Craig M Crews

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6442105/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protacs: Chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 8554-8559.	3.3	1,482
2	Induced protein degradation: an emerging drug discovery paradigm. Nature Reviews Drug Discovery, 2017, 16, 101-114.	21.5	971
3	The primary structure of MEK, a protein kinase that phosphorylates the ERK gene product. Science, 1992, 258, 478-480.	6.0	929
4	PROTAC targeted protein degraders: the past is prologue. Nature Reviews Drug Discovery, 2022, 21, 181-200.	21.5	912
5	Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 10403-10408.	3.3	881
6	Catalytic in vivo protein knockdown by small-molecule PROTACs. Nature Chemical Biology, 2015, 11, 611-617.	3.9	879
7	Hijacking the E3ÂUbiquitin Ligase Cereblon to Efficiently Target BRD4. Chemistry and Biology, 2015, 22, 755-763.	6.2	843
8	PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7124-7129.	3.3	627
9	The anti-angiogenic agent fumagillin covalently binds and inhibits the methionine aminopeptidase, MetAP-2. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 6099-6103.	3.3	618
10	Proteolysis-Targeting Chimeras as Therapeutics and Tools for Biological Discovery. Cell, 2020, 181, 102-114.	13.5	567
11	Lessons in PROTAC Design from Selective Degradation with a Promiscuous Warhead. Cell Chemical Biology, 2018, 25, 78-87.e5.	2.5	556
12	Targeted protein degradation: expanding the toolbox. Nature Reviews Drug Discovery, 2019, 18, 949-963.	21.5	541
13	Molecular Understanding and Modern Application of Traditional Medicines: Triumphs and Trials. Cell, 2007, 130, 769-774.	13.5	520
14	Smallâ€Molecule PROTACS: New Approaches to Protein Degradation. Angewandte Chemie - International Edition, 2016, 55, 1966-1973.	7.2	471
15	Modular PROTAC Design for the Degradation of Oncogenic BCRâ€ABL. Angewandte Chemie - International Edition, 2016, 55, 807-810.	7.2	470
16	Extracellular signals and reversible protein phosphorylation: What to Mek of it all. Cell, 1993, 74, 215-217.	13.5	463
17	PROteolysis TArgeting Chimeras (PROTACs) — Past, present and future. Drug Discovery Today: Technologies, 2019, 31, 15-27.	4.0	458
18	The anti-inflammatory natural product parthenolide from the medicinal herb Feverfew directly binds to and inhibits lκB kinase. Chemistry and Biology, 2001, 8, 759-766.	6.2	456

#	Article	IF	CITATIONS
19	The Advantages of Targeted Protein Degradation Over Inhibition: An RTK Case Study. Cell Chemical Biology, 2018, 25, 67-77.e3.	2.5	422
20	Targeted intracellular protein degradation induced by a small molecule: En route to chemical proteomics. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5904-5908.	1.0	416
21	The ubiquitin-proteasome pathway and proteasome inhibitors. Medicinal Research Reviews, 2001, 21, 245-273.	5.0	406
22	Structure of Human Methionine Aminopeptidase-2 Complexed with Fumagillin. , 1998, 282, 1324-1327.		389
23	Chemical Genetic Control of Protein Levels:Â Selective in Vivo Targeted Degradation. Journal of the American Chemical Society, 2004, 126, 3748-3754.	6.6	384
24	Targeting the von Hippel–Lindau E3 Ubiquitin Ligase Using Small Molecules To Disrupt the VHL/HIF-1α Interaction. Journal of the American Chemical Society, 2012, 134, 4465-4468.	6.6	382
25	Targeted protein degradation: elements of PROTAC design. Current Opinion in Chemical Biology, 2019, 50, 111-119.	2.8	363
26	Targeted protein degradation by PROTACs. , 2017, 174, 138-144.		359
27	Differential PROTAC substrate specificity dictated by orientation of recruited E3 ligase. Nature Communications, 2019, 10, 131.	5.8	328
