
Arturo Romano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6442539/publications.pdf Version: 2024-02-01

Δρτιβο Ρομανο

#	Article	IF	CITATIONS
1	Characteristics of the Reminder that Triggers Object Recognition Memory Reconsolidation in Mice. Neuroscience, 2022, , .	2.3	1
2	Two spaced training trials induce associative ERK-dependent long term memory in Neohelice granulata. Behavioural Brain Research, 2021, 403, 113132.	2.2	5
3	LIMK, Cofilin 1 and actin dynamics involvement in fear memory processing. Neurobiology of Learning and Memory, 2020, 173, 107275.	1.9	7
4	Editorial: Changes in Molecular Expression After Memory Acquisition and Plasticity. Looking for the Memory Trace. Frontiers in Molecular Neuroscience, 2020, 13, 50.	2.9	0
5	Sustained CaMKII Delta Gene Expression Is Specifically Required for Long-Lasting Memories in Mice. Molecular Neurobiology, 2019, 56, 1437-1450.	4.0	12
6	The lateral neocortex is critical for contextual fear memory reconsolidation. Scientific Reports, 2019, 9, 12157.	3.3	7
7	Effects of Hippocampal LIMK Inhibition on Memory Acquisition, Consolidation, Retrieval, Reconsolidation, and Extinction. Molecular Neurobiology, 2018, 55, 958-967.	4.0	19
8	CaMKII Isoforms in Learning and Memory: Localization and Function. Frontiers in Molecular Neuroscience, 2018, 11, 445.	2.9	112
9	Requirement of NF-kappa B Activation in Different Mice Brain Areas during Long-Term Memory Consolidation in Two Contextual One-Trial Tasks with Opposing Valences. Frontiers in Molecular Neuroscience, 2017, 10, 104.	2.9	5
10	Heterozygous Che-1 KO mice show deficiencies in object recognition memory persistence. Neuroscience Letters, 2016, 632, 169-174.	2.1	0
11	Reconsolidation-induced memory persistence: Participation of late phase hippocampal ERK activation. Neurobiology of Learning and Memory, 2016, 133, 79-88.	1.9	16
12	NF-κB transcription factor role in consolidation and reconsolidation of persistent memories. Frontiers in Molecular Neuroscience, 2015, 8, 50.	2.9	23
13	Hippocampal dynamics of synaptic NF-kappa B during inhibitory avoidance long-term memory consolidation in mice. Neuroscience, 2015, 291, 70-80.	2.3	14
14	Nuclear factor kappa B-dependent Zif268 expression in hippocampus is required for recognition memory in mice. Neurobiology of Learning and Memory, 2015, 119, 10-17.	1.9	18
15	Memory reconsolidation of an inhibitory avoidance task in mice involves cytosolic ERK2 bidirectional modulation. Neuroscience, 2015, 294, 227-237.	2.3	14
16	Decrease of ERK/MAPK Overactivation in Prefrontal Cortex Reverses Early Memory Deficit in a Mouse Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2014, 40, 69-82.	2.6	59
17	Calcineurin phosphatase as a negative regulator of fear memory in hippocampus: Control on nuclear factorâ€ <i>lº</i> B signaling in consolidation and reconsolidation. Hippocampus, 2014, 24, 1549-1561.	1.9	29
18	Protein degradation by ubiquitin–proteasome system in formation and labilization of contextual conditioning memory. Learning and Memory, 2014, 21, 478-487.	1.3	39

ARTURO ROMANO

#	Article	IF	CITATIONS
19	Epigenetic mechanisms and memory strength: A comparative study. Journal of Physiology (Paris), 2014, 108, 278-285.	2.1	11
20	Synaptic NF-kappa B pathway in neuronal plasticity and memory. Journal of Physiology (Paris), 2014, 108, 256-262.	2.1	60
21	Nuclear Factor κB-Dependent Histone Acetylation is Specifically Involved in Persistent Forms of Memory. Journal of Neuroscience, 2013, 33, 7603-7614.	3.6	65
22	Contextual Pavlovian conditioning in the crab Chasmagnathus. Animal Cognition, 2013, 16, 255-272.	1.8	20
23	A Multidisciplinary Approach to Learning and Memory in the Crab Neohelice (Chasmagnathus) granulata. Handbook of Behavioral Neuroscience, 2013, , 337-355.	0.7	17
24	Memory Reconsolidation and Extinction in Invertebrates. , 2013, , 139-164.		4
25	Reconsolidation involves histone acetylation depending on the strength of the memory. Neuroscience, 2012, 219, 145-156.	2.3	28
26	Reconsolidation or Extinction: Transcription Factor Switch in the Determination of Memory Course after Retrieval. Journal of Neuroscience, 2011, 31, 5562-5573.	3.6	112
27	Characterization of the beta amyloid precursor protein-like gene in the central nervous system of the crab Chasmagnathus. Expression during memory consolidation. BMC Neuroscience, 2010, 11, 109.	1.9	4
28	Histone acetylation is recruited in consolidation as a molecular feature of stronger memories. Learning and Memory, 2009, 16, 600-606.	1.3	75
29	Effect on memory of acute administration of naturally secreted fibrils and synthetic amyloid-beta peptides in an invertebrate model. Neurobiology of Learning and Memory, 2008, 89, 407-418.	1.9	10
30	Memory Extinction Entails the Inhibition of the Transcription Factor NF-κB. PLoS ONE, 2008, 3, e3687.	2.5	44
31	Long-term memory consolidation depends on proteasome activity in the crab Chasmagnathus. Neuroscience, 2007, 147, 46-52.	2.3	36
32	Activation of Hippocampal Nuclear Factor-ήB by Retrieval Is Required for Memory Reconsolidation. Journal of Neuroscience, 2007, 27, 13436-13445.	3.6	74
33	Lessons From a Crab: Molecular Mechanisms in Different Memory Phases of <i>Chasmagnathus</i> . Biological Bulletin, 2006, 210, 280-288.	1.8	42
34	Evolutionarily-conserved role of the NF-κB transcription factor in neural plasticity and memory. European Journal of Neuroscience, 2006, 24, 1507-1516.	2.6	64
35	NF-κB transcription factor is required for inhibitory avoidance long-term memory in mice. European Journal of Neuroscience, 2005, 21, 2845-2852.	2.6	87
36	Activation of the transcription factor NF-ÂB by retrieval is required for long-term memory reconsolidation. Learning and Memory, 2005, 12, 23-29.	1.3	88

