Craig M Crews

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6442105/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent Developments in PROTACâ€Mediated Protein Degradation: From Bench to Clinic. ChemBioChem, 2022, 23, .	1.3	105
2	PROTAC targeted protein degraders: the past is prologue. Nature Reviews Drug Discovery, 2022, 21, 181-200.	21.5	912
3	Hijacking Methyl Reader Proteins for Nuclear-Specific Protein Degradation. Journal of the American Chemical Society, 2022, 144, 5594-5605.	6.6	17
4	PROTACs: past, present and future. Chemical Society Reviews, 2022, 51, 5214-5236.	18.7	180
5	Targeted Degradation of mRNA Decapping Enzyme DcpS by a VHL-Recruiting PROTAC. ACS Chemical Biology, 2022, 17, 1789-1798.	1.6	3
6	Major advances in targeted protein degradation: PROTACs, LYTACs, and MADTACs. Journal of Biological Chemistry, 2021, 296, 100647.	1.6	126
7	Mutant-selective degradation by BRAF-targeting PROTACs. Nature Communications, 2021, 12, 920.	5.8	71
8	BET proteolysis targeted chimera-based therapy of novel models of Richter Transformation-diffuse large B-cell lymphoma. Leukemia, 2021, 35, 2621-2634.	3.3	15
9	Targeted degradation of transcription factors by TRAFTACs: TRAnscription Factor TArgeting Chimeras. Cell Chemical Biology, 2021, 28, 648-661.e5.	2.5	92
10	Synthesis of Isoquinolones by Sequential Suzuki Coupling of 2-Halobenzonitriles with Vinyl Boronate Followed by Cyclization. Journal of Organic Chemistry, 2021, 86, 8479-8488.	1.7	5
11	Electrophilic Screening Platforms for Identifying Novel Covalent Ligands for E3 Ligases. Biochemistry, 2021, 60, 2367-2370.	1.2	3
12	Abstract 43: Discovery of ARV-110, a first in class androgen receptor degrading PROTAC for the treatment of men with metastatic castration resistant prostate cancer. Cancer Research, 2021, 81, 43-43.	0.4	32
13	Targeted protein degradation: A promise for undruggable proteins. Cell Chemical Biology, 2021, 28, 934-951.	2.5	115
14	Abstract 44: The discovery of ARV-471, an orally bioavailable estrogen receptor degrading PROTAC for the treatment of patients with breast cancer. Cancer Research, 2021, 81, 44-44.	0.4	45
15	Proteolysis targeting chimeras (PROTACs) come of age: entering the third decade of targeted protein degradation. RSC Chemical Biology, 2021, 2, 725-742.	2.0	118
16	Modulation of Phosphoprotein Activity by Phosphorylation Targeting Chimeras (PhosTACs). ACS Chemical Biology, 2021, 16, 2808-2815.	1.6	50
17	Design, synthesis and biological evaluation of Proteolysis Targeting Chimeras (PROTACs) as a BTK degraders with improved pharmacokinetic properties. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126877.	1.0	70
18	PROTACs: An Emerging Therapeutic Modality in Precision Medicine. Cell Chemical Biology, 2020, 27, 998-1014	2.5	242

#	Article	IF	CITATIONS
19	Multiplex CRISPR/Cas screen in regenerating haploid limbs of chimeric Axolotls. ELife, 2020, 9, .	2.8	13
20	Scaffold hopping enables direct access to more potent PROTACs with <i>in vivo</i> activity. Chemical Communications, 2020, 56, 6890-6892.	2.2	19
21	Targeted Degradation of Oncogenic KRAS ^{G12C} by VHL-Recruiting PROTACs. ACS Central Science, 2020, 6, 1367-1375.	5.3	232
22	Proteolysis-Targeting Chimeras as Therapeutics and Tools for Biological Discovery. Cell, 2020, 181, 102-114.	13.5	567
23	Remembering where we are: Positional information in salamander limb regeneration. Developmental Dynamics, 2020, 249, 465-482.	0.8	7
24	Mechanistic basis and efficacy of targeting the β-catenin–TCF7L2–JMJD6–c-Myc axis to overcome resistance to BET inhibitors. Blood, 2020, 135, 1255-1269.	0.6	27