28	Small-molecule hydrophobic tagging–induced degradation of HaloTag fusion proteins. Nature Chemical Biology, 2011, 7, 538-543.	3.9	322
29	HaloPROTACS: Use of Small Molecule PROTACs to Induce Degradation of HaloTag Fusion Proteins. ACS Chemical Biology, 2015, 10, 1831-1837.	1.6	321
30	Crystal Structure of Epoxomicin:20S Proteasome Reveals a Molecular Basis for Selectivity of αâ€~,βâ€~-Epoxyketone Proteasome Inhibitors. Journal of the American Chemical Society, 2000, 122, 1237-1238.	6.6	304
31	Development of Protacs to Target Cancer-promoting Proteins for Ubiquitination and Degradation. Molecular and Cellular Proteomics, 2003, 2, 1350-1358.	2.5	302
32	Targeted Protein Degradation: from Chemical Biology to Drug Discovery. Cell Chemical Biology, 2017, 24, 1181-1190.	2.5	286
33	Targeting the C481S Ibrutinib-Resistance Mutation in Bruton's Tyrosine Kinase Using PROTAC-Mediated Degradation. Biochemistry, 2018, 57, 3564-3575.	1.2	261
34	Androgen receptor degradation by the proteolysis-targeting chimera ARCC-4 outperforms enzalutamide in cellular models of prostate cancer drug resistance. Communications Biology, 2018, 1, 100.	2.0	249
35	PROTACs: An Emerging Therapeutic Modality in Precision Medicine. Cell Chemical Biology, 2020, 27, 998-1014.	2.5	242
36	A genetic interaction network of five genes for human polycystic kidney and liver diseases defines polycystin-1 as the central determinant of cyst formation. Nature Genetics, 2011, 43, 639-647.	9.4	232

#	Article	IF	CITATIONS
37	Targeted Degradation of Oncogenic KRAS ^{G12C} by VHL-Recruiting PROTACs. ACS Central Science, 2020, 6, 1367-1375.	5.3	232
38	Purification of a murine protein-tyrosine/threonine kinase that phosphorylates and activates the Erk-1 gene product: relationship to the fission yeast byr1 gene product Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 8205-8209.	3.3	231
39	MDM2-Recruiting PROTAC Offers Superior, Synergistic Antiproliferative Activity via Simultaneous Degradation of BRD4 and Stabilization of p53. Cancer Research, 2019, 79, 251-262.	0.4	223
40	Small-Molecule Modulation of Protein Homeostasis. Chemical Reviews, 2017, 117, 11269-11301.	23.0	221
41	Triptolide is a traditional Chinese medicine-derived inhibitor of polycystic kidney disease. Proceedings of the United States of America, 2007, 104, 4389-4394.	3.3	220
42	Smallâ€Molecule Inhibitors of the Interaction between the E3 Ligase VHL and HIF1α. Angewandte Chemie - International Edition, 2012, 51, 11463-11467.	7.2	220
43	Waste disposal—An attractive strategy for cancer therapy. Science, 2017, 355, 1163-1167.	6.0	200
44	Identification and Characterization of Von Hippel-Lindau-Recruiting Proteolysis Targeting Chimeras (PROTACs) of TANK-Binding Kinase 1. Journal of Medicinal Chemistry, 2018, 61, 583-598.	2.9	198
45	Total synthesis of the-potent proteasome inhibitor epoxomicin: a useful tool for understanding proteasome biology. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 2283-2288.	1.0	197
46	Addressing Kinase-Independent Functions of Fak via PROTAC-Mediated Degradation. Journal of the American Chemical Society, 2018, 140, 17019-17026.	6.6	197
47	PROTACs: past, present and future. Chemical Society Reviews, 2022, 51, 5214-5236.	18.7	180
48	Reversible Spatiotemporal Control of Induced Protein Degradation by Bistable PhotoPROTACs. ACS Central Science, 2019, 5, 1682-1690.	5.3	176
49	Proteolysis-Targeting Chimeras: Induced Protein Degradation as a Therapeutic Strategy. ACS Chemical Biology, 2017, 12, 892-898.	1.6	175