Arturo Romano

#	Article	IF	CITATIONS
37	Phosphorylation of extra-nuclear ERK/MAPK is required for long-term memory consolidation in the crab. Behavioural Brain Research, 2005, 158, 251-261.	2.2	76
38	Differential activity profile of cAMP-dependent protein kinase isoforms during long-term memory consolidation in the crab Chasmagnathus. Neurobiology of Learning and Memory, 2005, 83, 232-242.	1.9	15
39	Transcription factor NF-?B activation after in vivo perforant path LTP in mouse hippocampus. Hippocampus, 2004, 14, 677-683.	1.9	84
40	Participation of transcription factors from the Rel/NF-κB family in the circadian system in hamsters. Neuroscience Letters, 2004, 358, 9-12.	2.1	31
41	Neuronal fibrillogenesis: amyloid fibrils from primary neuronal cultures impair long-term memory in the crab Chasmagnathus. Behavioural Brain Research, 2003, 147, 73-82.	2.2	10
42	Two Critical Periods for cAMP-Dependent Protein Kinase Activity during Long-Term Memory Consolidation in the Crab Chasmagnathus. Neurobiology of Learning and Memory, 2002, 77, 234-249.	1.9	36
43	The ll [®] B kinase inhibitor sulfasalazine impairs long-term memory in the crab Chasmagnathus. Neuroscience, 2002, 112, 161-172.	2.3	89
44	Angiotensin II and the transcription factor Rel/NF-κB link environmental water shortage with memory improvement. Neuroscience, 2002, 115, 1079-1087.	2.3	31
45	Characterisation of cAMP-dependent protein kinase isoforms in the brain of the crab Chasmagnathus. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2001, 171, 33-40.	1.5	18
46	Participation of Rel/NF-κB transcription factors in long-term memory in the crab Chasmagnathus. Brain Research, 2000, 855, 274-281.	2.2	112
47	Massed and spaced training build up different components of long-term habituation in the crabChasmagnathus. Learning and Behavior, 1998, 26, 34-45.	3.4	45
48	Context-us association as a determinant of long-term habituation in the crabChasmagnathus. Learning and Behavior, 1998, 26, 196-209.	3.4	97
49	κ-B like DNA-binding activity is enhanced after spaced training that induces long-term memory in the crab Chasmagnathus. Neuroscience Letters, 1998, 242, 143-146.	2.1	83
50	Behavioral and Mechanistic Bases of Long-Term Habituation in the Crab Chasmagnathus. Advances in Experimental Medicine and Biology, 1998, 446, 17-35.	1.6	18
51	Angiotensin II (3–8) induces long-term memory improvement in the crab Chasmagnathus. Neuroscience Letters, 1997, 226, 143-146.	2.1	33
52	Long-term habituation (LTH) in the crab Chasmagnathus: a model for behavioral and mechanistic studies of memory. Brazilian Journal of Medical and Biological Research, 1997, 30, 813-826.	1.5	32
53	Acute administration of a permeant analog of cAMP and a phosphodiesterase inhibitor improve long-term habituation in the crab Chasmagnathus. Behavioural Brain Research, 1996, 75, 119-125.	2.2	41
54	Angiotensin II enhances long-term memory in the crab Chasmagnathus. Brain Research Bulletin, 1996, 41, 211-220.	3.0	42

ARTURO ROMANO

#	Article	IF	CITATIONS
55	Effects of activation and inhibition of cAMP-dependent protein kinase on long-term habituation in the crabChasmagnathus. Brain Research, 1996, 735, 131-140.	2.2	42
56	Acute administration of angiotensin II improves long-term habituation in the crab Chasmagnathus. Neuroscience Letters, 1995, 196, 193-196.	2.1	22
57	Nonhabituation processes affect stimulus specificity of response habituation in the crab Chasmagnathus granulatus Behavioral Neuroscience, 1991, 105, 542-552.	1.2	31
58	Long-term habituation to a danger stimulus in the crab Chasmagnathus granulatus. Physiology and Behavior, 1990, 47, 35-41.	2.1	84
59	Effect of naloxone pretreatment on habituation in the crab chasmagnathus granulatus. Behavioral and Neural Biology, 1990, 53, 113-122.	2.2	51
60	Opioid action on response level to a danger stimulus in the crab (Chasmagnathus granulatus) Behavioral Neuroscience, 1989, 103, 1139-1143.	1.2	33
61	Opioid action on response level to a danger stimulus in the crab (Chasmagnathus granulatus) Behavioral Neuroscience, 1989, 103, 1139-1143.	1.2	18
62	Effect of morphine and naloxone on a defensive response of the crab Chasmagnathus granulatus. Pharmacology Biochemistry and Behavior, 1988, 30, 635-640.	2.9	52