25	Generation of Chimeric Axolotls with Mutant Haploid Limbs Through Embryonic Grafting. Journal of Visualized Experiments, 2020, , .	0.2	0
26	Targeting BCR-ABL1 in Chronic Myeloid Leukemia by PROTAC-Mediated Targeted Protein Degradation. Cancer Research, 2019, 79, 4744-4753.	0.4	139
27	Targeted protein degradation: expanding the toolbox. Nature Reviews Drug Discovery, 2019, 18, 949-963.	21.5	541
28	Differential PROTAC substrate specificity dictated by orientation of recruited E3 ligase. Nature Communications, 2019, 10, 131.	5.8	328
29	Reversible Spatiotemporal Control of Induced Protein Degradation by Bistable PhotoPROTACs. ACS Central Science, 2019, 5, 1682-1690.	5.3	176
30	Evolving Rules for Protein Degradation? Insights from the Zinc Finger Degrome. Biochemistry, 2019, 58, 861-864.	1.2	11
31	Protein folding state-dependent sorting at the Golgi apparatus. Molecular Biology of the Cell, 2019, 30, 2296-2308.	0.9	29
32	Targeted Protein Internalization and Degradation by ENDosome TArgeting Chimeras (ENDTACs). ACS Central Science, 2019, 5, 1079-1084.	5.3	26
33	Targeted protein degradation: elements of PROTAC design. Current Opinion in Chemical Biology, 2019, 50, 111-119.	2.8	363
34	RUNX1-targeted therapy for AML expressing somatic or germline mutation in RUNX1. Blood, 2019, 134, 59-73.	0.6	75
35	PROteolysis TArgeting Chimeras (PROTACs) — Past, present and future. Drug Discovery Today: Technologies, 2019, 31, 15-27.	4.0	458
36	Targeting nuclear β-catenin as therapy for post-myeloproliferative neoplasm secondary AML. Leukemia, 2019, 33, 1373-1386.	3.3	32

3

#	Article	IF	CITATIONS
37	MDM2-Recruiting PROTAC Offers Superior, Synergistic Antiproliferative Activity via Simultaneous Degradation of BRD4 and Stabilization of p53. Cancer Research, 2019, 79, 251-262.	0.4	223
38	BETP degradation simultaneously targets acute myelogenous leukemic stem cells and the microenvironment. Journal of Clinical Investigation, 2019, 129, 1878-1894.	3.9	51
39	ARV-110: An oral androgen receptor PROTAC degrader for prostate cancer Journal of Clinical Oncology, 2019, 37, 259-259.	0.8	108
40	Protein targeting chimeric molecules specific for bromodomain and extra-terminal motif family proteins are active against pre-clinical models of multiple myeloma. Leukemia, 2018, 32, 2224-2239.	3.3	66
41	BET protein proteolysis targeting chimera (PROTAC) exerts potent lethal activity against mantle cell lymphoma cells. Leukemia, 2018, 32, 343-352.	3.3	127
42	Identification and Characterization of Von Hippel-Lindau-Recruiting Proteolysis Targeting Chimeras (PROTACs) of TANK-Binding Kinase 1. Journal of Medicinal Chemistry, 2018, 61, 583-598.	2.9	198
43	Proteolysis-Targeting Chimeras: Harnessing the Ubiquitin-Proteasome System to Induce Degradation of Specific Target Proteins. Annual Review of Cancer Biology, 2018, 2, 41-58.	2.3	51
44	The Advantages of Targeted Protein Degradation Over Inhibition: An RTK Case Study. Cell Chemical Biology, 2018, 25, 67-77.e3.	2.5	422
45	Lessons in PROTAC Design from Selective Degradation with a Promiscuous Warhead. Cell Chemical Biology, 2018, 25, 78-87.e5.	2.5	556
46	Inducing Protein Degradation as a Therapeutic Strategy. Journal of Medicinal Chemistry, 2018, 61, 403-404.	2.9	33
47	Addressing Kinase-Independent Functions of Fak via PROTAC-Mediated Degradation. Journal of the American Chemical Society, 2018, 140, 17019-17026.	6.6	197
48	Enhancing Antiproliferative Activity and Selectivity of a FLT-3 Inhibitor by Proteolysis Targeting Chimera Conversion. Journal of the American Chemical Society, 2018, 140, 16428-16432.	6.6	126