50	Interleukin 2 stimulation of p70 S6 kinase activity is inhibited by the immunosuppressant rapamycin Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 7571-7575.	3.3	167
51	Targeting steroid hormone receptors for ubiquitination and degradation in breast and prostate cancer. Oncogene, 2008, 27, 7201-7211.	2.6	163
52	Dissecting Fragment-Based Lead Discovery at the von Hippel-Lindau Protein:Hypoxia Inducible Factor 1α Protein-Protein Interface. Chemistry and Biology, 2012, 19, 1300-1312.	6.2	162
53	Pharmacological targeting of the pseudokinase Her3. Nature Chemical Biology, 2014, 10, 1006-1012.	3.9	161
54	Molecular and Cellular Basis of Regeneration and Tissue Repair. Cellular and Molecular Life Sciences, 2008, 65, 73-79.	2.4	156

#	Article	IF	CITATIONS
55	Novel BET protein proteolysis-targeting chimera exerts superior lethal activity than bromodomain inhibitor (BETi) against post-myeloproliferative neoplasm secondary (s) AML cells. Leukemia, 2017, 31, 1951-1961.	3.3	151
56	Smallâ€Moleculeâ€Mediated Degradation of the Androgen Receptor through Hydrophobic Tagging. Angewandte Chemie - International Edition, 2015, 54, 9659-9662.	7.2	146
57	Total Synthesis of TMC-95A and -B via a New Reaction Leading toZ-Enamides. Some Preliminary Findings as to SAR. Journal of the American Chemical Society, 2004, 126, 6347-6355.	6.6	145
58	Towards subunit-specific proteasome inhibitors: synthesis and evaluation of peptide α', β'-epoxyketones. Chemistry and Biology, 1999, 6, 811-822.	6.2	141
59	Targeted Protein Degradation by Small Molecules. Annual Review of Pharmacology and Toxicology, 2017, 57, 107-123.	4.2	140
60	Targeting BCR-ABL1 in Chronic Myeloid Leukemia by PROTAC-Mediated Targeted Protein Degradation. Cancer Research, 2019, 79, 4744-4753.	0.4	139
61	Assessing Different E3 Ligases for Small Molecule Induced Protein Ubiquitination and Degradation. ACS Chemical Biology, 2017, 12, 2570-2578.	1.6	138
62	From epoxomicin to carfilzomib: chemistry, biology, and medical outcomes. Natural Product Reports, 2013, 30, 600.	5.2	137
63	Design and Applications of Bifunctional Small Molecules: Why Two Heads Are Better Than One. ACS Chemical Biology, 2008, 3, 677-692.	1.6	132
64	Posttranslational protein knockdown coupled to receptor tyrosine kinase activation with phosphoPROTACs. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8942-8947.	3.3	132
65	BET protein proteolysis targeting chimera (PROTAC) exerts potent lethal activity against mantle cell lymphoma cells. Leukemia, 2018, 32, 343-352.	3.3	127
66	Enhancing Antiproliferative Activity and Selectivity of a FLT-3 Inhibitor by Proteolysis Targeting Chimera Conversion. Journal of the American Chemical Society, 2018, 140, 16428-16432.	6.6	126
67	Major advances in targeted protein degradation: PROTACs, LYTACs, and MADTACs. Journal of Biological Chemistry, 2021, 296, 100647.	1.6	126
68	Smallâ€Molecule Control of Intracellular Protein Levels through Modulation of the Ubiquitin Proteasome System. Angewandte Chemie - International Edition, 2014, 53, 2312-2330.	7.2	124
69	Raf-1 forms a stable complex with Mek1 and activates Mek1 by serine phosphorylation. Proceedings of the United States of America, 1993, 90, 10947-10951.	3.3	123
70	Targeting the Undruggable Proteome: The Small Molecules of My Dreams. Chemistry and Biology, 2010, 17, 551-555.	6.2	119
71	Proteolysis targeting chimeras (PROTACs) come of age: entering the third decade of targeted protein degradation. RSC Chemical Biology, 2021, 2, 725-742.	2.0	118
72	Lack of Proteasome Active Site Allostery as Revealed by Subunit-Specific Inhibitors. Molecular Cell, 2001, 7, 411-420.	4.5	117

