Hoi Dick Ng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6443738/publications.pdf

Version: 2024-02-01

109321 182427 3,060 102 35 51 citations h-index g-index papers 106 106 106 715 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Numerical investigation of the instability for one-dimensional Chapman–Jouguet detonations with chain-branching kinetics. Combustion Theory and Modelling, 2005, 9, 385-401.	1.9	165
2	Comments on explosion problems for hydrogen safety. Journal of Loss Prevention in the Process Industries, 2008, 21, 136-146.	3.3	109
3	Evolution of cellular structures on oblique detonation surfaces. Combustion and Flame, 2015, 162, 470-477.	5. 2	107
4	Numerical study on unstable surfaces of oblique detonations. Journal of Fluid Mechanics, 2014, 744, 111-128.	3 . 4	104
5	Initiation characteristics of wedge-induced oblique detonation waves in a stoichiometric hydrogen-air mixture. Proceedings of the Combustion Institute, 2017, 36, 2735-2742.	3.9	89
6	Effects of inflow Mach number on oblique detonation initiation with a two-step induction-reaction kinetic model. Combustion and Flame, 2018, 193, 246-256.	5. 2	89
7	Near limit behavior of the detonation velocity. Proceedings of the Combustion Institute, 2013, 34, 1957-1963.	3.9	77
8	Experimental study of detonation limits in methane-oxygen mixtures: Determining tube scale and initial pressure effects. Fuel, 2020, 259, 116220.	6.4	77
9	Direct initiation of detonation with a multi-step reaction scheme. Journal of Fluid Mechanics, 2003, 476, 179-211.	3.4	75
10	Direct blast initiation of spherical gaseous detonations in highly argon diluted mixtures. Proceedings of the Combustion Institute, 2011, 33, 2265-2271.	3.9	73
11	Critical energy for direct initiation of spherical detonations in H2/N2O/Ar mixtures. International Journal of Hydrogen Energy, 2011, 36, 5707-5716.	7.1	70
12	The effect of argon dilution on the stability of acetylene/oxygen detonations. Proceedings of the Combustion Institute, 2002, 29, 2825-2831.	3.9	69
13	Numerical study of oblique detonation wave initiation in a stoichiometric hydrogen-air mixture. Physics of Fluids, 2015, 27, .	4.0	68
14	Explosion behavior of methane–dimethyl ether/air mixtures. Fuel, 2015, 157, 56-63.	6.4	68
15	An experimental investigation of detonation limits in hydrogen–oxygen–argon mixtures. International Journal of Hydrogen Energy, 2016, 41, 6076-6083.	7.1	68
16	Numerical study of inflow equivalence ratio inhomogeneity on oblique detonation formation in hydrogen–air mixtures. Aerospace Science and Technology, 2017, 71, 256-263.	4.8	66
17	Propagation of near-limit gaseous detonations in small diameter tubes. Shock Waves, 2010, 20, 499-508.	1.9	65
18	Numerical investigation on the initiation of oblique detonation waves in stoichiometric acetylene–oxygen mixtures with high argon dilution. Combustion and Flame, 2019, 204, 391-396.	5.2	61