49	Targeting the C481S Ibrutinib-Resistance Mutation in Bruton's Tyrosine Kinase Using PROTAC-Mediated Degradation. Biochemistry, 2018, 57, 3564-3575.	1.2	261
50	Targeted protein unfolding uncovers a Golgi-specific transcriptional stress response. Molecular Biology of the Cell, 2018, 29, 1284-1298.	0.9	30
51	Androgen receptor degradation by the proteolysis-targeting chimera ARCC-4 outperforms enzalutamide in cellular models of prostate cancer drug resistance. Communications Biology, 2018, 1, 100.	2.0	249
52	Regeneration writ large. Nature, 2018, 554, 34-35.	13.7	3
53	Efficient Synthesis of Immunomodulatory Drug Analogues Enables Exploration of Structure–Degradation Relationships. ChemMedChem, 2018, 13, 1508-1512.	1.6	27
54	Abstract 5236: ARV-110: An androgen receptor PROTAC degrader for prostate cancer. Cancer Research, 2018, 78, 5236-5236.	0.4	36

#	Article	IF	CITATIONS
55	An oral androgen receptor PROTAC degrader for prostate cancer Journal of Clinical Oncology, 2018, 36, 381-381.	0.8	14
56	Proteolysis-Targeting Chimeras: Induced Protein Degradation as a Therapeutic Strategy. ACS Chemical Biology, 2017, 12, 892-898.	1.6	175
57	Targeted protein degradation by PROTACs. , 2017, 174, 138-144.		359
58	Targeted protein knockdown using small molecule degraders. Current Opinion in Chemical Biology, 2017, 39, 46-53.	2.8	84
59	Targeted Protein Degradation: from Chemical Biology to Drug Discovery. Cell Chemical Biology, 2017, 24, 1181-1190.	2.5	286
60	Waste disposal—An attractive strategy for cancer therapy. Science, 2017, 355, 1163-1167.	6.0	200
61	Novel BET protein proteolysis-targeting chimera exerts superior lethal activity than bromodomain inhibitor (BETi) against post-myeloproliferative neoplasm secondary (s) AML cells. Leukemia, 2017, 31, 1951-1961.	3.3	151
62	Assessing Different E3 Ligases for Small Molecule Induced Protein Ubiquitination and Degradation. ACS Chemical Biology, 2017, 12, 2570-2578.	1.6	138
63	The Proteasome in Modern Drug Discovery: Second Life of a Highly Valuable Drug Target. ACS Central Science, 2017, 3, 830-838.	5.3	103
64	Small-Molecule Modulation of Protein Homeostasis. Chemical Reviews, 2017, 117, 11269-11301.	23.0	221
65	Targeted Protein Degradation by Small Molecules. Annual Review of Pharmacology and Toxicology, 2017, 57, 107-123.	4.2	140
66	Induced protein degradation: an emerging drug discovery paradigm. Nature Reviews Drug Discovery, 2017, 16, 101-114.	21.5	971
67	Lineage tracing of genome-edited alleles reveals high fidelity axolotl limb regeneration. ELife, 2017, 6, .	2.8	35
68	An oral androgen receptor PROTAC degrader for prostate cancer Journal of Clinical Oncology, 2017, 35, 273-273.	0.8	10
69	Abstract 5067: BET protein proteolysis targeting chimera (BETP-PROTACs) exert more potent activity than BETP bromodomain inhibitor (BETi) against post-myeloproliferative neoplasm (MPN) secondary (s) AML cells. , 2017, , .		0
70	Abstract 5637: An oral Androgen Receptor PROTAC degrader for prostate cancer. , 2017, , .		1
71	BRD4 Proteolysis Targeting Chimera (PROTAC) ARV-825 Targets Both NOTCH1-MYC Regulatory Circuit and Leukemia-Microenvironment in T-ALL. Blood, 2017, 130, 716-716.	0.6	0
72	Inducing Protein Degradation as a Therapeutic Strategy. Journal of Medicinal Chemistry, 2016, 59, 5129-5130.	2.9	20

#	Article	IF	CITATIONS
73	Identification of MAC1: A Small Molecule That Rescues Spindle Bipolarity in Monastrol-Treated Cells. ACS Chemical Biology, 2016, 11, 1544-1551.	1.6	4
74	Expeditious Synthesis of Isoquinolones and Isocoumarins with a Vinyl Borane as an Acetylene Equivalent. European Journal of Organic Chemistry, 2016, 2016, 4171-4175.	1.2	21