#	Article	IF	CITATIONS
73	The antiangiogenic agent TNP-470 requires p53 and p21CIP/WAF for endothelial cell growth arrest. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 12782-12787.	3.3	115
74	Targeted protein degradation: A promise for undruggable proteins. Cell Chemical Biology, 2021, 28, 934-951.	2.5	115
75	Chemical genetics: exploring and controlling cellular processes with chemical probes. Trends in Biochemical Sciences, 1999, 24, 317-320.	3.7	114
76	Proteasome inhibition by the natural products epoxomicin and dihydroeponemycin: Insights into specificity and potency. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 3335-3340.	1.0	112
77	Mouse Erk-1 gene product is a serine/threonine protein kinase that has the potential to phosphorylate tyrosine Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 8845-8849.	3.3	111
78	ARV-110: An oral androgen receptor PROTAC degrader for prostate cancer Journal of Clinical Oncology, 2019, 37, 259-259.	0.8	108
79	Phorbol ester stimulates a protein-tyrosine/threonine kinase that phosphorylates and activates the Erk-1 gene product Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 8200-8204.	3.3	107
80	Recent Developments in PROTACâ€Mediated Protein Degradation: From Bench to Clinic. ChemBioChem, 2022, 23, .	1.3	105
81	The Proteasome in Modern Drug Discovery: Second Life of a Highly Valuable Drug Target. ACS Central Science, 2017, 3, 830-838.	5.3	103
82	Proteasome Inhibition by Fellutamide B Induces Nerve Growth Factor Synthesis. Chemistry and Biology, 2008, 15, 501-512.	6.2	95
83	Highly efficient targeted mutagenesis in axolotl using Cas9 RNA-guided nuclease. Development (Cambridge), 2014, 141, 2165-2171.	1.2	95
84	Targeted degradation of transcription factors by TRAFTACs: TRAnscription Factor TArgeting Chimeras. Cell Chemical Biology, 2021, 28, 648-661.e5.	2.5	92
85	The Selective Proteasome Inhibitors Lactacystin and Epoxomicin Can Be Used to Either Up- or Down-Regulate Antigen Presentation at Nontoxic Doses. Journal of Immunology, 2000, 164, 6147-6157.	0.4	91
86	Total Synthesis and Structureâ^'Activity Investigation of the Marine Natural Product Neopeltolide. Journal of the American Chemical Society, 2009, 131, 12406-12414.	6.6	90
87	A Chemical and Genetic Approach to the Mode of Action of Fumagillin. Chemistry and Biology, 2006, 13, 1001-1009.	6.2	86
88	Triptolide Reduces Cystogenesis in a Model of ADPKD. Journal of the American Society of Nephrology: JASN, 2008, 19, 1659-1662.	3.0	84
89	Targeted protein knockdown using small molecule degraders. Current Opinion in Chemical Biology, 2017, 39, 46-53.	2.8	84
90	Identification of Hydrophobic Tags for the Degradation of Stabilized Proteins. ChemBioChem, 2012, 13, 538-541.	1.3	76

6

#	Article	IF	CITATIONS
91	RUNX1-targeted therapy for AML expressing somatic or germline mutation in RUNX1. Blood, 2019, 134, 59-73.	0.6	75
92	Greasy tags for protein removal. Nature, 2012, 487, 308-309.	13.7	72
93	Chemical Genetics. Developmental Cell, 2003, 5, 11-19.	3.1	71
94	Mutant-selective degradation by BRAF-targeting PROTACs. Nature Communications, 2021, 12, 920.	5.8	71
95	Design, synthesis and biological evaluation of Proteolysis Targeting Chimeras (PROTACs) as a BTK degraders with improved pharmacokinetic properties. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126877.	1.0	70
96	Targeted protein destabilization reveals an estrogen-mediated ER stress response. Nature Chemical Biology, 2014, 10, 957-962.	3.9	69
97	Activation of the planar cell polarity formin DAAM1 leads to inhibition of endothelial cell proliferation, migration, and angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6906-6911.	3.3	68