#	Article	IF	CITATIONS
19	Velocity fluctuation near the detonation limits. Combustion and Flame, 2014, 161, 2982-2990.	5.2	58
20	Numerical study of wedge-induced oblique detonations in unsteady flow. Journal of Fluid Mechanics, 2019, 876, 264-287.	3.4	57
21	On the dynamic detonation parameters in acetylene–oxygen mixtures with varying amount of argon dilution. Combustion and Flame, 2014, 161, 1390-1397.	5.2	55
22	An experimental investigation of the explosion characteristics of dimethyl ether-air mixtures. Energy, 2016, 107, 1-8.	8.8	52
23	The critical tube diameter and critical energy for direct initiation of detonation in C2H2/N2O/Ar mixtures. Combustion and Flame, 2012, 159, 2944-2953.	5.2	48
24	A numerical study on the instability of oblique detonation waves with a two-step induction–reaction kinetic model. Proceedings of the Combustion Institute, 2019, 37, 3537-3544.	3.9	48
25	Minimum tube diameters for steady propagation of gaseous detonations. Shock Waves, 2014, 24, 447-454.	1.9	46
26	Measurement and chemical kinetic prediction of detonation sensitivity and cellular structure characteristics in dimethyl ether–oxygen mixtures. Fuel, 2009, 88, 124-131.	6.4	45
27	Experimental characterization of galloping detonations in unstable mixtures. Combustion and Flame, 2015, 162, 2405-2413.	5.2	43
28	Effects of porous walled tubes on detonation transmission into unconfined space. Proceedings of the Combustion Institute, 2015, 35, 1981-1987.	3.9	40
29	Effects of slot injection on detonation wavelet characteristics in a rotating detonation engine. Acta Astronautica, 2021, 182, 274-285.	3.2	40
30	Measurement of critical energy for direct initiation of spherical detonations in stoichiometric high-pressure H2–O2 mixtures. Combustion and Flame, 2010, 157, 1795-1799.	5.2	39
31	Measurement and relationship between critical tube diameter and critical energy for direct blast initiation of gaseous detonations. Journal of Loss Prevention in the Process Industries, 2013, 26, 1293-1299.	3.3	39
32	Detonation limits in rough walled tubes. Proceedings of the Combustion Institute, 2015, 35, 1989-1996.	3.9	39
33	Effects of activation energy on the instability of oblique detonation surfaces with a one-step chemistry model. Physics of Fluids, 2018, 30, 106110.	4.0	39
34	Assessment of similarity relations using helium for prediction of hydrogen dispersion and safety in an enclosure. International Journal of Hydrogen Energy, 2016, 41, 15388-15398.	7.1	38
35	Initiation structure of oblique detonation waves behind conical shocks. Physics of Fluids, 2017, 29, .	4.0	38
36	Propagation of gaseous detonation waves in a spatially inhomogeneous reactive medium. Physical Review Fluids, $2017, 2, .$	2.5	36

#	Article	IF	Citations
37	Measurement and scaling analysis of critical energy for direct initiation of gaseous detonations. Shock Waves, 2012, 22, 275-279.	1.9	33
38	Numerical investigation of oblique detonation structure in hydrogen-oxygen mixtures with Ar dilution. Fuel, 2019, 252, 496-503.	6.4	33
39	Morphology of oblique detonation waves in a stoichiometric hydrogen–air mixture. Journal of Fluid Mechanics, 2021, 913, .	3.4	33
40	Measurement of effective blast energy for direct initiation of spherical gaseous detonations from high-voltage spark discharge. Shock Waves, 2012, 22, 1-7.	1.9	32
41	Numerical investigation of flow structures resulting from the interaction between an oblique detonation wave and an upper expansion corner. Journal of Fluid Mechanics, 2020, 903, .	3.4	30
42	The effects of pre-ignition turbulence by gas jets on the explosion behavior of methane-oxygen mixtures. Fuel, 2020, 277, 118190.	6.4	27
43	Near-limit propagation of gaseous detonations in narrow annular channels. Shock Waves, 2017, 27, 199-207.	1.9	24
44	Effect of spatial inhomogeneities on detonation propagation with yielding confinement. Shock Waves, 2018, 28, 993-1009.	1.9	24
45	Response of critical tube diameter phenomenon to small perturbations for gaseous detonations. Shock Waves, 2014, 24, 219-229.	1.9	22
46	Transition Between Different Initiation Structures of Wedge-Induced Oblique Detonations. AIAA Journal, 2018, 56, 4016-4023.	2.6	22
47	Effects of inert gas jet on the transition from deflagration to detonation in a stoichiometric methane-oxygen mixture. Fuel, 2021, 285, 119237.	6.4	22
48	Numerical simulations of cellular detonation diffraction in a stable gaseous mixture. Propulsion and Power Research, 2016, 5, 177-183.	4.3	21
49	Detonation diffraction from an annular channel. Shock Waves, 2010, 20, 449-455.	1.9	20
50	Experimental investigation of near-limit gaseous detonations in small diameter spiral tubing. Proceedings of the Combustion Institute, 2019, 37, 3555-3563.	3.9	19
51	Meso-resolved simulations of shock-to-detonation transition in nitromethane with air-filled cavities. Journal of Applied Physics, 2019, 125, .	2.5	18
52	Numerical study of cellular detonation wave reflection over a cylindrical concave wedge. Combustion and Flame, 2019, 202, 179-194.	5.2	18
53	The role of cellular instability on the critical tube diameter problem for unstable gaseous detonations. Proceedings of the Combustion Institute, 2019, 37, 3545-3553.	3.9	18
54	Detonation Instability. , 2012, , 107-212.		17

