Daniel Sol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/644316/publications.pdf

Version: 2024-02-01

133 13,283 49 110 papers citations h-index g-index

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	A test of Darwin's naturalization conundrum in birds reveals enhanced invasion success in the presence of close relatives. Ecology Letters, 2022, 25, 661-672.	6.4	9
2	Niche expansion and adaptive divergence in the global radiation of crows and ravens. Nature Communications, 2022, 13, 2086.	12.8	5
3	Neuron numbers link innovativeness with both absolute and relative brain size in birds. Nature Ecology and Evolution, 2022, 6, 1381-1389.	7.8	27
4	Contrasting Impacts of Cultivated Exotics on the Functional Diversity of Domestic Gardens in Three Regions with Different Aridity. Ecosystems, 2021, 24, 875-890.	3.4	2
5	Validation of a globally-applicable method to measure urban tolerance of birds using citizen science data. Ecological Indicators, 2021, 120, 106905.	6.3	9
6	Intelligence Versus Natural Selection. , 2021, , 4174-4177.		0
7	Technical Intelligence Hypothesis, The. , 2021, , 8112-8116.		0
8	Brain size predicts learning abilities in bees. Royal Society Open Science, 2021, 8, 201940.	2.4	10
9	Resource preferences and the emergence of individual niche specialization within populations. Behavioral Ecology, 2021, 32, 1202-1211.	2.2	5
10	A framework for understanding how biodiversity patterns unfold across multiple spatial scales in urban ecosystems. Ecosphere, 2021, 12, e03650.	2.2	24
11	Innovation and Problem-Solving Overview. , 2021, , 639-652.		0
12	Niche shifts after island colonization spurred adaptive diversification and speciation in a cosmopolitan bird clade. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211022.	2.6	7
13	Cognitive Buffer Hypothesis, The., 2021, , 1147-1152.		0
14	Invasion success and tolerance to urbanization in birds. Ecography, 2021, 44, 1642-1652.	4.5	11
15	Innovation in solitary bees is driven by exploration, shyness and activity levels. Journal of Experimental Biology, 2021, 224, .	1.7	3
16	Vultures as an overlooked model in cognitive ecology. Animal Cognition, 2021, , 1.	1.8	5
17	Daily Nest Predation Rates Decrease with Body Size in Passerine Birds. American Naturalist, 2020, 196, 743-754.	2.1	22
18	Feeding specialization and longer generation time are associated with relatively larger brains in bees. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200762.	2.6	12

#	Article	IF	CITATIONS
19	Host Cognition and Parasitism in Birds: A Review of the Main Mechanisms. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	7
20	The worldwide impact of urbanisation on avian functional diversity. Ecology Letters, 2020, 23, 962-972.	6.4	95
21	Brain Size and Life History Interact to Predict Urban Tolerance in Birds. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	51
22	Behavioural plasticity is associated with reduced extinction risk in birds. Nature Ecology and Evolution, 2020, 4, 788-793.	7.8	104
23	Cognition and Adaptation to Urban Environments. , 2020, , 253-267.		9
24	Behaviour, life history and persistence in novel environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180056.	4.0	27
25	Larger brains spur species diversification in birds. Evolution; International Journal of Organic Evolution, 2019, 73, 2085-2093.	2.3	15
26	Fast attrition of springtail communities by experimental drought and richness–decomposition relationships across Europe. Global Change Biology, 2019, 25, 2727-2738.	9.5	23
27	Bees use anthropogenic habitats despite strong natural habitat preferences. Diversity and Distributions, 2019, 25, 924-935.	4.1	25
28	El futur de la biodiversitat al planeta Terra. Metode, 2019, , .	0.1	0
29	Risk-taking behavior, urbanization and the pace of life in birds. Behavioral Ecology and Sociobiology, 2018, 72, 1.	1.4	59
30	Predictable evolution towards larger brains in birds colonizing oceanic islands. Nature Communications, 2018, 9, 2820.	12.8	61
31	Are Urban Vertebrates City Specialists, Artificial Habitat Exploiters, or Environmental Generalists?. Integrative and Comparative Biology, 2018, 58, 929-938.	2.0	57
32	Why Are Exotic Birds So Successful in Urbanized Environments?., 2017,, 75-89.		27
33	Urbanisation and the loss of phylogenetic diversity in birds. Ecology Letters, 2017, 20, 721-729.	6.4	145
34	Tropical insect diversity: evidence of greater host specialization in seedâ€feeding weevils. Ecology, 2017, 98, 2180-2190.	3.2	26
35	Revisiting the open-field test: what does it really tell us about animal personality?. Animal Behaviour, 2017, 123, 69-79.	1.9	130
36	Intelligence vs. Natural Selection. , 2017, , 1-4.		0