98	A role for planar cell polarity signaling in angiogenesis. Angiogenesis, 2008, 11, 347-360.	3.7	66
99	Protein targeting chimeric molecules specific for bromodomain and extra-terminal motif family proteins are active against pre-clinical models of multiple myeloma. Leukemia, 2018, 32, 2224-2239.	3.3	66
100	Small-molecule inhibitors of the cell cycle. Current Opinion in Chemical Biology, 2000, 4, 47-53.	2.8	64
101	Eponemycin analogues: syntheses and use as probes of angiogenesis. Bioorganic and Medicinal Chemistry, 1998, 6, 1209-1217.	1.4	58
102	Triptolide reduces cyst formation in a neonatal to adult transition Pkd1 model of ADPKD. Nephrology Dialysis Transplantation, 2010, 25, 2187-2194.	0.4	58
103	Gene expression profile of the regeneration epithelium during axolotl limb regeneration. Developmental Dynamics, 2011, 240, 1826-1840.	0.8	58
104	Targeted gene disruption of methionine aminopeptidase 2 results in an embryonic gastrulation defect and endothelial cell growth arrest. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10379-10384.	3.3	56
105	Chemical Inducers of Targeted Protein Degradation. Journal of Biological Chemistry, 2010, 285, 11057-11060.	1.6	56
106	Didemnin binds to the protein palmitoyl thioesterase responsible for infantile neuronal ceroid lipofuscinosis Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 4316-4319.	3.3	54
107	Development of small molecules targeting the pseudokinase Her3. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3382-3389.	1.0	53
108	Synthetic Studies on Amphidinolide B1. Organic Letters, 2006, 8, 427-430.	2.4	52

#	Article	IF	CITATIONS
109	Proteolysis-Targeting Chimeras: Harnessing the Ubiquitin-Proteasome System to Induce Degradation of Specific Target Proteins. Annual Review of Cancer Biology, 2018, 2, 41-58.	2.3	51
110	BETP degradation simultaneously targets acute myelogenous leukemic stem cells and the microenvironment. Journal of Clinical Investigation, 2019, 129, 1878-1894.	3.9	51
111	Synthesis of 9-fluorenylmethoxycarbonyl-protected amino aldehydes. Tetrahedron: Asymmetry, 1998, 9, 1855-1858.	1.8	50
112	Modulation of Phosphoprotein Activity by Phosphorylation Targeting Chimeras (PhosTACs). ACS Chemical Biology, 2021, 16, 2808-2815.	1.6	50
113	Triptolide-Induced Transcriptional Arrest Is Associated with Changes in Nuclear Substructure. Cancer Research, 2008, 68, 5257-5266.	0.4	47
114	Studies on Calcium Dependence Reveal Multiple Modes of Action for Triptolide. Chemistry and Biology, 2005, 12, 1259-1268.	6.2	46
115	Total Synthesis of Luminacin D. Organic Letters, 2002, 4, 3087-3089.	2.4	45
116	Abstract 44: The discovery of ARV-471, an orally bioavailable estrogen receptor degrading PROTAC for the treatment of patients with breast cancer. Cancer Research, 2021, 81, 44-44.	0.4	45
117	Triptolide Directly Inhibits dCTP Pyrophosphatase. ChemBioChem, 2011, 12, 1767-1773.	1.3	44
118	Microarray Analysis of microRNA Expression during Axolotl Limb Regeneration. PLoS ONE, 2012, 7, e41804.	1.1	41
119	Cells adapted to the proteasome inhibitor 4-hydroxy- 5-iodo-3-nitrophenylacetyl-Leu-Leu-leucinal-vinyl sulfone require enzymatically active proteasomes for continued survival. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 513-518.	3.3	39
120	A Bidirectional System for the Dynamic Small Molecule Control of Intracellular Fusion Proteins. ACS Chemical Biology, 2013, 8, 2293-2300.	1.6	38
121	The Antiproliferative Agent Didemnin B Uncompetitively Inhibits Palmitoyl Protein Thioesterase. Biochemistry, 1998, 37, 10488-10492.	1.2	37
