
Eva Hedlund

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/644455/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Disrupted function of lactate transporter <scp>MCT1</scp> , but not <scp>MCT4</scp> , in Schwann cells affects the maintenance of motor endâ€plate innervation. Glia, 2021, 69, 124-136.	4.9	24
2	Altered perivascular fibroblast activity precedes ALS disease onset. Nature Medicine, 2021, 27, 640-646.	30.7	69
3	Spatial RNA Sequencing Identifies Robust Markers of Vulnerable and Resistant Human Midbrain Dopamine Neurons and Their Expression in Parkinson's Disease. Frontiers in Molecular Neuroscience, 2021, 14, 699562.	2.9	24
4	Muscle-secreted neurturin couples myofiber oxidative metabolism and slow motor neuron identity. Cell Metabolism, 2021, 33, 2215-2230.e8.	16.2	22
5	LCM-seq reveals unique transcriptional adaptation mechanisms of resistant neurons and identifies protective pathways in spinal muscular atrophy. Genome Research, 2020, 30, 1083-1096.	5.5	29
6	Aberrant interaction of FUS with the U1 snRNA provides a molecular mechanism of FUS induced amyotrophic lateral sclerosis. Nature Communications, 2020, 11, 6341.	12.8	47
7	Radiation Triggers a Dynamic Sequence of Transient Microglial Alterations in Juvenile Brain. Cell Reports, 2020, 31, 107699.	6.4	23
8	Synaptotagmin 13 is neuroprotective across motor neuron diseases. Acta Neuropathologica, 2020, 139, 837-853.	7.7	28
9	Modeling Motor Neuron Resilience in ALS Using Stem Cells. Stem Cell Reports, 2019, 12, 1329-1341.	4.8	28
10	Intact single muscle fibres from SOD1 ^{G93A} amyotrophic lateral sclerosis mice display preserved specific force, fatigue resistance and trainingâ€like adaptations. Journal of Physiology, 2019, 597, 3133-3146.	2.9	8
11	A radical switch in clonality reveals a stem cell niche in the epiphyseal growth plate. Nature, 2019, 567, 234-238.	27.8	153
12	Characterization of molecular mechanisms underlying the axonal Charcot–Marie–Tooth neuropathy caused by MORC2 mutations. Human Molecular Genetics, 2019, 28, 1629-1644.	2.9	28
13	Axon-seq for in Depth Analysis of the RNA Content of Neuronal Processes. Bio-protocol, 2019, 9, e3312.	0.4	6
14	Fatal demyelinating disease is induced by monocyte-derived macrophages in the absence of TGF-Î ² signaling. Nature Immunology, 2018, 19, 1-7.	14.5	62
15	Neurturin is a PGC-1 \hat{l} ±1-controlled myokine that promotes motor neuron recruitment and neuromuscular junction formation. Molecular Metabolism, 2018, 7, 12-22.	6.5	40
16	CRISPR-Trap: a clean approach for the generation of gene knockouts and gene replacements in human cells. Molecular Biology of the Cell, 2018, 29, 75-83.	2.1	37
17	LCM-Seq: A Method for Spatial Transcriptomic Profiling Using Laser Capture Microdissection Coupled with PolyA-Based RNA Sequencing. Methods in Molecular Biology, 2018, 1649, 95-110.	0.9	53
18	Single-cell RNA sequencing: Technical advancements and biological applications. Molecular Aspects of Medicine, 2018, 59, 36-46.	6.4	258

Eva Hedlund

#	Article	IF	CITATIONS
19	Axon-Seq Decodes the Motor Axon Transcriptome and Its Modulation in Response to ALS. Stem Cell Reports, 2018, 11, 1565-1578.	4.8	72
20	Motor neuron vulnerability and resistance in amyotrophic lateral sclerosis. Acta Neuropathologica, 2017, 133, 863-885.	7.7	248
21	Direct Reprogramming of Resident NG2 Glia into Neurons with Properties of Fast-Spiking Parvalbumin-Containing Interneurons. Stem Cell Reports, 2017, 9, 742-751.	4.8	98
22	Differential neuronal vulnerability identifies IGF-2 as a protective factor in ALS. Scientific Reports, 2016, 6, 25960.	3.3	80
23	Single-cell analyses of X Chromosome inactivation dynamics and pluripotency during differentiation. Genome Research, 2016, 26, 1342-1354.	5.5	93
24	Crossâ€disease comparison of amyotrophic lateral sclerosis and spinal muscular atrophy reveals conservation of selective vulnerability but differential neuromuscular junction pathology. Journal of Comparative Neurology, 2016, 524, 1424-1442.	1.6	58
25	Laser capture microscopy coupled with Smart-seq2 for precise spatial transcriptomic profiling. Nature Communications, 2016, 7, 12139.	12.8	246
26	Dopamine Receptor Antagonists Enhance Proliferation and Neurogenesis of Midbrain Lmx1a-expressing Progenitors. Scientific Reports, 2016, 6, 26448.	3.3	29
27	Presymptomatic activation of the PDGF-CC pathway accelerates onset of ALS neurodegeneration. Acta Neuropathologica, 2016, 131, 453-464.	7.7	33
28	Motor neurons with differential vulnerability to degeneration show distinct protein signatures in health and ALS. Neuroscience, 2015, 291, 216-229.	2.3	62
29	Cellular therapy to target neuroinflammation in amyotrophic lateral sclerosis. Cellular and Molecular Life Sciences, 2014, 71, 999-1015.	5.4	89
30	Selection Based on FOXA2 Expression Is Not Sufficient to Enrich for Dopamine Neurons From Human Pluripotent Stem Cells. Stem Cells Translational Medicine, 2014, 3, 1032-1042.	3.3	13
31	Directed midbrain and spinal cord neurogenesis from pluripotent stem cells to model development and disease in a dish. Frontiers in Neuroscience, 2014, 8, 109.	2.8	22
32	Cellular Programming and Reprogramming: Sculpting Cell Fate for the Production of Dopamine Neurons for Cell Therapy. Stem Cells International, 2012, 2012, 1-17.	2.5	11
33	Specific and integrated roles of Lmx1a, Lmx1b and Phox2a in ventral midbrain development. Development (Cambridge), 2011, 138, 3399-3408.	2.5	119
34	Transcription Factor-Induced Lineage Selection of Stem-Cell-Derived Neural Progenitor Cells. Cell Stem Cell, 2011, 8, 663-675.	11.1	65
35	The protective effects of beta-lactam antibiotics in motor neuron disorders. Experimental Neurology, 2011, 231, 14-18.	4.1	10
36	Global gene expression profiling of somatic motor neuron populations with different vulnerability identify molecules and pathways of degeneration and protection. Brain, 2010, 133, 2313-2330	7.6	78