75	Modular PROTAC Design for the Degradation of Oncogenic BCRâ€ABL. Angewandte Chemie - International Edition, 2016, 55, 807-810.	7.2	470
76	Niedermolekulare PROTACs: neue Wege zum Abbau von Proteinen. Angewandte Chemie, 2016, 128, 2002-2010.	1.6	37
77	PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7124-7129.	3.3	627
78	Voices of Chemical Biology: Charting the Next Decade. Cell Chemical Biology, 2016, 23, 199.	2.5	3
79	Smallâ€Molecule PROTACS: New Approaches to Protein Degradation. Angewandte Chemie - International Edition, 2016, 55, 1966-1973.	7.2	471
80	Our Advisors, Our Ambassadors, Our Editorial Board Members. Cell Chemical Biology, 2016, 23, 311-312.	2.5	0
81	Cell Chemical Biology: Home of Exciting Chemical Biology. Cell Chemical Biology, 2016, 23, 1-2.	2.5	12
82	BRD4 Proteolysis Targeting Chimera (PROTAC) ARV-825, Causes Sustained Degradation of BRD4 and Modulation of Chemokine Receptors, Cell Adhesion and Metabolic Targets in Leukemia Resulting in Profound Anti-Leukemic Effects. Blood, 2016, 128, 748-748.	0.6	4
83	ARV-330: Androgen receptor PROTAC degrader for prostate cancer Journal of Clinical Oncology, 2016, 34, 267-267.	0.8	6
84	Novel BET Protein Proteolysis Targeting Chimeras (BETP-PROTACs) Exert Potent Single Agent and Synergistic Activity with Ibrutinib and Venetoclax Against Human Mantle Cell Lymphoma Cells. Blood, 2016, 128, 1058-1058.	0.6	0
85	Superior Lethal Activity of Novel BET Protein Proteolysis Targeting Chimera (BETP-PROTACs) Versus Betp Bromodomain Inhibitor (BETi) Against Post-Myeloproliferative Neoplasm (MPN) Secondary (s) AML Cells. Blood, 2016, 128, 747-747.	0.6	1
86	Smallâ€Moleculeâ€Mediated Degradation of the Androgen Receptor through Hydrophobic Tagging. Angewandte Chemie - International Edition, 2015, 54, 9659-9662.	7.2	146
87	Catalytic in vivo protein knockdown by small-molecule PROTACs. Nature Chemical Biology, 2015, 11, 611-617.	3.9	879
88	HaloPROTACS: Use of Small Molecule PROTACs to Induce Degradation of HaloTag Fusion Proteins. ACS Chemical Biology, 2015, 10, 1831-1837.	1.6	321
89	Hijacking the E3ÂUbiquitin Ligase Cereblon to Efficiently Target BRD4. Chemistry and Biology, 2015, 22, 755-763.	6.2	843
90	Development of small molecules targeting the pseudokinase Her3. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3382-3389.	1.0	53

6

#	Article	IF	CITATIONS
91	Generating and Identifying Axolotls with Targeted Mutations Using Cas9 RNA-Guided Nuclease. Methods in Molecular Biology, 2015, 1290, 279-295.	0.4	4
92	Abstract LB-097: Targeted degradation of the androgen receptor in prostate cancer. Cancer Research, 2015, 75, LB-097-LB-097.	0.4	2
93	BRD4 Degradation By Protacs Represents a More Effective Therapeutic Strategy Than BRD4 Inhibitors in DLBCL. Blood, 2015, 126, 2050-2050.	0.6	2
94	Highly efficient targeted mutagenesis in axolotl using Cas9 RNA-guided nuclease. Development (Cambridge), 2014, 141, 2165-2171.	1.2	95
95	Pharmacological targeting of the pseudokinase Her3. Nature Chemical Biology, 2014, 10, 1006-1012.	3.9	161
96	Reflecting on the Past and Looking Forward to the Future of Bridging Chemistry and Biology. Chemistry and Biology, 2014, 21, 1035-1036.	6.2	0
97	Targeted protein destabilization reveals an estrogen-mediated ER stress response. Nature Chemical Biology, 2014, 10, 957-962.	3.9	69
98	Smallâ€Molecule Control of Intracellular Protein Levels through Modulation of the Ubiquitin Proteasome System. Angewandte Chemie - International Edition, 2014, 53, 2312-2330.	7.2	124
99	A Bidirectional System for the Dynamic Small Molecule Control of Intracellular Fusion Proteins. ACS Chemical Biology, 2013, 8, 2293-2300.	1.6	38