122	Total Synthesis and Biological Evaluation of Tyroscherin. Organic Letters, 2010, 12, 4308-4311.	2.4	37
123	Niedermolekulare PROTACs: neue Wege zum Abbau von Proteinen. Angewandte Chemie, 2016, 128, 2002-2010.	1.6	37
124	Abstract 5236: ARV-110: An androgen receptor PROTAC degrader for prostate cancer. Cancer Research, 2018, 78, 5236-5236.	0.4	36
125	Stereoselective Assembly of a 1,3-Diene via Coupling between an Allenic Acetate and a (B)-Alkylborane: Synthetic Studies on Amphidinolide B1. Organic Letters, 2005, 7, 3645-3648.	2.4	35
126	Lineage tracing of genome-edited alleles reveals high fidelity axolotl limb regeneration. ELife, 2017, 6, .	2.8	35

#	Article	IF	CITATION
127	Feeding the machine: mechanisms of proteasome-catalyzed degradation of ubiquitinated proteins. Current Opinion in Chemical Biology, 2003, 7, 534-539.	2.8	34
128	Inducing Protein Degradation as a Therapeutic Strategy. Journal of Medicinal Chemistry, 2018, 61, 403-404.	2.9	33
129	Targeting nuclear \hat{l}^2 -catenin as therapy for post-myeloproliferative neoplasm secondary AML. Leukemia, 2019, 33, 1373-1386.	3.3	32
130	Abstract 43: Discovery of ARV-110, a first in class androgen receptor degrading PROTAC for the treatment of men with metastatic castration resistant prostate cancer. Cancer Research, 2021, 81, 43-43.	0.4	32
131	Neurotrophic peptide aldehydes: Solid phase synthesis of fellutamide B and a simplified analog. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 3855-3858.	1.0	31
132	Targeted protein unfolding uncovers a Golgi-specific transcriptional stress response. Molecular Biology of the Cell, 2018, 29, 1284-1298.	0.9	30
133	Efficient stereoselective syntheses of isopanepoxydone and panepoxydone: a re-assignment of relative configuration. Tetrahedron Letters, 2000, 41, 9639-9643.	0.7	29
134	Chemical Genetics: Exploring the Role of the Proteasome in Cell Biology Using Natural Products and Other Small Molecule Proteasome Inhibitors. Journal of Medicinal Chemistry, 2008, 51, 2600-2605.	2.9	29
135	Protein folding state-dependent sorting at the Golgi apparatus. Molecular Biology of the Cell, 2019, 30, 2296-2308.	0.9	29
136	Developing microcolin A analogs as biological probes. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 4043-4047.	1.0	28
137	Synthesis of the C3â^'C18 Fragment of Amphidinolides G and H. Organic Letters, 2007, 9, 3001-3004.	2.4	28
138	Simplified Synthetic TMC-95A/B Analogues Retain the Potency of Proteasome Inhibitory Activity. ChemBioChem, 2003, 4, 508-513.	1.3	27
139	Chemical Approaches to Controlling Intracellular Protein Degradation. ChemBioChem, 2005, 6, 40-46.	1.3	27
140	Efficient Synthesis of Immunomodulatory Drug Analogues Enables Exploration of Structure–Degradation Relationships. ChemMedChem, 2018, 13, 1508-1512.	1.6	27
141	Mechanistic basis and efficacy of targeting the β-catenin–TCF7L2–JMJD6–c-Myc axis to overcome resistance to BET inhibitors. Blood, 2020, 135, 1255-1269.	0.6	27
142	Targeted Protein Internalization and Degradation by ENDosome TArgeting Chimeras (ENDTACs). ACS Central Science, 2019, 5, 1079-1084.	5.3	26
143	Development and Characterization of Proteasome Inhibitors. Methods in Enzymology, 2005, 399, 585-609.	0.4	24
144	Construction of Highly Substituted Stereodefined Dienes by Cross-Coupling of α-Allenic Acetates. European Journal of Organic Chemistry, 2007, 2007, 40-43.	1.2	24

#	Article	IF	CITATIONS
145	Disruption of Wnt Planar Cell Polarity Signaling by Aberrant Accumulation of the MetAP-2 Substrate Rab37. Chemistry and Biology, 2011, 18, 1300-1311.	6.2	23
146	Natural Product Inhibitors of the Ubiquitin-Proteasome Pathway. Current Drug Targets, 2011, 12, 1581-1594.	1.0	23