#	Article	IF	CITATIONS
37	Invading New Environments: A Mechanistic Framework Linking Motor Diversity and Cognition to Establishment Success., 2016,, 26-46.		13
38	How Behaviour Contributes to the Success of an Invasive Poeciliid Fish: The Trinidadian Guppy (<i>Poecilia reticulata</i>) as a Model Species., 2016,, 266-290.		16
39	Wildlife Trade, Behaviour and Avian Invasions. , 2016, , 324-344.		2
40	The Role of Dispersal Behaviour and Personality in Post-establishment Spread. , 2016, , 96-116.		9
41	Life History, Behaviour and Invasion Success. , 2016, , 63-81.		16
42	Invasive Plants as Novel Food Resources, the Pollinators' Perspective. , 2016, , 119-132.		9
43	Testing the island effect on phenotypic diversification: insights from the Hemidactylus geckos of the Socotra Archipelago. Scientific Reports, 2016, 6, 23729.	3.3	25
44	Environmental variation and the evolution of large brains in birds. Nature Communications, 2016, 7, 13971.	12.8	118
45	The Role of Behavioural Variation across Different Stages of the Introduction Process., 2016,, 7-25.		13
46	Relative Brain Size and Its Relation with the Associative Pallium in Birds. Brain, Behavior and Evolution, 2016, 87, 69-77.	1.7	59
47	Progresses and Controversies in Invasion Biology. Wildlife Research Monographs, 2016, , 177-200.	0.9	3
48	Competition, niche opportunities and the successful invasion of natural habitats. Biological Invasions, 2016, 18, 3535-3546.	2.4	18
49	The life-history basis of behavioural innovations. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150187.	4.0	107
50	The role of motor diversity in foraging innovations: a cross-species comparison in urban birds. Behavioral Ecology, 2016, 27, 584-591.	2.2	52
51	Cognitive Buffer Hypothesis, The. , 2016, , 1-6.		1
52	Biological Invasions and Animal Behaviour. , 2016, , .		12
53	Integrating behavior into life-history theory: a comment on Wong and Candolin. Behavioral Ecology, 2015, 26, 677-678.	2.2	3
54	The Evolution of Innovativeness. , 2015, , 163-187.		16

#	Article	IF	CITATIONS
55	Singing in the city: high song frequencies are no guarantee for urban success in birds. Behavioral Ecology, 2015, 26, 843-850.	2.2	32
56	Random processes and phylogenetic loss caused by plant invasions. Global Ecology and Biogeography, 2015, 24, 774-785.	5.8	16
57	Do close relatives make bad neighbors?. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E534-5.	7.1	10
58	Urbanisation tolerance and the loss of avian diversity. Ecology Letters, 2014, 17, 942-950.	6.4	283
59	Addressing a critique of the TEASI framework for invasive species risk assessment. Ecology Letters, 2013, 16, 1415-e6.	6.4	4
60	Measuring Tolerance to Urbanization for Comparative Analyses. Ardeola, 2013, 60, 3-13.	0.7	18
61	Behavioural changes and the adaptive diversification of pigeons and doves. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122893.	2.6	60
62	Fitness costs and benefits of personality disorder traits. Evolution and Human Behavior, 2013, 34, 41-48.	2.2	19
63	Behavioural adjustments for a life in the city. Animal Behaviour, 2013, 85, 1101-1112.	1.9	507
64	Sexual selection on brain size in shorebirds (<scp>C</scp> haradriiformes). Journal of Evolutionary Biology, 2013, 26, 878-888.	1.7	17
65	Do smart birds stress less? An interspecific relationship between brain size and corticosterone levels. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131734.	2.6	29
66	Innovating Innovation Rate and Its Relationship with Brains, Ecology and General Intelligence. Brain, Behavior and Evolution, 2013, 81, 143-145.	1.7	60
67	Improved empirical tests of area-heterogeneity tradeoffs. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2858-60.	7.1	13
68	TEASIng apart alien species risk assessments: a framework for best practices. Ecology Letters, 2012, 15, 1475-1493.	6.4	241
69	Unraveling the Life History of Successful Invaders. Science, 2012, 337, 580-583.	12.6	226
70	The paradox of invasion in birds: competitive superiority or ecological opportunism?. Oecologia, 2012, 169, 553-564.	2.0	96
71	Consumer and motor innovation in the common myna: the role of motivation and emotional responses. Animal Behaviour, 2012, 83, 179-188.	1.9	56
72	Deconstructing the native–exotic richness relationship in plants. Global Ecology and Biogeography, 2012, 21, 524-533.	5.8	43