100	From epoxomicin to carfilzomib: chemistry, biology, and medical outcomes. Natural Product Reports, 2013, 30, 600.	5.2	137
101	Posttranslational protein knockdown coupled to receptor tyrosine kinase activation with phosphoPROTACs. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8942-8947.	3.3	132
102	A HaloTag-Based Small Molecule Microarray Screening Methodology with Increased Sensitivity and Multiplex Capabilities. ACS Chemical Biology, 2012, 7, 2055-2063.	1.6	11
103	Smallâ€Molecule Inhibitors of the Interaction between the E3 Ligase VHL and HIF1α. Angewandte Chemie - International Edition, 2012, 51, 11463-11467.	7.2	220
104	Dissecting Fragment-Based Lead Discovery at the von Hippel-Lindau Protein:Hypoxia Inducible Factor 1α Protein-Protein Interface. Chemistry and Biology, 2012, 19, 1300-1312.	6.2	162
105	News from the Chemistry & amp; Biology Editorial Team. Chemistry and Biology, 2012, 19, 1355.	6.2	0
106	Greasy tags for protein removal. Nature, 2012, 487, 308-309.	13.7	72
107	Targeting the von Hippel–Lindau E3 Ubiquitin Ligase Using Small Molecules To Disrupt the VHL/HIF-1α Interaction. Journal of the American Chemical Society, 2012, 134, 4465-4468.	6.6	382
108	Identification of Hydrophobic Tags for the Degradation of Stabilized Proteins. ChemBioChem, 2012, 13, 538-541.	1.3	76

#	Article	IF	CITATIONS
109	Microarray Analysis of microRNA Expression during Axolotl Limb Regeneration. PLoS ONE, 2012, 7, e41804.	1.1	41
110	HIV Protease-Mediated Activation of Sterically Capped Proteasome Inhibitors and Substrates. Journal of the American Chemical Society, 2011, 133, 698-700.	6.6	15
111	Disruption of Wnt Planar Cell Polarity Signaling by Aberrant Accumulation of the MetAP-2 Substrate Rab37. Chemistry and Biology, 2011, 18, 1300-1311.	6.2	23
112	Gene expression profile of the regeneration epithelium during axolotl limb regeneration. Developmental Dynamics, 2011, 240, 1826-1840.	0.8	58
113	Triptolide Directly Inhibits dCTP Pyrophosphatase. ChemBioChem, 2011, 12, 1767-1773.	1.3	44
114	Chemistry & Biology Editors Announce Changes to the Editorial Team. Chemistry and Biology, 2011, 18, 141.	6.2	0
115	Unexpected stereochemical tolerance for the biological activity of tyroscherin. Bioorganic and Medicinal Chemistry, 2011, 19, 1708-1713.	1.4	4
116	Small-molecule hydrophobic tagging–induced degradation of HaloTag fusion proteins. Nature Chemical Biology, 2011, 7, 538-543.	3.9	322
117	Natural Product Inhibitors of the Ubiquitin-Proteasome Pathway. Current Drug Targets, 2011, 12, 1581-1594.	1.0	23
118	A genetic interaction network of five genes for human polycystic kidney and liver diseases defines polycystin-1 as the central determinant of cyst formation. Nature Genetics, 2011, 43, 639-647.	9.4	232
119	Identification and Characterization of a Peptidic Ligand for Ras. ChemBioChem, 2010, 11, 517-522.	1.3	15
120	Targeting the Undruggable Proteome: The Small Molecules of My Dreams. Chemistry and Biology, 2010, 17, 551-555.	6.2	119
121	Reversal of TNP-470-Induced Endothelial Cell Growth Arrest by Guanine and Guanine Nucleosides. Journal of Pharmacology and Experimental Therapeutics, 2010, 334, 729-738.	1.3	8
122	Chemical Inducers of Targeted Protein Degradation. Journal of Biological Chemistry, 2010, 285, 11057-11060.	1.6	56
123	Activation of the planar cell polarity formin DAAM1 leads to inhibition of endothelial cell proliferation, migration, and angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6906-6911.	3.3	68