147	A Single Amino Acid Residue Defines the Difference in Ovalicin Sensitivity between Type I and II Methionine Aminopeptidases*. Journal of Biological Chemistry, 2004, 279, 9475-9480.	1.6	22
148	Expeditious Synthesis of Isoquinolones and Isocoumarins with a Vinyl Borane as an Acetylene Equivalent. European Journal of Organic Chemistry, 2016, 2016, 4171-4175.	1.2	21
149	Chemical Genetics. Neuron, 2002, 36, 563-566.	3.8	20
150	Inducing Protein Degradation as a Therapeutic Strategy. Journal of Medicinal Chemistry, 2016, 59, 5129-5130.	2.9	20
151	Scaffold hopping enables direct access to more potent PROTACs with <i>in vivo</i> activity. Chemical Communications, 2020, 56, 6890-6892.	2.2	19
152	Deciphering isozyme function: exploring cell biology with chemistry in the post-genomic era. Chemistry and Biology, 1996, 3, 961-965.	6.2	17
153	Hijacking Methyl Reader Proteins for Nuclear-Specific Protein Degradation. Journal of the American Chemical Society, 2022, 144, 5594-5605.	6.6	17
154	Identification and Characterization of a Peptidic Ligand for Ras. ChemBioChem, 2010, 11, 517-522.	1.3	15
155	HIV Protease-Mediated Activation of Sterically Capped Proteasome Inhibitors and Substrates. Journal of the American Chemical Society, 2011, 133, 698-700.	6.6	15
156	BET proteolysis targeted chimera-based therapy of novel models of Richter Transformation-diffuse large B-cell lymphoma. Leukemia, 2021, 35, 2621-2634.	3.3	15
157	An oral androgen receptor PROTAC degrader for prostate cancer Journal of Clinical Oncology, 2018, 36, 381-381.	0.8	14
158	Inhibitors of NF-κB signaling: design and synthesis of a biotinylated isopanepoxydone affinity reagent. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 3463-3466.	1.0	13
159	Myriaporone 3/4 structure–activity relationship studies define a pharmacophore targeting eukaryotic protein synthesis. Molecular BioSystems, 2006, 2, 371-379.	2.9	13
160	Multiplex CRISPR/Cas screen in regenerating haploid limbs of chimeric Axolotls. ELife, 2020, 9, .	2.8	13
161	Cell Chemical Biology: Home of Exciting Chemical Biology. Cell Chemical Biology, 2016, 23, 1-2.	2.5	12
162	Stereoselective Assembly of a 1,3-Diene via Coupling between an Allenic Acetate and a (B)-Alkylborane: Synthetic Studies on Amphidinolide B1. Organic Letters, 2005, 7, 5347-5348.	2.4	11

#	Article	IF	CITATIONS
163	Targeting Cyst Initiation in ADPKD. Journal of the American Society of Nephrology: JASN, 2009, 20, 1-3.	3.0	11
164	A HaloTag-Based Small Molecule Microarray Screening Methodology with Increased Sensitivity and Multiplex Capabilities. ACS Chemical Biology, 2012, 7, 2055-2063.	1.6	11
165	Evolving Rules for Protein Degradation? Insights from the Zinc Finger Degrome. Biochemistry, 2019, 58, 861-864.	1.2	11
166	Characterization of a Novel Mammalian Phosphatase Having Sequence Similarity toSchizosaccharomyces pombePHO2 andSaccharomyces cerevisiaePHO13â€. Biochemistry, 2002, 41, 7841-7848.	1.2	10
167	An oral androgen receptor PROTAC degrader for prostate cancer Journal of Clinical Oncology, 2017, 35, 273-273.	0.8	10
168	Towards the semi-synthesis of didemnin M. Solution and solid phase synthese of the pseudotetrapeptide: pGlu-GlnÏ^[COO]Ala-Pro-OH. Tetrahedron Letters, 1998, 39, 779-782.	0.7	9
169	Reversal of TNP-470-Induced Endothelial Cell Growth Arrest by Guanine and Guanine Nucleosides. Journal of Pharmacology and Experimental Therapeutics, 2010, 334, 729-738.	1.3	8
170	Remembering where we are: Positional information in salamander limb regeneration. Developmental Dynamics, 2020, 249, 465-482.	0.8	7