#	Article	lF	CITATIONS
73	A framework for estimating niche metrics using the resemblance between qualitative resources. Oikos, 2011, 120, 1341-1350.	2.7	63
74	Are innovative species ecological generalists? A test in North American birds. Behavioral Ecology, 2011, 22, 1286-1293.	2.2	74
75	Exploring or Avoiding Novel Food Resources? The Novelty Conflict in an Invasive Bird. PLoS ONE, 2011, 6, e19535.	2.5	185
76	Largeâ€brained mammals live longer. Journal of Evolutionary Biology, 2010, 23, 1064-1074.	1.7	113
77	Evolutionary Divergence in Brain Size between Migratory and Resident Birds. PLoS ONE, 2010, 5, e9617.	2.5	82
78	Ant versus bird exclusion effects on the arthropod assemblage of an organic citrus grove. Ecological Entomology, 2010, 35, 367-376.	2.2	33
79	A global risk assessment for the success of bird introductions. Journal of Applied Ecology, 2009, 46, 787-795.	4.0	36
80	Exploring species attributes and site characteristics to assess plant invasions in Spain. Diversity and Distributions, 2009, 15, 50-58.	4.1	90
81	Prominent role of invasive species in avian biodiversity loss. Biological Conservation, 2009, 142, 2043-2049.	4.1	160
82	Revisiting the cognitive buffer hypothesis for the evolution of large brains. Biology Letters, 2009, 5, 130-133.	2.3	259
83	The Cognitive-Buffer Hypothesis for the Evolution of Large Brains. , 2009, , 111-134.		44
84	The comparative analysis of historical alien introductions. Biological Invasions, 2008, 10, 1119-1129.	2.4	62
85	Random sampling, abundance–extinction dynamics and nicheâ€filtering immigration constraints explain the generation of species richness gradients. Global Ecology and Biogeography, 2008, 17, 352-362.	5 . 8	26
86	Grasping at the routes of biological invasions: a framework for integrating pathways into policy. Journal of Applied Ecology, 2008, 45, 403-414.	4.0	784
87	Brain Size and the Diversification of Body Size in Birds. American Naturalist, 2008, 172, 170-177.	2.1	44
88	Brain Size Predicts the Success of Mammal Species Introduced into Novel Environments. American Naturalist, 2008, 172, S63-S71.	2.1	382
89	Brains, Lifestyles and Cognition: Are There General Trends?. Brain, Behavior and Evolution, 2008, 72, 135-144.	1.7	161
90	Introduction: Genetics of Colonizing Species. American Naturalist, 2008, 172, S1-S3.	2.1	20

#	Article	IF	CITATIONS
91	Do Successful Invaders Exist? Pre-Adaptations to Novel Environments in Terrestrial Vertebrates. , 2008, , 127-141.		34
92	Big-brained birds survive better in nature. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 763-769.	2.6	181
93	Community-based processes behind species richness gradients: contrasting abundance–extinction dynamics and sampling effects in areas of low and high productivity. Global Ecology and Biogeography, 2007, 16, 709-719.	5.8	28
94	Integrating animal temperament within ecology and evolution. Biological Reviews, 2007, 82, 291-318.	10.4	2,671
95	Food stealing in birds: brain or brawn?. Animal Behaviour, 2007, 74, 1725-1734.	1.9	73
96	Wildlife conservation and animal temperament: causes and consequences of evolutionary change for captive, reintroduced, and wild populations. Animal Conservation, 2006, 9, 39-48.	2.9	255
97	DOES DIVING LIMIT BRAIN SIZE IN CETACEANS?. Marine Mammal Science, 2006, 22, 413-425.	1.8	29
98	Large Brains and Lengthened Life History Periods in Odontocetes. Brain, Behavior and Evolution, 2006, 68, 218-228.	1.7	12
99	Establishment Success across Convergent Mediterranean Ecosystems: an Analysis of Bird Introductions. Conservation Biology, 2005, 19, 1519-1527.	4.7	27
100	BEHAVIORAL DRIVE OR BEHAVIORAL INHIBITION IN EVOLUTION: SUBSPECIFIC DIVERSIFICATION IN HOLARCTIC PASSERINES. Evolution; International Journal of Organic Evolution, 2005, 59, 2669-2677.	2.3	85
101	How predictable is the abundance of double gametocyte infections?. Parasitology Research, 2005, 97, 84-86.	1.6	3
102	Big brains, enhanced cognition, and response of birds to novel environments. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5460-5465.	7.1	780
103	BEHAVIORAL DRIVE OR BEHAVIORAL INHIBITION IN EVOLUTION: SUBSPECIFIC DIVERSIFICATION IN HOLARCTIC PASSERINES. Evolution; International Journal of Organic Evolution, 2005, 59, 2669.	2.3	27
104	Comparing cognition across species. Trends in Cognitive Sciences, 2005, 9, 411.	7.8	5
105	Brain size, innovative propensity and migratory behaviour in temperate Palaearctic birds. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 1433-1441.	2.6	186
106	ECOLOGICAL MECHANISMS OF A RESOURCE POLYMORPHISM IN ZENAIDA DOVES OF BARBADOS. Ecology, 2005, 86, 2397-2407.	3.2	35
107	Behavioral drive or behavioral inhibition in evolution: subspecific diversification in Holarctic passerines. Evolution; International Journal of Organic Evolution, 2005, 59, 2669-77.	2.3	28
108	Global patterns of introduction effort and establishment success in birds. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, S405-8.	2.6	184