Eva Hedlund

#	Article	IF	CITATIONS
37	Neuronal cell replacement in Parkinson's disease. Journal of Internal Medicine, 2009, 266, 358-371.	6.0	59
38	Embryonic Stem Cell-Derived Pitx3-Enhanced Green Fluorescent Protein Midbrain Dopamine Neurons Survive Enrichment by Fluorescence-Activated Cell Sorting and Function in an Animal Model of Parkinson's Disease. Stem Cells, 2008, 26, 1526-1536.	3.2	135
39	ALS Model Glia Can Mediate Toxicity to Motor Neurons Derived from Human Embryonic Stem Cells. Cell Stem Cell, 2008, 3, 575-576.	11.1	19
40	Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5856-5861.	7.1	1,129
41	Selection of Embryonic Stem Cell-Derived Enhanced Green Fluorescent Protein-Positive Dopamine Neurons Using the Tyrosine Hydroxylase Promoter Is Confounded by Reporter Gene Expression in Immature Cell Populations. Stem Cells, 2007, 25, 1126-1135.	3.2	59
42	REVIEW ARTILCE: Cell therapy and stem cells in animal models of motor neuron disorders. European Journal of Neuroscience, 2007, 26, 1721-1737.	2.6	65
43	A tyrosine hydroxylase–yellow fluorescent protein knock-in reporter system labeling dopaminergic neurons reveals potential regulatory role for the first intron of the rodent tyrosine hydroxylase gene. Neuroscience, 2006, 142, 343-354.	2.3	13
44	Genetic selection of sox1GFPâ€expressing neural precursors removes residual tumorigenic pluripotent stem cells and attenuates tumor formation after transplantation. Journal of Neurochemistry, 2006, 97, 1467-1480.	3.9	137
45	The homeodomain transcription factor Pitx3 facilitates differentiation of mouse embryonic stem cells into AHD2-expressing dopaminergic neurons. Molecular and Cellular Neurosciences, 2005, 28, 241-252.	2.2	138
46	L1 CAM expression is increased surrounding the lesion site in rats with complete spinal cord transection as neonates. Experimental Neurology, 2005, 194, 363-375.	4.1	26
47	Identification of aHoxd10-regulated transcriptional network and combinatorial interactions withHoxa10 during spinal cord development. Journal of Neuroscience Research, 2004, 75, 307-319.	2.9	34
48	Region-specific cell grafting into cervical and lumbar spinal cord in rat: a qualitative and quantitative stereological study. Experimental Neurology, 2004, 190, 122-132.	4.1	30
49	Differential Pax6 promoter activity and transcript expression during forebrain development. Mechanisms of Development, 2002, 114, 171-175.	1.7	28
50	Neurosteroid Hydroxylase CYP7B. Journal of Biological Chemistry, 2001, 276, 23937-23944.	3.4	80
51	Cytochrome P450 in the Brain ; A Review. Current Drug Metabolism, 2001, 2, 245-263.	1.2	127
52	Cytochrome P450 in the brain: 2B or not 2B. Trends in Pharmacological Sciences, 1998, 19, 82-85.	8.7	23
53	Extrahepatic Cytochrome P450: Role in In Situ Toxicity and Cell-Specific Hormone Sensitivity. Archives of Toxicology Supplement, 1998, 20, 455-463.	0.7	5
54	Cytochrome P450 in the breast and brain: role in tissue-specific activation of xenobiotics. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1997, 376, 79-85.	1.0	20

#	Article	IF	CITATIONS
55	Axon-Seq Decodes the Motor Axon Transcriptome and Its Modulation in Response to ALS. SSRN Electronic Journal, 0, , .	0.4	0