171	ARV-330: Androgen receptor PROTAC degrader for prostate cancer Journal of Clinical Oncology, 2016, 34, 267-267.	0.8	6
172	Synthesis of Isoquinolones by Sequential Suzuki Coupling of 2-Halobenzonitriles with Vinyl Boronate Followed by Cyclization. Journal of Organic Chemistry, 2021, 86, 8479-8488.	1.7	5
173	Unexpected stereochemical tolerance for the biological activity of tyroscherin. Bioorganic and Medicinal Chemistry, 2011, 19, 1708-1713.	1.4	4
174	Identification of MAC1: A Small Molecule That Rescues Spindle Bipolarity in Monastrol-Treated Cells. ACS Chemical Biology, 2016, 11, 1544-1551.	1.6	4
175	Generating and Identifying Axolotls with Targeted Mutations Using Cas9 RNA-Guided Nuclease. Methods in Molecular Biology, 2015, 1290, 279-295.	0.4	4
176	BRD4 Proteolysis Targeting Chimera (PROTAC) ARV-825, Causes Sustained Degradation of BRD4 and Modulation of Chemokine Receptors, Cell Adhesion and Metabolic Targets in Leukemia Resulting in Profound Anti-Leukemic Effects. Blood, 2016, 128, 748-748.	0.6	4
177	Small-molecule inhibitors of the cell cycle: an overview. Progress in Cell Cycle Research, 2003, 5, 125-33.	0.9	4
178	Voices of Chemical Biology: Charting the Next Decade. Cell Chemical Biology, 2016, 23, 199.	2.5	3
179	Regeneration writ large. Nature, 2018, 554, 34-35.	13.7	3
180	Electrophilic Screening Platforms for Identifying Novel Covalent Ligands for E3 Ligases. Biochemistry, 2021, 60, 2367-2370.	1.2	3

#	Article	IF	CITATIONS
181	Targeted Degradation of mRNA Decapping Enzyme DcpS by a VHL-Recruiting PROTAC. ACS Chemical Biology, 2022, 17, 1789-1798.	1.6	3
182	Natural Product and Synthetic Proteasome Inhibitors. , 2004, , 47-63.		2
183	Abstract LB-097: Targeted degradation of the androgen receptor in prostate cancer. Cancer Research, 2015, 75, LB-097-LB-097.	0.4	2
184	BRD4 Degradation By Protacs Represents a More Effective Therapeutic Strategy Than BRD4 Inhibitors in DLBCL. Blood, 2015, 126, 2050-2050.	0.6	2
185	Superior Lethal Activity of Novel BET Protein Proteolysis Targeting Chimera (BETP-PROTACs) Versus Betp Bromodomain Inhibitor (BETi) Against Post-Myeloproliferative Neoplasm (MPN) Secondary (s) AML Cells. Blood, 2016, 128, 747-747.	0.6	1
186	Abstract 5637: An oral Androgen Receptor PROTAC degrader for prostate cancer. , 2017, , .		1
187	Exploring Biology with Small Organic Molecules. , 0, , 10-25.		0
188	Chemistry & Biology Editors Announce Changes to the Editorial Team. Chemistry and Biology, 2011, 18, 141.	6.2	0
189	News from the Chemistry & amp; Biology Editorial Team. Chemistry and Biology, 2012, 19, 1355.	6.2	0
190	Reflecting on the Past and Looking Forward to the Future of Bridging Chemistry and Biology. Chemistry and Biology, 2014, 21, 1035-1036.	6.2	0
191	Our Advisors, Our Ambassadors, Our Editorial Board Members. Cell Chemical Biology, 2016, 23, 311-312.	2.5	0
192	Novel BET Protein Proteolysis Targeting Chimeras (BETP-PROTACs) Exert Potent Single Agent and Synergistic Activity with Ibrutinib and Venetoclax Against Human Mantle Cell Lymphoma Cells. Blood, 2016, 128, 1058-1058.	0.6	0
193	Abstract 5067: BET protein proteolysis targeting chimera (BETP-PROTACs) exert more potent activity than BETP bromodomain inhibitor (BETi) against post-myeloproliferative neoplasm (MPN) secondary (s) AML cells. , 2017, , .		0
194	BRD4 Proteolysis Targeting Chimera (PROTAC) ARV-825 Targets Both NOTCH1-MYC Regulatory Circuit and Leukemia-Microenvironment in T-ALL. Blood, 2017, 130, 716-716.	0.6	0
195	Generation of Chimeric Axolotls with Mutant Haploid Limbs Through Embryonic Grafting. Journal of Visualized Experiments, 2020, , .	0.2	0