124	Triptolide reduces cyst formation in a neonatal to adult transition Pkd1 model of ADPKD. Nephrology Dialysis Transplantation, 2010, 25, 2187-2194.	0.4	58
125	Total Synthesis and Biological Evaluation of Tyroscherin. Organic Letters, 2010, 12, 4308-4311.	2.4	37
126	Targeting Cyst Initiation in ADPKD. Journal of the American Society of Nephrology: JASN, 2009, 20, 1-3.	3.0	11

#	Article	IF	CITATIONS
127	Total Synthesis and Structureâ^'Activity Investigation of the Marine Natural Product Neopeltolide. Journal of the American Chemical Society, 2009, 131, 12406-12414.	6.6	90
128	Molecular and Cellular Basis of Regeneration and Tissue Repair. Cellular and Molecular Life Sciences, 2008, 65, 73-79.	2.4	156
129	A role for planar cell polarity signaling in angiogenesis. Angiogenesis, 2008, 11, 347-360.	3.7	66
130	Targeted intracellular protein degradation induced by a small molecule: En route to chemical proteomics. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5904-5908.	1.0	416
131	Proteasome Inhibition by Fellutamide B Induces Nerve Growth Factor Synthesis. Chemistry and Biology, 2008, 15, 501-512.	6.2	95
132	Targeting steroid hormone receptors for ubiquitination and degradation in breast and prostate cancer. Oncogene, 2008, 27, 7201-7211.	2.6	163
133	Design and Applications of Bifunctional Small Molecules: Why Two Heads Are Better Than One. ACS Chemical Biology, 2008, 3, 677-692.	1.6	132
134	Chemical Genetics: Exploring the Role of the Proteasome in Cell Biology Using Natural Products and Other Small Molecule Proteasome Inhibitors. Journal of Medicinal Chemistry, 2008, 51, 2600-2605.	2.9	29
135	Triptolide Reduces Cystogenesis in a Model of ADPKD. Journal of the American Society of Nephrology: JASN, 2008, 19, 1659-1662.	3.0	84
136	Triptolide-Induced Transcriptional Arrest Is Associated with Changes in Nuclear Substructure. Cancer Research, 2008, 68, 5257-5266.	0.4	47
137	Triptolide is a traditional Chinese medicine-derived inhibitor of polycystic kidney disease. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4389-4394.	3.3	220
138	Molecular Understanding and Modern Application of Traditional Medicines: Triumphs and Trials. Cell, 2007, 130, 769-774.	13.5	520
139	Synthesis of the C3â^'C18 Fragment of Amphidinolides G and H. Organic Letters, 2007, 9, 3001-3004.	2.4	28
140	Construction of Highly Substituted Stereodefined Dienes by Cross-Coupling of α-Allenic Acetates. European Journal of Organic Chemistry, 2007, 2007, 40-43.	1.2	24
141	Myriaporone 3/4 structure–activity relationship studies define a pharmacophore targeting eukaryotic protein synthesis. Molecular BioSystems, 2006, 2, 371-379.	2.9	13
142	Neurotrophic peptide aldehydes: Solid phase synthesis of fellutamide B and a simplified analog. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 3855-3858.	1.0	31
143	A Chemical and Genetic Approach to the Mode of Action of Fumagillin. Chemistry and Biology, 2006, 13, 1001-1009.	6.2	86
144	Synthetic Studies on Amphidinolide B1. Organic Letters, 2006, 8, 427-430.	2.4	52

#	ARTICLE	IF	CITATIONS
145	Targeted gene disruption of methionine aminopeptidase 2 results in an embryonic gastrulation defect and endothelial cell growth arrest. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10379-10384.	3.3	56
146	Developing microcolin A analogs as biological probes. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 4043-4047.	1.0	28
147	Studies on Calcium Dependence Reveal Multiple Modes of Action for Triptolide. Chemistry and Biology, 2005, 12, 1259-1268.	6.2	46
148	Chemical Approaches to Controlling Intracellular Protein Degradation. ChemBioChem, 2005, 6, 40-46.	1.3	27
