Letters, 1988, 60, 29-32.	7.8	274
401	Ultrafast lightâ€controlled opticalâ€fiber modulator. Applied Physics Letters, 1987, 50, 886-888.	3.3	57
402	Subpicosecond optoelectronic study of resistive and superconductive transmission lines. Applied Physics Letters, 1987, 50, 350-352.	3.3	62
403	Simultaneous optical pulse compression and wing reduction. Applied Physics Letters, 1986, 48, 823-825.	3.3	36
404	Generation of subpicosecond electrical pulses on coplanar transmission lines. Applied Physics Letters, 1986, 48, 751-753.	3.3	214
405	Route to mode locking in a three-mode He-Ne $3.39 \cdot \hat{l}$ 4m laser including chaos in the secondary beat frequency. Physical Review A, 1983, 28, 2915-2920.	2.5	47
406	Pulsatile release of insulin via photothermally modulated drug delivery. , 0, , .		3
407	Optically controllable materials: potential valves and actuators in microfluidics and MEMS. , 0, , .		0
408	A rapid, near infrared, whole blood immunoassay using metal nanoshells. , 0, , .		2
409	Targeted photothermal tumor therapy using metal nanoshells. , 0, , .		3
410	Nanoshell-mediated near infrared photothermal tumor therapy. , 0, , .		6
411	A rapid, whole blood immunoassay using metal nanoshells. , 0, , .		2
412	Heterogeneous Plasmonic Photocatalysis: Light-Driven Chemical Reactions Introduce a New Approach to Industrially-Relevant Chemistry. ACS Symposium Series, 0, , 363-387.	0.5	4