#	Article	IF	CITATIONS
55	Experiments and Modeling of Air-Powered Needle-Free Liquid Injectors. Journal of Medical and Biological Engineering, 2015, 35, 685-695.	1.8	17
56	CFD MODELING OF HIGH SPEED LIQUID JETS FROM AN AIR-POWERED NEEDLE-FREE INJECTION SYSTEM. Journal of Mechanics in Medicine and Biology, 2016, 16, 1650045.	0.7	16
57	Unsteady dynamics of wedge-induced oblique detonations under periodic inflows. Physics of Fluids, 2021, 33, .	4.0	16
58	The growth of fractal dimension of an interface evolution from the interaction of a shock wave with a rectangular block of SF6. Communications in Nonlinear Science and Numerical Simulation, 2011, 16, 4158-4162.	3.3	14
59	Measurement and chemical kinetic model predictions of detonation cell size in methanol–oxygen mixtures. Shock Waves, 2012, 22, 173-178.	1.9	14
60	Transmission of a detonation wave across an inert layer. Combustion and Flame, 2022, 236, 111769.	5.2	14
61	Numerical simulation of detonation structures using a thermodynamically consistent and fully conservative reactive flow model for multi-component computations. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009, 465, 2135-2153.	2.1	13
62	A note on relative equilibria in a rotating shallow water layer. Journal of Fluid Mechanics, 2013, 724, 695-703.	3.4	13
63	High resolution GPU-based flow simulation of the gaseous methane-oxygen detonation structure. Journal of Visualization, 2015, 18, 273-276.	1.8	13
64	A model for the trajectory of the transverse detonation resulting from re-initiation of a diffracted detonation. Shock Waves, 2020, 30, 13-27.	1.9	13
65	Head-on Collision of a Detonation with a Planar Shock Wave. Shock Waves, 2006, 15, 341-352.	1.9	12
66	Near-field relaxation subsequent to the onset of oblique detonations with a two-step kinetic model. Physics of Fluids, 2021, 33, 096106.	4.0	12
67	A technique for promoting detonation transmission from a confined tube into larger area for pulse detonation engine applications. Propulsion and Power Research, 2014, 3, 9-14.	4.3	11
68	Nonlinear dynamics and chaos regularization of one-dimensional pulsating detonations with small sinusoidal density perturbations. Proceedings of the Combustion Institute, 2021, 38, 3701-3708.	3.9	11
69	Computational study of gaseous cellular detonation diffraction and re-initiation by small obstacle induced perturbations. Physics of Fluids, 2021, 33, .	4.0	11
70	Applying nonlinear dynamic theory to one-dimensional pulsating detonations. Combustion Theory and Modelling, 2011, 15, 205-225.	1.9	10
71	Transmission of a detonation across a density interface. Shock Waves, 2018, 28, 967-979.	1.9	10
72	The Effect of Chemical Reactivity on the Formation of Gaseous Oblique Detonation Waves. Aerospace, 2019, 6, 62.	2.2	9