149	Stereoselective Assembly of a 1,3-Diene via Coupling between an Allenic Acetate and a (B)-Alkylborane: Synthetic Studies on Amphidinolide B1. Organic Letters, 2005, 7, 3645-3648.	2.4	35
150	Stereoselective Assembly of a 1,3-Diene via Coupling between an Allenic Acetate and a (B)-Alkylborane: Synthetic Studies on Amphidinolide B1. Organic Letters, 2005, 7, 5347-5348.	2.4	11
151	Development and Characterization of Proteasome Inhibitors. Methods in Enzymology, 2005, 399, 585-609.	0.4	24
152	A Single Amino Acid Residue Defines the Difference in Ovalicin Sensitivity between Type I and II Methionine Aminopeptidases*. Journal of Biological Chemistry, 2004, 279, 9475-9480.	1.6	22
153	Chemical Genetic Control of Protein Levels:Â Selective in Vivo Targeted Degradation. Journal of the American Chemical Society, 2004, 126, 3748-3754.	6.6	384
154	Total Synthesis of TMC-95A and -B via a New Reaction Leading toZ-Enamides. Some Preliminary Findings as to SAR. Journal of the American Chemical Society, 2004, 126, 6347-6355.	6.6	145
155	Natural Product and Synthetic Proteasome Inhibitors. , 2004, , 47-63.		2
156	Simplified Synthetic TMC-95A/B Analogues Retain the Potency of Proteasome Inhibitory Activity. ChemBioChem, 2003, 4, 508-513.	1.3	27
157	Feeding the machine: mechanisms of proteasome-catalyzed degradation of ubiquitinated proteins. Current Opinion in Chemical Biology, 2003, 7, 534-539.	2.8	34
158	Chemical Genetics. Developmental Cell, 2003, 5, 11-19.	3.1	71
159	Development of Protacs to Target Cancer-promoting Proteins for Ubiquitination and Degradation. Molecular and Cellular Proteomics, 2003, 2, 1350-1358.	2.5	302
160	Small-molecule inhibitors of the cell cycle: an overview. Progress in Cell Cycle Research, 2003, 5, 125-33.	0.9	4
161	Characterization of a Novel Mammalian Phosphatase Having Sequence Similarity toSchizosaccharomyces pombePHO2 andSaccharomyces cerevisiaePHO13â€. Biochemistry, 2002, 41, 7841-7848.	1.2	10
162	Total Synthesis of Luminacin D. Organic Letters, 2002, 4, 3087-3089.	2.4	45

#	Article	IF	CITATIONS
163	Chemical Genetics. Neuron, 2002, 36, 563-566.	3.8	20
164	Inhibitors of NF-κB signaling: design and synthesis of a biotinylated isopanepoxydone affinity reagent. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 3463-3466.	1.0	13
165	Lack of Proteasome Active Site Allostery as Revealed by Subunit-Specific Inhibitors. Molecular Cell, 2001, 7, 411-420.	4.5	117
166	The ubiquitin-proteasome pathway and proteasome inhibitors. Medicinal Research Reviews, 2001, 21, 245-273.	5.0	406
167	The anti-inflammatory natural product parthenolide from the medicinal herb Feverfew directly binds to and inhibits IήB kinase. Chemistry and Biology, 2001, 8, 759-766.	6.2	456
168	Protacs: Chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 8554-8559.	3.3	1,482
169	Cells adapted to the proteasome inhibitor 4-hydroxy- 5-iodo-3-nitrophenylacetyl-Leu-Leu-leucinal-vinyl sulfone require enzymatically active proteasomes for continued survival. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 513-518.	3.3	39
170	Efficient stereoselective syntheses of isopanepoxydone and panepoxydone: a re-assignment of relative configuration. Tetrahedron Letters, 2000, 41, 9639-9643.	0.7	29
171	Small-molecule inhibitors of the cell cycle. Current Opinion in Chemical Biology, 2000, 4, 47-53.	2.8	64
172	The Selective Proteasome Inhibitors Lactacystin and Epoxomicin Can Be Used to Either Up- or Down-Regulate Antigen Presentation at Nontoxic Doses. Journal of Immunology, 2000, 164, 6147-6157.	0.4	91