#	Article	IF	CITATIONS
109	Dunking behaviour in Carib grackles. Animal Behaviour, 2004, 68, 1267-1274.	1.9	100
110	Double gametocyte infections in apicomplexan parasites of birds and reptiles. Parasitology Research, 2004, 94, 155-7.	1.6	13
111	Brains, Innovations and Evolution in Birds and Primates. Brain, Behavior and Evolution, 2004, 63, 233-246.	1.7	623
112	Behavioural flexibility predicts species richness in birds, but not extinction risk. Animal Behaviour, 2003, 65, 445-452.	1.9	144
113	Parasite mediated mortality and host immune response explain age-related differences in blood parasitism in birds. Oecologia, 2003, 135, 542-547.	2.0	133
114	The Ecology of Bird Introductions. Annual Review of Ecology, Evolution, and Systematics, 2003, 34, 71-98.	8.3	286
115	Behavioural Innovation: A Neglected Issue in the Ecological and Evolutionary Literature?. , 2003, , 63-82.		41
116	Behavioural flexibility and invasion success in birds. Animal Behaviour, 2002, 63, 495-502.	1.9	532
117	Predicting invaders. Trends in Ecology and Evolution, 2001, 16, 544.	8.7	12
118	Age-related habitat segregation by RobinsErithacus rubeculaduring the winter. Bird Study, 2001, 48, 252-255.	1.0	10
119	Competition between the yellow-legged gull Larus cachinnans and Audouin's gull Larus audouinii associated with commercial fishing vessels: the influence of season and fishing fleet. Marine Biology, 2001, 139, 807-816.	1.5	65
120	Behavioural flexibility predicts invasion success in birds introduced to New Zealand. Oikos, 2000, 90, 599-605.	2.7	238
121	Geographical variation in blood parasites in feral pigeons: the role of vectors. Ecography, 2000, 23, 307-314.	4.5	119
122	Are islands more susceptible to be invaded than continents? Birds say no. Ecography, 2000, 23, 687-692.	4.5	47
123	Age-related feeding site selection in urban pigeons (<i>Columba livia</i>): experimental evidence of the competition hypothesis. Canadian Journal of Zoology, 2000, 78, 144-149.	1.0	36
124	Are islands more susceptible to be invaded than continents? Birds say no. Ecography, 2000, 23, 687-692.	4.5	15
125	Geographical variation in blood parasites in feral pigeons: the role of vectors. Ecography, 2000, 23, 307-314.	4.5	31
126	Age-related feeding site selection in urban pigeons (<i>Columba livia</i>): experimental evidence of the competition hypothesis. Canadian Journal of Zoology, 2000, 78, 144-149.	1.0	5

#	Article	IF	CITATION
127	Competition for Food in Urban Pigeons: The Cost of Being Juvenile. Condor, 1998, 100, 298-304.	1.6	66
128	Habitat selection and breeding success in Yellowâ€legged Gulls <i>Larus cachinnans</i> . Ibis, 1998, 140, 415-421.	1.9	39
129	Habitat Selection by the Monk Parakeet during Colonization of a New Area in Spain. Condor, 1997, 99, 39-46.	1.6	66
130	The influence of refuse tips on the winter distribution of Yellow-legged GullsLarus cachinnans. Bird Study, 1995, 42, 216-221.	1.0	33
131	Urban pigeon populations: stability, home range, and the effect of removing individuals. Canadian Journal of Zoology, 1995, 73, 1154-1160.	1.0	56
132	Artificial selection, naturalization, and fitness: Darwin's pigeons revisited. Biological Journal of the Linnean Society, 0, 93, 657-665.	1.6	26
133	In the Light of Introduction: Importance of Introduced Populations for the Study of Brood Parasite–Host Coevolution. , 0, , 133-157.		6