#	Article	IF	CITATIONS
73	Design analysis and comparison between standard and rotary porting systems for IC engine. International Journal of Automotive Technology, 2012, 13, 175-191.	1.4	8
74	Symmetrization of a polygonal hollow-core vortex through beat-wave resonance. Physical Review E, 2011, 83, 056319.	2.1	7
75	On the application of gas detonation-driven water jet for material surface treatment process. Manufacturing Letters, 2019, 21, 70-74.	2.2	7
76	Numerical simulation of deflagration-to-detonation transition via shock–multiple flame kernels interactions. Computers and Mathematics With Applications, 2021, 83, 111-126.	2.7	7
77	Numerical study of detonation wave propagation modes in annular channels. AIP Advances, 2021, 11, .	1.3	7
78	Velocity fluctuation and cellular structure of near-limit detonations in rough tubes. Fuel, 2021, 289, 119909.	6.4	6
79	Critical tube diameter for quasi-detonations. Combustion and Flame, 2022, 244, 112280.	5.2	6
80	Controlled Release Using Gas Detonation in Needle-Free Liquid Jet Injections for Drug Delivery. Applied Sciences (Switzerland), 2019, 9, 2712.	2.5	5
81	Investigation of near-limit detonation propagation in a tube with helical spiral. Fuel, 2021, 286, 119384.	6.4	5
82	Small-size rotating detonation engine: scaling and minimum mass flow rate. Shock Waves, 2021, 31, 665-674.	1.9	5
83	Propagation of near-limit gaseous detonations in rough-walled tubes. Shock Waves, 2020, 30, 769-780.	1.9	4
84	Transitions between systems of satellite vortices in a rotating fluid. Physics of Fluids, 2020, 32, .	4.0	4
85	Flow visualization and numerical simulation of a two-dimensional fluid flow over a foil. Journal of Visualization, 2017, 20, 687-693.	1.8	3
86	Rotating polygonal depression soliton clusters on the inner surface of a liquid ring. Physical Review E, 2019, 99, 023110.	2.1	3
87	Computational methods for gas dynamics and compressible multiphase flows. Shock Waves, 2019, 29, 1-2.	1.9	3
88	Near-limit detonations of methane–oxygen mixtures in long narrow tubes. Shock Waves, 2020, 30, 713-719.	1.9	3
89	Visualization of an imploding circular wave front and the formation of a central vertical jet. Journal of Visualization, 2011, 14, 19-22.	1.8	2
90	Modeling propellant fires radiant heat flux. Journal of Energetic Materials, 2019, 37, 110-124.	2.0	2

#	Article	IF	Citations
91	Reconstructing shock front of unstable detonations based on multi-layer perceptron. Acta Mechanica Sinica/Lixue Xuebao, 0, , 1 .	3.4	2
92	Design and Analysis: Servo-Tube-Powered Liquid Jet Injector for Drug Delivery Applications. Applied Sciences (Switzerland), 2022, 12, 6920.	2.5	2
93	A Simple Method for Initial Condensed-Phase Combustion Reactions Predictions. Applied Spectroscopy Reviews, 2011, 46, 132-139.	6.7	1
94	Numerical simulation and flow visualization using soap film of the self-organized vortex structure in the wake of an array of cylinders. Journal of Visualization, 2011, 14, 311-314.	1.8	1
95	New experimental confirmation of Kelvin's equilibria. European Physical Journal Plus, 2018, 133, 1.	2.6	1
96	Pulsatile twin parallel jets through a flexible orifice with application to edge-to-edge mitral valve repair. Physics of Fluids, 2020, 32, 121702.	4.0	1
97	Response to "Comment on  A model for the trajectory of the transverse detonation resulting from re-initiation of a diffracted detonation' by Yuan et al.― Shock Waves, 2021, 31, 415-417.	1.9	1
98	Direct initiation of detonation with a multi-step reaction scheme. , 0, .		1
99	Numerical modelling of detonation initiation via shock interaction with multiple flame kernels. AIP Conference Proceedings, 2019, , .	0.4	0
100	Skeletons of patterned vortex cores. Journal of Visualization, 2019, 22, 857-865.	1.8	0
101	Numerical simulations of gaseous cellular detonation interaction with bluff-body obstacles. AIP Conference Proceedings, 2020, , .	0.4	0
102	Stabilization of one-dimensional pulsating detonation instability using initial density non-uniformity. AIP Conference Proceedings, 2022, , .	0.4	0