173	The antiangiogenic agent TNP-470 requires p53 and p21CIP/WAF for endothelial cell growth arrest. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 12782-12787.	3.3	115
174	Crystal Structure of Epoxomicin:20S Proteasome Reveals a Molecular Basis for Selectivity of αâ€~,βâ€~-Epoxyketone Proteasome Inhibitors. Journal of the American Chemical Society, 2000, 122, 1237-1238.	6.6	304
175	Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 10403-10408.	3.3	881
176	Towards subunit-specific proteasome inhibitors: synthesis and evaluation of peptide α', β'-epoxyketones. Chemistry and Biology, 1999, 6, 811-822.	6.2	141
177	Total synthesis of the-potent proteasome inhibitor epoxomicin: a useful tool for understanding proteasome biology. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 2283-2288.	1.0	197
178	Proteasome inhibition by the natural products epoxomicin and dihydroeponemycin: Insights into specificity and potency. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 3335-3340.	1.0	112
179	Chemical genetics: exploring and controlling cellular processes with chemical probes. Trends in Biochemical Sciences, 1999, 24, 317-320.	3.7	114
180	Towards the semi-synthesis of didemnin M. Solution and solid phase synthese of the pseudotetrapeptide: pGlu-GlnÏ^[COO]Ala-Pro-OH. Tetrahedron Letters, 1998, 39, 779-782.	0.7	9

#	Article	IF	CITATIONS
181	Synthesis of 9-fluorenylmethoxycarbonyl-protected amino aldehydes. Tetrahedron: Asymmetry, 1998, 9, 1855-1858.	1.8	50
182	Eponemycin analogues: syntheses and use as probes of angiogenesis. Bioorganic and Medicinal Chemistry, 1998, 6, 1209-1217.	1.4	58
183	The Antiproliferative Agent Didemnin B Uncompetitively Inhibits Palmitoyl Protein Thioesterase. Biochemistry, 1998, 37, 10488-10492.	1.2	37
184	Structure of Human Methionine Aminopeptidase-2 Complexed with Fumagillin. , 1998, 282, 1324-1327.		389
185	The anti-angiogenic agent fumagillin covalently binds and inhibits the methionine aminopeptidase, MetAP-2. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 6099-6103.	3.3	618
186	Didemnin binds to the protein palmitoyl thioesterase responsible for infantile neuronal ceroid lipofuscinosis Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 4316-4319.	3.3	54
187	Deciphering isozyme function: exploring cell biology with chemistry in the post-genomic era. Chemistry and Biology, 1996, 3, 961-965.	6.2	17
188	Extracellular signals and reversible protein phosphorylation: What to Mek of it all. Cell, 1993, 74, 215-217.	13.5	463
189	Raf-1 forms a stable complex with Mek1 and activates Mek1 by serine phosphorylation. Proceedings of the United States of America, 1993, 90, 10947-10951.	3.3	123
190	Interleukin 2 stimulation of p70 S6 kinase activity is inhibited by the immunosuppressant rapamycin Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 7571-7575.	3.3	167
191	The primary structure of MEK, a protein kinase that phosphorylates the ERK gene product. Science, 1992, 258, 478-480.	6.0	929
192	Purification of a murine protein-tyrosine/threonine kinase that phosphorylates and activates the Erk-1 gene product: relationship to the fission yeast byr1 gene product Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 8205-8209.	3.3	231
193	Phorbol ester stimulates a protein-tyrosine/threonine kinase that phosphorylates and activates the Erk-1 gene product Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 8200-8204.	3.3	107
194	Mouse Erk-1 gene product is a serine/threonine protein kinase that has the potential to phosphorylate tyrosine Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 8845-8849.	3.3	111
195	Exploring Biology with Small Organic Molecules. , 0, , 10-25.		0